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On the /* Convergence of an Algorithm
for Solving Finite Element Equations

By R. A. Nicolaides*

Abstract. An iterative method of multiple grid type is proposed for solving general
finite element systems. It is proved that the method can produce a solution to the

equations in O(N) arithmetical operations where N is the number of unknowns.

1. Introduction. It is well known that the systems of linear equations arising
from application of the finite element method to various boundary value problems are
most often solved by some variation of the elimination method. Much progress has
been made in improving the efficiency of these techniques. By contrast, the iterative
methods used successfully in the finite difference case have so far not found much
acceptance in the finite element field. In this paper a method which is iterative in
character is proposed and its convergence properties elucidated. .The problem consider-
ed is the minimization of the positive definite quadratic form a(u, ©) — 2(u, f) by means
of the finite element method. This approach requires the solution of an N x N linear
system, and it is to this linear system that the algorithm and its analysis apply. We
shall prove that the system can be solved (in a definite sense) in O(V) machine opera-
tions. This result shows a considerable improvement over what can be achieved by
elimination—at least as far as orders of magnitude in V are concerned. The proof of the
result will be carried out for quite general problems. Thus, no serious restrictions are
placed on the region 2, boundary value problems of many types for 2mth order elliptic
equations are accommodated, and there are no additional restrictions to be placed on
the trial functions, other than those normally required by the finite element method.

The method to be used is of the multiple grid type. This type of method was
introduced in [3] for the finite difference case and significantly extended by N. S.
Bakhvalov [1] in a paper of very noteworthy technical accomplishment. The general
ideas of the multiple grid approach, along with further general references, are sketched
in [6]. References [4] and [7] are also relevant here.

The subsequent contents of the paper are as follows: Section 2 contains a brief
discussion of the variational problem, while Section 3 contains a statement of the hy-
potheses under which the subsequent work is carried out. Sections 4 and 5 introduce an
algorithm which is analyzed in Sections 6 and 7. This algorithm is used as a building
block for another algorithm considered in Section 8. In the latter section we prove
that the algorithm produces an O(h%™) accurate solution to a 2mth order elliptic prob-
lem in O(N) operations where N is the dimension of the trial space. Finally, in Section
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ON THE 12 CONVERGENCE OF AN ALGORITHM 893

9 the extension to numerically integrated finite element systems is very briefly consider-
ed.

2. Variational Problem. The problem to be solved is that of minimizing the
quadratic functional

2.1) I(u) = a(u, u) — 2(u, f)

over a class of functions H () C H™ (), where the symbols have the following
meanings. 2 is a bounded open set of R?. H™(S2) is a Banach space obtained by
completing C™ (L) in the norm || |I,,,,

lall2, = 32 10%ull?,

lal<m
where 0%u denotes a distribution derivative
alalu

adu:apalap“z...ap“a’ PPy -2 Pa) €L
1 9P d

for a multi-index a = (&, @y, . . . , z) and where
2 _ 2
o3 = f_v? aq.
H™(Q) is a Hilbert space with respect to the inner product

@, v), = > (3%, 2%v),

lal<m
with (, ), the usual L() inner product. As is known, () =L*(R2). HT(Q)is a
subset of H™(£2) whose elements satisfy certain auxiliary conditions, the essential bound-
ary conditions of the problem. It will be assumed that f € H°(Q) and that the ex-
pression (u, f) in (2.1) means (, f)y. a(u, v) is a real symmetric bilinear form, as-
sumed to satisfy the conditions
a(u, v) < B llull ,I0ll,,, u, vE€HZQ),

22) a(u, u) = b |ul?, ue€HZ(Q), b, >0.
The minimization problem has a unique solution for reasonable regions 2 and certain
well-known types of essential boundary conditions. The Neumann problem is excluded
from consideration by virtue of (2.2).

We refer to [2] for a more precise formulation of the variational problem. The
above is sufficient for our purpose here.

