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Comments on the Comparison
of Global Methods for Linear
Two-Point Boundary Value Problems

By Carl de Boor* and Blair Swartz**

Abstract. A more careful count of the operations involved in solving the linear system
associated with collocation of a two-point boundary value problem using rough splines
reverses results recently reported by others in this journal. In addition, it is observed
that the use of the technique of ‘“condensation of parameters” can decrease the com-
puter storage required. Furthermore, the use of a particular highly localized basis can
also reduce the setup time when the mesh is irregular. Finally, operation counts are
roughly estimated for the solution of certain linear systems associated with two com-
peting collocation methods; namely, collocation with smooth splines and collocation

of the equivalent first order system with continuous piecewise polynomials.

In a recent paper [1] in this journal, R. D. Russell and J. M. Varah carry out a
comparison of various global methods for the numerical solution of the (2m)th order
linear two-point boundary value problem

6)) Lu(x) := in: (—D)i(ai(x)Diu(x)) =flx), a<x<0b,
i=0
2 Diu(a) = D'u(p) =0, 0<i<m.

We wish to take exception to their account of the computational effort required to

solve (1)—(2) approximately by collocation at Gauss points with C2"~!

piecewise
polynomials of degree less than 2n.,

Suppose we collocate at
r:=2n-2m

Gauss points per interval or polynomial piece, using splines of order 2n in C2™~![q, b]
with N polynomial pieces. Then, according to [2, p. 605, replacing m there by 2m],
the block structure of the linear system to be solved is
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if we use the basis of appropriate B-splines in their natural order. Russell and Varah
view this as a block tridiagonal system (see (4.1)—(4.2) of [1]), with each block of
size r x r (the first and last row of blocks being of somewhat different size because of
the boundary conditions). They do take into account that the last #/2 rows of each of
their subdiagonal blocks and the first /2 rows of each of their superdiagonal blocks are
zero and assume that no pivoting is required. Consequently, they obtain

4) (13r3/12 + 24N

for the number of mulitplications/divisons necessary to solve the system.

This number is about right when n = 2m, i.e., r = n (see (6) below). But, for
n > 2m, ie., for r > n, they treat 2(r — n) zero entries in each row as if they were
nonzero; and therefore come to the incorrect conclusion that, for large n, collocation
is twice as expensive as least squares.

It turns out to be more efficient not to impose a block tridiagonal structure on
(3), but rather simply to carry out Gauss elimination with partial pivoting, paying atten-
tion to the zero structure of (3). This requires r steps of Gauss elimination in the first
block, of size (r + m) x 2n, after which the remaining m equations in that block do
not involve the first » unknowns. Combining them with the » equations of the second
block gives again a block of size (# + m) x 2n in which we carry out r steps of Gauss
elimination with partial pivoting. The m equations of this block not used as pivotal
equations now do not involve the first 27 unknowns, hence, together with the r equa-
tions of the next block, form again a block of size (» + m) x 2n. Proceeding in this
manner, we reach eventually a final block of size 2n x 2#u, in which we carry out the
full number of 2n — 1 elimination steps. (See [3] for more computational detail and
appropriate software.)

The required work is then that involved in performing
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(VW —=1) (r steps of G.E. for a (r + m) x 2n matrix)

+ G.E. for a 2n x 2n matrix.

The required number of multiplications/divisions is
(r*/3 + 3r*m/2 + 2rm*)N + lower order terms.

In particular, the necessary number of multiplications/divisions is given by
[(19/12) + O(*)IN when 7 = 2m = n,

[*/3 + OG®)IN = [8n3[3 + O(*)IN when r > 2m, ie., n > 2m,

if partial privoting is required.

If no pivoting for size is used (as is assumed in [1]), then one can take additional
advantage of the fact that the last m equations of each block, after elimination in that
block, involve only 2n — r unknowns. When these equations are adjoined to the next
block, the first m steps of Gauss elimination for the block involve only 2n — r rather
than 2n columns. This saves r Z7” | (m + r — i) multiplications per block, even when
partial pivoting is used in the remainder of each block. In particular, the necessary
number of multiplications/divisions is given by

[(23/24)* + O IN when r = 2m = n,
[*3 + OG*)IN ~ 8n3N/3  when r > 2m, ie., n > 2m,

if pivoting is avoided where it would produce fill-in.

6

If one now follows [1] in ignoring the crucially important constants in the order
of convergence rates, then the conclusion on p. 1018 of [1] would have to be reversed
to say that, for n > 2m, collocation takes about 2/3 (i.e., (8/3)n>N rather than 4n3N)
of the computing time required for Galerkin and least squares when comparing “equal”
global errors O(h2™). This kind of comparison becomes even more lopsided if we take
into account the 0(h4(""")) superconvergence at the knots [2, Theorem 4.1], i.e., if
we regard the whole collocation process as a difference scheme for knot values, and
interpolate [2, pp. 601—-602] if a global approximation is really wanted. In this case it
would be reasonable for n > m to compare collocation results for n/2 with those of
Galerkin or least squares for n. Now, collocation takes (8/3)(n/2)3N multiplications
vs the 4n3N required for Galerkin or least squares.

Finally, two small points: The proof of (3.7) on p. 1011 of [1] is considerably
shorter than the corresponding proof in [2], due to the fact that the main difficulty in
the proof in [2], viz. the fact that the functions («pqi)(k) (in the terminology of [1])
can be bounded appropriately in terms of local mesh sizes, is taken entirely for granted
in [1]. The authors may have done this because they really only considered a uniform
mesh throughout without ever saying so. This guess is supported by their remark on
p- 1014 that “this work™, i.e., the evaluation of the basis and its derivatives at the
collocation points, “does not depend on N (i.e. on k) since the evaluations are always
at the Gaussian points, and we assume these coefficients can be stored beforehand, no
matter what & is.” The other observation, as pointed out to us by John Rice, notes
the fact that the authors have chosen, unnecessarily, to evaluate the differential equation
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at each collocation point repeatedly—once for each relevant basis function. See [1, p.
1014}, where they say “for collocation, each matrix element involves an evaluation of
(1.1).”