3. Hypotheses. For the minimization problem stated in Section 2 we assume to
begin with that a finite element method which is conforming in every respect is to be
used. This means that the trial functions used are admissible in the variational integral,
essential boundary conditions are satisfied exactly, there is no approximation of 2 or
its boundary 952, and all integrations are carried out exactly. These restrictions are
made in order to simplify the analysis. In addition, we shall (temporarily) assume that
the essential conditions are homogeneous. We envisage a sequence of trial spaces {S"},
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linear because of the homogeneous data, parametrized by & such that for all A suffi-
ciently small {S"} C H'F(Q2) and such that for a given sequence {;};Z, 4 0

(3.1) Shicstitt, j=1,2,....

S" for h > 0 are assumed finite dimensional and we write dim(Sh") = N; and dim(s")
= N. In each S” a basis is given, denoted by {6;’}?21. Functions in the trial spaces
will always be denoted with an overbar. We shall assume a normalization of the basis
slightly different from the usual one; in fact, we shall suppose Ila?llo =1,i=1,2,
..., N. This normalization does not affect the applicability of the results to the usual
finite element method. It is introduced to avoid the occurrence of factors involving
annoying powers of / in our formulas. If " € S, then there exists u?, i =1, 2,
..., N, such that
(.2) ut = )1_%1 ulgh € H°(Q) > HF(Q) D s".
i=

The convention of using an overbar to denote an element of S” and removing the over-
bar to denote the corresponding element of RY will be adhered to throughout. It im-
plies of course that an ordering is assigned to the trial functions for each value of .

Carrying out the Ritz method with trial functions of the form (3.2) in the func-
tional (2.1) we arrive at the system of linear equations

(33) K" =17,

where K, is the system matrix, whose (i/)th element is a(¢/, 5;’) and where the ith
component of f” is

(3.4) fi={ rdrae, i=12....N

Let lcg. = [K;l 1; jbj=1,2,..., N Then by simple rearrangements of (3.2)—-(34)
it follows that the finite element approximation to u, the minimizing element for (2.1)
is

(3.5) u" = G,f,

where G, is the integral operator on H 0(2) defined by

Gug = [ Th. DE@) d2, g€ H®),

(3.6) N o
F;,(P, q) = ZIK,Id’?(p)(b]h(‘I)
L]=

We shall also postulate the existence of an operator G which places into correspondence
with each f € L?(£2) a unique solution u € H Z () to the minimization problem. G
will in fact be linear and bounded both as an operator into L2(£2) and as an operator
into HE ().

The following notations will be required: for ot esh,

W =h2 3 1, j=0,1,...,m,

lal=j
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N
hp2 — h)2
W1y = 3 WP
i=

We are now in a position to state the two principal hypotheses under which the nu-
merical solution of (3.3) will be considered.
Hi: for all f € L?(2) and each # >0

IGf = G, flly < CyR*™IIflly,  C; # C,(h).
H2:
(@ W <AWI%, =01, m A # AR,
(b) 15 = Nollo" 1%, 0 <o # Ag(h)

for all v € S" and for all & > 0.

The first of these is equivalent to the L? error estimate for the finite element
solution [lu — u"|l, < C,h*™|Iflly. It follows in most cases from the standard finite
element error estimates. Part (b) of H2 is equivalent to the requirement that the basis
functions form, for each %, what is known as a strongly minimal system [5]. H2(b)
taken with the first of the inequalities of H2(a) imply that the basis functions are al-
most orthonormal in L2(£2). This term, too, is used in [5].

As immediate deductions from H2(a) and (b), we infer firstly that Iv_"l0 and
IIvhlll2 are equivalent norms on S h.

ho 2 2
G.7) Nollo" 1%, < W15 < Agl"I1%.

The second deduction is an estimate for the spectral radius p(K,,) of K, ; for by the
first of inequalities (2.2)

“n —
a, V") = (K", ") < B I0MI1,

m m
— —2j17h2 —2j 2
=B, ZO 2P < By z;) h JA,.||U"||12.
ji= ]=

By the symmetry of K, it now follows that
(3.9) p(K,) <B,h=*™ B, #B,(h), h<h,,

where B, depends on B, and the A;. We shall make use of this fact later. The hy-
pothesis H2 appears to hold for the standard finite element bases, but requires a proof
in individual cases.

In addition, it will be necessary to impose a restriction on the sequence {k;}
associated with the sequence of subspaces {Sh ’}. This is the following: h; < ph;, ,
i=1,2,...,where p > 1 is a constant independent of A.

4. Preliminaries. The problem (3.3) whose solution is required will be denoted
by

@.1) Ku? =f?  (h=h),
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the index p having replaced the /4 used previously. The associated trial space will be
written as SP. Along with (4.1), it will be necessary to consider other systems of the

form
4.2) Kx?=y%, 1<q<p (h=h),

for general right-hand sides y? where the associated trial spaces S C S9*1. This, of
course, corresponds to considering systems with larger values of h than the one for
which the given calculation is to be carried out. In addition, we shall write R(g) for
the space of |S9| tuples, and N, for its dimension. For any z? € R(q), associated with
(4.2) are an error, a residual, and a residual equation defined, respectively, by

el =x1-29 A =9y9 —quq, quq =M.

Let wi3=! € 8971, 50 that W~ ! €R(q — 1) (¢ =2). Then as S9-1 C §9,
w7~ ! may be regarded also as an element of S9; let £2~1 denote the operator setting
up this correspondence and introduce the notation F9~'w@~! = w4— 1.+ This
“embedding” operation is clearly additive and homogeneous and corresponding to it
there is an operator from R(g — 1) — R(g), also linear which will have a matrix repre-
sentation relative to the bases {¢f~ l}f.\[:ql—l and {q)?}?’:"l in R(g — 1) and R(q), re-
spectively. Let E q—1 denote this matrix (which interpolates vectors from R(g — 1) to
R(g)). Then we have

43) Wb =B, Wi,

E,_, is of dimensions N, x N, _, and of rank Ng_;-
The matrices E q—1» Kq_y and K q Ar€ related to one another through the follow-
ing equality:

— T
@.4) Ky =, )KE,_ ;.

In order to prove this, consider the form a(w? !, w9~1): then
a1, wAT) =g, WA by = (K WA bt wam b
= ((By_ )TKE,_ Wit w1,
where we used (4.3). However, a(w?~!, w?~1) = (K 771 wi™1) and by subtrac-
tion it follows that
WK,y — (B, ) Ky_E,_,}wT 1 =0.

w?~1 is arbitrary. Choosing it in succession to be the eigenvectors of the matrix in

curly brackets, which is symmetric, it follows that this matrix is the zero matrix so
(4.4) follows. It may similarly be proved that, for example

4.5) et =EC £

The algorithm whose convergence is to be considered consists of repeated applica-
tions of a simpler algorithm which we shall now introduce. The steps are typical for
multiple grid methods, and their intuitive meaning is fully discussed in the references
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already mentioned. This algorithm refers to the system
Kx?=y% a=>2,

and involves relaxation iterations being carried out within another type of iteration.
We require two parameters §' and o’ and two positive integers n' and v where v > 2.
The following calculations are carried out starting with a given initial approximation to
xq’ xq ’O ,O:

Dosteps 1,2 and 3 fork=0,1,...,v—1.

q,k,i — ,q,k,i—1 _ / q,k,i—1 _ q) ; — 4
1. x x o (K x y9),i=1,2,...,n.
2. With €2~ 150 defined by

4.6) Kq_leq—l,k,O = E?;_qu’k'” ,

compute 2~ 1%¥:0 such that

"nq—lak,O — eq_l,k,oll < 3,||€q_1’k’0”~

3. Put x@k+1.0 = ya.kn’ +Eq_1nq—1,k,0.
The calculations of the first step are relaxation calculations. Those of the second con-
stitute the computation of a solution of relative accuracy & to the reduced residual
equation (4.6); the third step generates a new starting vector for the first. The norm
in step 2 is the /2 norm defined earlier. The /2 subscript on this norm symbol will be
omitted from now on to simplify the writing. It follows from (4.4) and (4.6) that