Stimulated by [1] to reconsider the problems in approximately solving (1)—(2),
we would like to add a few remarks which are, in effect, suggestions for further work.

Our first comment considers the attractions of another basis—really, another set
of unknowns—in connection with the collocation problem we initially considered. Be-
ginning with the value of the piecewise polynomial and its first 2m — 1 derivatives at
each mesh point, we pick 2n — 4m = r — 2m additional parameters in each interval so
as to obtain the 2m(N + 1) + (r — 2m)N = 2m + Nr independent parameters required
to describe the general 2nth order piecewise polynomial in C2™~! with the given
(N — 1) interior mesh points. These additional “local” parameters could be the limiting
values of the 2mth through (n — 1)st derivatives at the two endpoints of each interval;
the corresponding basis is easily derived from the Hermite basis. Other choices, such
as the value of the function or the value of the 2mth derivative at some of the colloca-
tion points, seem equally appropriate. Each such choice makes it possible to use in
each interval the same information (properly scaled) about the basis functions even
when a nonuniform mesh is used. The setup time is then given by

rN(cost of evaluating the coefficients of the DE at one point + 2mnM).

Further, one can use “condensation of parameters” as practiced in finite element cal-
culations. Since the » — 2m additional parameters per interval only involve that inter-
val, they can be eliminated locally as part of the process of setting up the linear system
to be solved, a strategy offering some potential for parallel processing. This procedure
might or might not be stable. In any event, it would require (r — 2m) steps of Gauss
elimination with partial pivoting (for an » x 2n matrix) for each interval and would
leave, finally, an almost block diagonal linear system, with each block (except for the
first and last) of size 2m x 4m instead of the original (2n — 2m) x 2n. The unknowns
in this final system are the approximate values of the function -and its first 2m — 1
derivatives at the mesh points, i.e., the quantities of most interest since they are
O(h*("=™)) accurate. If, as would be reasonable, nothing else about the approximate
solution is required, then this approach would make the storage requirements essential-
ly independent of n.

The reader may have discovered that the structure of the linear system in the
previous paragraph coincides with (3), the structure associated with the B-spline basis.
We should note, then, that no similar savings in setup time for the B-spline system will
be found in the case of a nonuniform mesh, since the required information about the
basis functions must then be computed for each interval. And, finally, we observe that
the application of the last paragraph’s strategy to the solution of the linear system
yields the following changes in the operation counts (5) and (6):

m(r — 2m)(r + 6m)N/2 savings over (5)  (partial pivoting throughout);
m(r — 2m)(r + m)N/2 increase over (6) (pivoting partially avoided).
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The second comment concerns collocation of (1)—(2) at the simple knots of
smooth splines of order 2n + 2m; a possibility not considered in [1]. According to
[2], the order of accuracy attained is that associated with knot interpolation by smooth
splines of order 2n. The relevant linear system, assuming a B-spline basis, is about
N x N with bandwidth 2n + 2m — 1. The work involved in its solution is

(7 O(n*)N

as n becomes large; compare with the O(n>)NV operations for all methods considered in
[1]. Galerkin or least squares with these same smooth splines yields matrices of twice
the bandwidth which should take about four times as much computational effort. In-
cidentally, assuming an irregular mesh, the bulk of the work in this approach is surely
that involved in setting up the linear system.

The third comment concerns the computational work involved in the approach of
Weiss [5] and Russell [4], who advocate (by example, at least) using the usual 2m first
order equations v’ = Av + g equivalent to (1)—(2). Collocating at n Gauss points in
each of the NV intervals using a continuous piecewise polynomial of order n + 1 for each
component, one obtains O(h>™) accuracy at each mesh point (see Cerutti [8] to cover
certain situations—like our example—not analyzed by [S] or by [4]). At first glance,
it appears surprising that any resulting linear system could be solved in less than mn>N
operations in the case of an irregular mesh. Nevertheless, suppose the unknowns are
of Runge-Kutta type;i.e., in each interval we represent the ith component of v by the
values, (v;-i 7:1 , of its derivative at the n collocation points together with, say, the value
of v; at the midpoint. The linear system then consists of 2mnN collocation equations,
2m(N — 1) equations expressing the continuity of the piecewise polynomials at the
mesh points, and the 2m boundary conditions. Now, using some initial preprocessing
which is independent of the local mesh size, one may drop the rows corresponding to
collocation of the first 2m — 1 differential equations and express the (v;.,-)?:'_"lj ;___"l , in
the rows corresponding to (1)—(2), in terms of the (v} m, i)'l' and the midpoint values
using O(mn?) operations per interval. That is to say, one can locally eliminate most of
the extra (2m — 1)nN variables which were introduced, in the first place, by going over
to the first order system. The block structure of the resulting linear system for the
remaining (2m + n)N unknowns is such that

[en® + O(n®)]N, ¢ independent of m,

operations can suffice to solve it. On the other hand, we have no idea whether this
numerical process is stable.

Following the publication of [1] and our composition of these comments, Dr.
Russell kindly sent us manuscripts of [6] and [7]. Results (6) above together with an
explicit estimate for (7) are among many other conclusions reached in these papers. We
divert the diligent to their digestion.
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