€9~ 1:%:0 s the discrete Ritz approximation to the error whose residual is 79°%"

5. A Theorem. We will now prove the following theorem about the algorithm
presented in Section 4.
THEOREM 5.1. There exist numbers 8, and n, not depending upon q, and a
number oy, such that for any fixed v =2, with o' = o, 8' = 8, and n' = n,,
Ix? — x@70) < 8,lx? —x00  (0<8,<1).
Proof. 1t is clear that
(5.1) 10" = (1 - K 'O,

For step 2 we can always write

-1,0,0 _ T n _ -
Kq—lnq 'Y, _Eq_qu’on Kq_lcq 1,0
for some C9~ 19, where we shall have
nq—l,0,0 = e(1—1,0,0 _ cq—l,O, Ilcq—l,Oll < 8I“€q_1’0’0”-

Also, putting
xT 10 = 42,00 4 Eq_lnq—l,O,O,
it follows that

q,1,0 — q,0,n" _ -1 pT q,0,n' -1,0
€ € Eq_qu_lEq_que +Eq_1Cq )
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Denoting by TI, the projection matrix

- -1 gT
(52) n,=I-E, K;'Eq_.K,

and making use of (5.1), it follows that
(5.3) 10 =T, - oz'Kq)"'t:"”o’O +E,_,CI710.

The rest of the proof hinges on a detailed analysis of (5.3) for which purpose it is
necessary to use a number of auxiliary results. These will be proved in Section 6, and
we shall return to complete the proof in Section 7.

6. Auxiliary Results. Let M, denote the N x N matrix whose (#)th entry is
(¢, 6;’)0. This matrix is positive definite, because of H2(b). For if v € S”, then

(6.1) 113 = (M7, o) = 2y 012

M,, is actually uniformly positive definite with respect to h since by hypothesis A, #
Ao (R).

We shall make some use of the following observation; let y? € R(q), and define
y3 = My 199, Then the finite element system on S? for the functional a(x, x) —
2(x, y ) is K, x? = y9. This follows from (3.4) since y is evidently in H%(2). Let
x, denote the element Gyd € H™(Q).

LEMMA 6.1. Let X?~' = G,_,y§; then

Ix? = E,_,x?~ | < BYR2Z™IY%, B} = By(Cy, Ag, Ngs 0)-
Proof. By HI, ‘

ey = X7lly < CR2™I3Mo, oo = X7 Mg < CRGT 1o
so that by the hypothesis h,_; < phg,
X7 = %97 iy < (1 + p*™)CyRZ™ 1Vl

On the other hand, by the equivalence of the norms, specified in (3.7), and deduced
from H2 we have

Nelx? — E,_ x9S (1 + p™)C G AGIMG Y5
and making use of (6.1) and rearranging,
e = Eq_1x37 I < (14 02™)C, (Aghg)#hZ ™ 171,

which is equivalent to the stated result.

The set of elements z? € R(g) satisfying the equation Eg_ 2% = 0 will be de-
noted by {Eq 1}l

LEMMA 62. Let w? € {E,_,}*. Then

WAl < By R3™ 1K Wl

Proof. Let K qvq ‘= w?. This is the finite element system for a certain free term
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wd € H°(Q), on S9. The corresponding system on S7~ ' will be

~1 _ gT _
Kq_lvq 1 —Eq_lwq—O
and so v?~! = 0. Applying Lemma 6.1 with x? = 19, it follows that [v9|| <

B hg’" |Iw?]|; and therefore, from
W9, w?) = W9, Ku?) = (K w?, v7) < IK W ll 7]

we get, after cancelling out a factor ||[w?|| from each side, that
Iw?ll < By h2™ K wil
as desired.
LEMMA 6.3. With 11, as defined in (5.2), and hy < hg

x|l < B,Ix? forallx? €R(q), B, = B,(B), B,).

Proof.  Consider the equation K ,x? = 7. As above, it is the finite element sys-
tem on S? for a certain continuous problem. The finite element system on S?~! for
this continuous problem will be K, _,x?~! = EI_, 7 so that

1 _ -1 gT
Eq_lxq —Eq_qu_lEq_lyq.

But then
qy — _ -1 T — -
M9l = 9 — B, K3* BT K x9l = k9 - E,_,x97"|

and by Lemma 6.1
132 q
IIquqII < Blhq’“lqux Il.

But we saw in (3.8) that p(Ky) < Bzh;”” for h, sufficiently small and the lemma
follows, with B, = B B,.

For the next result some additional notations are needed.

We shall denote by V‘{’u that invariant subspace of K q spanned by eigenvectors
%! of K q With corresponding eigenvalues A, ; satisfying

N.i SuBYRZ™TH, w>o0.

In addition, we shall denote by V'] , the orthogonal complement of V{ , in R(g), and
by P, the orthogonal projector of R(q) onto {E q—l} = span(F q_l).
Lemma 64. Let x? € V] ; then
I = P )xAl < ulbx4).
Proof. By definition,

I~ Pl < Ix? — g2l for all g7 € {E,_, ).

We shall take for g7 a vector constructed thus: if K qxq = y9, then as done several
times before, form the vector x9~1 associated with the continuous problem solved on
§9-1. Clearly, Eq_lx"_l € {E,_,}; and we set gl = Eq_lxq‘l. Then using Lem-
ma 6.1,
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I~ P2l < Ix? ~ B, x97 11| < By 2™ K X7

On the other hand, since x9 € V‘{’y it has an expansion in eigenvectors spanning the
latter subspace,

XM= 2 (9, a)ge
V({)”
so that
q— R i
Kx?= 3 &%, &7, 97
thl’“
and

IK x I < u(Byhg™) ™ Ixall.
Inserting this in the above proved inequality, it follows that

I = P el < e

which we wanted to prove.
The final lemma which is needed is the following:
LEMMA 6.5. For all hq < hy the inequality

1B,y CO 100 B0l B, = By(By. Agu Ag),
is valid.
Proof. By the definition of C?7!:% we have

6.2) ICT=10) < 8'lle?— 100,
Also, the following inequalities hold: for all v~ € R(g — 1)
(6.3) Ao/ Apll? 1% < IE, _ 07~ 1P < Ag/Aolv® 112

To prove these, consider for example the left-hand one. Then from (v~ 1, v~ 1), =
1t 8= 1F) ) (these are L%(S2) inner products) and using H2(a) and (b) it follows
that

)\Ouvq—l"z < (qu—l’ qu—l)o - (l_,Q—l,+’ ;q—l,+)o < A0||Eq_lvq—l||2,
and the left inequality is proved. The other one may be proved similarly. Applying
(6.3) to (6.2) with v?=! = C9=1:0 and 7! = €2~ 1:0:0 giyes
(6:4) o/ AgllEq_y CT= 10112 < (8)2 Ag/NgIIE,, _ 1 €7~ 1002,

Since
Eq— . el 1,0,0 _ (I _ nq)eq,o,n’
by Lemma 6.3

—1,0,0 1Yy !
IE,_, € <@+ B))lle?%m

and substituting this into (6.4) shows that
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IE,_ 1 CT 1O < 8" - (Ag/Ao)(1 + By)%[e7:07 ),

which is equivalent to the stated result.
This concludes the auxiliary results required for the proof of Theorem 5.1. In
the next section the proof of this latter result is completed.

7. Proof of Theorem and Further Deductions. Returning to (5.3) we may de-
compose the initial error €9--0 as

q,0,0 _ _q,0,0 q,0,0 q,0,0 q
€ =€, te, € Sh%

Tu fw =12,

from which it follows that
a- az'Kq)"’(-:"’o’0 = e‘}:ﬁ”" + eg:g’”',
00" = (- oK) e, i=1,2.
Now as is easily verified P, =0,s0 that
1ML, (7 — 'K )" €00l = T (I ~ P )" + M, ( = P)esp™ |

ST, — Ped:S™ Il + My( ~ P)ed:o™ Il
From Lemma 6.4 and Lemma 6.3,

(7.2) I, = P)ed:S™ Il < Byulled:S™ I,

(7.1)

and because [ — Pq is an orthogonal projector

(7.3) In,d - P,)ed:d 7| <B,le}:) O’y

From (7.1)—(7.3) we have

(7.4) MU = K" OO < 2[u?(B) ;0™ 17 + (B3) g™ 117].

Now let T =1, 2, denote the restriction to V;’ o i =1, 2, respectively, of
I -dkK ) and let v; 4,,, denote the bounds of these operators, i = 1, 2. Since Vg M

are 1nvar1ant subspaces of T; ., respectively,

N7 Xl SYgulbdl, xPTevi,, i=12
and consequently,
lels, 0| < <’7,q ulledy 20, i=1,2,
so that (7.4) may be rewritten as
IM,( - o'K,)" @002
<2[3 (B3 Ned:S0 + (32)272,,, JN1ed0 012 ].
By (5.3), (7.5) and Lemma 6.5,

(7.5)

le?1:0)2 < 2T, (1 — /K )" POl + 2IIE, _lcq—l"’n2
<4[u2(By)* 3" Il SOU? + (B3, lled:S 0l ]
+2(BY)* (' )2||eq’°"' ||2.

(7.6)
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We may now select values for the parameters 8', u, n' and o' as follows. First, choose
8’ to be any solution of the inequalities

(1.7) 2B <%E')?Y, 0<8' <1,

say 8,. 8, is independent of g. Next choose u to be any positive solution of the in-
equality

(7.8) 4y (B,)* < w83/,

say [y. Mg is also independent of gq. Third, we choose o = a, by
(7.9) ap = 2[uoBLR2™) ! + Byh AT, g = (@)
A standard computation based on (7.9) shows that

(7.10) pld —aoK,) <1

and also that

(7.11) <1, <6<1, 6+#6(,

RAYE AT V2,9,
where 0 is independent of q. These calculations make use of the positive definiteness
of K a It remains to choose n'. Choose n' = ny where n is a definite, positive integer

solution of the inequality
(7.12) 4BYB" <182/Y,  ny # ny(q).
From (7.10) it follows that

lle?-0m0|| < ||e?-0:0].

Substituting this into (7.6), along with 8,, u, and n, and using the inequalities (7.7),
(7.8), (7.11) and (7.12) we get

,1,0(12 ,0,
le? 1012 < 82/%1e2:0:0)2,

and repeating the iteration v times as specified in the algorithm gives finally

,0,0
lle? 01 < 8lle?" ™7l

so that the theorem is proved.

In order to reduce any initial approximation to the solution of (4.1) by a factor
6’5 we have only to apply the algorithm of Section 4 k times over, where k is any posi-
tive integer. Each of these k iterations will involve the computation of a solution with
relative accuracy 8 to a reduced residual equation of the form (4.2). This may be
done by applying the same algorithm to the latter problem, starting with initial approx-
imation zero. Then we shall have to solve a problem with ¢ = p — 2, and so on. Even-
tually, a problem with a coefficient matrix of size N; x N, will be arrived at. We shall
assume that N, is sufficiently small that the system can be solved directly, e.g. by elim-
ination. In this way a solution of (4.1) with any prescribed accuracy may be found.

The following observations may be made. First, the choice of the parameters
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given in the theorem and hence the conclusion of the theorem are independent of the
right-hand side of the linear system. From this it follows that the system (4.1) can have
its initial error reduced by the factor 8’6’ independently of its right-hand term. This
observation enables us to see that any aspect of the finite element method which in-
volves modifications to the right member of the assembled linear system leaves the
latter amenable to the method of solution we have proposed above. In particular, non-
homogeneous boundary data of various common types are allowed. Secondly, concern-
ing the algorithm itself it may be observed that if, as we suggested above, the various
N, x N, systems are solved exactly, then the parameter 8, actually makes no explicit
appearance in the algorithm. It will be determined implicitly instead by the values of
@y, ny and v that are used. The choice of the parameter v will be considered in more
detail below; there is no difficulty either practical or theoretical in choosing it. There-
fore, only the two parameters a and n, have to be chosen. Practical work shows that
it is sufficient to use the Gauss-Seidel method instead of the relaxation method discuss-
ed above. Some theoretical justification for this can be given provided we restrict our-
selves to model problems. Anyhow, use of the Gauss-Seidel method eliminates one of
the two parameters and leaves only the number of relaxation sweeps n, free.

We shall now discuss the choice of ». The selection of this number has a signifi-
cant effect on the number of arithmetical operations required to carry out the algorithm
of Section 4. It is necessary to express it as a function of v and p.

Let w, be the number of operations required to solve exactly the N, x N, linear
systems, w, the work to do the operations specified in steps 13 of the basic algorithm
with the parameters a,, n,, 8, and v and notice that w, is independent of the right-
hand sides y?. It is clear that steps 1 and 3 can be carried out in at most B, N, q opera-
tions where B, is independent of gq. Therefore, from the relation

W, < v(wq_l + B4Nq), q =2,
it follows that

p-1 .
(7.13) w, <P 'w, +B, Zl VN, 1 jr
l=

Putting N, = ﬁqu_l and Ej,p = (ﬁpﬁp_l s Bp—i+1)l /i, (7.13) can be rewritten as

p—1 _ .
(7.14) w, SvP"lw + BN, > /B, ).
=1

This is a bound on work to solve the definite system (4.1). In order to bound the
work as p — oo some hypothesis has to be introduced to ensure that the right side of
(7.14) behaves reasonably. We shall assume the following: for some B,

(7.15) 2<p<p<Ph, i=2,3,...,vEZ,.
Then the series in (7.14) converges, »»~! <N, /N, and we get

(7.16) w, <ByN,, B} =By (B, w,,B,v),
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i.e. the work required to reduce the initial error by a factor §, is bounded by a quan-
tity proportional to the number of unknowns in the linear system. The condition
(7.15) will be satisfied for finite element systems if some form of grid halving is adopt-
ed when d > 2. For then § ~ BSZ" where B, is a constant dependent upon the par-
ticular finite element trial space in question.

If we want to reduce ||e?*®0| by 8k then the work count (7.16) becomes

(7.17) w, <KByN,.

On the other hand, if the only information we have about the error is that given in H1,
it seems wasteful to compute solutions to (4.1) with accuracy greater than O(h%™). If
we adopt this viewpoint, then by means of an extension of the algorithm it is possible
to show that w, = O(Np) for a solution with O(h?™) accuracy; i.e. the factor k in
(7.17) is unnecessary. We shall prove this in the next section.

8. Coarse to Fine Grids. We pose the problem of computing U? such that
(8.1) e = UPllg < ER2™1IfNg,  §>C,

where £ is a given constant independent of hp, and f
It will be necessary to consider with (8.1) the systems

8.2) Ku?=f4 1<q<p.

We propose to solve a typical member of (8.2) by means of the algorithm discussed in
the previous sections and to use the approximate solution #9°! thus obtained, in the
form £ quq’l as an initial approximation for the solution of

(8.3) Kq+luq\+l =fq+l, q+l<p,

by the same algorithm. The parameters for these applications of the previous algorithm
are o, 8, ny and v and the algorithm will be applied k = k(&) times, where k will be
defined exactly in the theorem which follows.

THEOREM 8.1. A function UP satisfying (8.1) can be found in w'p arithmetical
operations, where

w, <BsN,, p=>p,.

Proof. Consider first the step from (8.2) to (8.3). Let &' = Ay %% and assume

that
lu? = u®H | < ER2™NIf Nl
By (3.7)
(8.4) lu? = u Mg < Aglu? = u?M I < ERZ™ 11Nl

Let E qu"’l be used as initial approximation in (8.4). Then
+1 _ ,1 +1 _ q q _ q,1
(8.5) lu? Equq Il < llu? Equ Il + IIEqu Equ Il

Again by (3.7)
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+1 _ —Yan T 1 - g
™t = Eudll KNG HNu?* — Eullly,
and from the inequalities

lu = Equlll < C,p*"h27 1 llgs e =< Co 2™, 1INl
it follows that
+1 -
a1 = Equ®ll <0G+ p2™)Cy B2 £,

In addition, as in the proof of Lemma 6.5,
IE,@? = u® M)l < (Ag/Ng)”lu? — u"||

< ASNG HIE = 4T Ml < (Mg MMG)E P22 11 Nl
using (8.4) in the last step. Then in (8.5),
ludt?! —Eu® <@, +D g)hgﬁflnfno, D; = DAy, Ay, 0, C)).
Let k be the smallest integer such that
6§ <END, + D)1, k#Ka).

Applying the algorithm of Section 7 to (8.3) with initial approximation £ quq’1 and
with k defined above, we can compute u?* 1! satisfying

1 .
N+t = w1 < ERE I F Nl
and hence, #9711 5o that
=q+1 _ =q+1,1 2
lu?™ " = ul Il < &ng" 1S Nlg-
The total arithmetic work for this calculation, w; 41 satisfies

Wosr SBiNgpr» By =By(®).

Starting with the problem (8.3) with ¢ = 1 and carrying out the above operations, it
follows that u? of (8.1) can be found in

Zw wl+B"ZN wl+B"N ZB(’ D g>2,
j=2 j=2

arithmetical operations, where w', is the work to find u'

satisfying (8.1) with p = 1.
Assuming that w/ is independent of p (e.g. the equations are solved exactly), it follows

that
D
; w} < B'SNp for all p = p;

and so the theorem is proved.

A similar result and the algorithm of this section were introduced (for finite dif-
ferences) in [1]. The theorem above provides some justification for the natural (and
old) idea of using approximate solutions on coarse grids as starting values on finer grids.
The possibility arises of using the approximate coarse grid solution not only as a starting
value for a finer grid, but to define the finer grid itself. The development of this idea
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should eventually free the user from the need to specify any grid whatsoever. Even
the algorithm discussed above however frees us from having to specify in advance a
grid where a solution is required. Instead, the user can specify the desired accuracy;
and the machine can then find a solution which achieves it. As we have seen, the en-
tire calculation will take a number of operations proportional only to the number of
grid points in the final grid.

9. Numerically Integrated Systems. All the results so far have required that the
system matrices K, and the right-hand side f” are computed exactly. In practice this
will not be the case because some numerical integration processes will have to be used.
However, the earlier results remain valid provided certain conditions are satisfied. In
this section we shall consider briefly the nature of these conditions. Let K 4= 1,2,

., D, be the system matrices computed numerically. The algorithm of Section 4 can
be formally implemented with K q replacing K. We assume first of all that K , 1S pos-
itive definite for each 2 > 0, and secondly that (3.8), which we can no longer deduce
analytically, holds in the form

p(R,) <B,n=2m, B, #B,(h), h>0.

In addition, we shall modify H1 in the following way. Let 5h be the discrete solution
operator corresponding to K n- We require

IGf = G, flly < CR2™IIfll,  for all £ € L2(R), h > 0,

whether the right-hand side of the finite element system is computed by numerical
integration, or by exact integration. These conditions can be translated into (reason-
able) conditions on the accuracy of the quadrature formulas employed. With these
modifications the entire argument excluding (4.4) can be repeated with obvious verbal
and notational changes all the way through, up to and including Section 9.

This concludes our analysis of the algorithms presented. It is hoped to be able to
report elsewhere on implementation and other topics.
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