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Modifying Singular Values: Existence of
Solutions to Systems of Nonlinear Equations
Having a Possibly Singular Jacobian Matrix

By David Gay*

Abstract. We show that if a certain nondegeneracy assumption holds, it is possible
to guarantee the existence of a solution to a system of nonlinear equations f(x) = 0
whose Jacobian matrix J(x) exists but may be singular. The main idea is to modlfy
small singular values of J(x) in such a way that the modified Jacobian matrix J(x)
has a continuous pseudoinverse J (x) and that a solution x* of f(x) = 0 may be
found by determmmg an asymptote of the solution to the initial value problem
x(0) = Xgs X ') = —J (x)f(x) We briefly discuss practical (algorithmic) implica-
tions of this result. Although the nondegeneracy assumption may fail for many sys-
tems of interest (indeed, if the assumption holds and J(x*) is nonsingular, then x*
is unique), algorithms using f'- (x) may enjoy a larger region of convergence than
those that require (an approximation to) J_l(x).

1. Introduction. In various settings it is necessary to solve a system of non-
linear equations. Thus, given a mapping f: R® — R”, it is necessary to find a point
x* € R" such that f(x*) = 0. Often f is continuously differentiable, i.e., f € C1(R"),
as we shall henceforth assume.

Frequently certain features of the environment in which f arises, such as phys-
ical features, imply the existence of a solution x*. However, it is of theoretical in-
terest to determine conditions on f which imply the existence of a solution without
employing “outside” considerations. Both constructive and nonconstructive ap-
proaches are possible. For example, degree theory represents a nonconstructive ap-
proach (see Chapter 6 of [Ortega and Rheinboldt, 1970]). Particular algorithms usu-
ally underlie constructive existence theorems. Newton’s method, for instance, under-
lies the well-known Kantorovich theorem (see below), which can only deal with an
isolated solution. In this paper we present a constructive existence theorem based on
integrating a certain differential equation. Our assumptions are weaker than those in
the Kantorovich theorem, and they allow situations in which a continuum of solutions
x* exists.

In the next section we introduce some notation and, for reference, state several
theorems. Section 3 presents our main results, and Section 4 discusses some implica-
tions for practical algorithms.
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A number of other authors have considered integrating various differential
equations in order to solve a system of nonlinear equations. See [Boggs, 1970] for a
survey of such work. Fletcher [1970] has briefly considered “modifying” singular
values by the use of pseudoinverses when solving general systems of nonlinear equa-
tions, while Ben-Israel [1966] has made similar use of pseudoinverses for solving non-
linear least squares problems. (See [Boggs, 1976a] for discussion of the convergence of
the Ben-Israel iteration.)

2. Notation and Background. Unless otherwise stated, Il = II-Il, denotes the
Euclidean vector norm lxll = (x7x)” or the corresponding matrix norm. R”*?
stands for the set of real n x p matrices. B(x, §) and B(x, §) denote, respectively, the
open and closed balls of radius 6 about x € R".

We shall make frequent use of pseudoinverses and the singular value decomposi-
tion theorem. For our present purposes, we may state the singular value decomposi-
tion theorem in the form:

‘ (1) THEOREM. For any A € R"*" there exist orthogonal matrices U and V €
R"*" and scalars o, . . . , 0, € [0, ) such that A = USVT, where S =

diag(o,, . . ., 0,) is a diagonal matrix having 0y,...,0, on the main diagonal. If
the singular values o, . . . , 0, are ordered so that 0, = 0,220, =0, then
they are unique. Moreover, if there are k distinct singular values Ojy» - - - 0 With
Jo=0,j, =n,and 0; = 0j, for j,_, <i<j, and if Uand V are correspondingly par-
titioned as U= [U U, -+ - Uyl and V = [V V, - -+ V. ] with U, V; ER" XGri-1),
then the matrices oflU,V,T are unique, 1 <I<k. O

The pseudoinverse may be defined as follows. For any scalar 0 € R, let

l/o ifo+#0,
+_
o =
0 ifo=0.
The pseudoinverse ST of a diagonal matrix S = diag(o,, . . ., 0,) is then defined by
st = diag(oi", ..., 07F). Finally, if 4 € R"*" and the notation of Theorem (1)

holds, then A% = VStUT = N oj}' V,U,T. (For more information on the singular
value decomposition, see [Lawson and Hanson, 1974] or [Stewart, 1973]; for more
on the pseudoinverse, see [Rao and Mitra, 1971] as well.)

- We shall write J(x) for the Jacobian matrix f'(x) of f at x. Often we shall as-
sume that J(x) is locally Lipschitz continuous, i.e., that for each point z € R” there
exists a constant 7y and a neighborhood N of z such that

2) 7Gxy = JO)I < ylx -yl

for all x, y €EN.

It will prove interesting below to compare our new existence theorem with the
Kantorovich theorem. For ease of reference we therefore state the latter, following
Ortega and Rheinboldt [1970, p. 421], as:

(3) THEOREM. With f as above, assume (2) holds on a convex set D, CR".
Suppose for some x, € D, that 1J(x) ' < B and o = pyn < 14, where n > -
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WGeg) " f o). Let t% = @yy ' [1 — (1 — 20)%] and t** = By [1 + (1 - 20)"]
and assume B(x, t¥) C D,. Then the Newton iterates

“4) Xe+1 = Xg —J(xk)—lf(xk)

are well defined, remain in E(xo, t*), and converge to a zero x* of f which is unique
in B(x,, t**) N D,. Moreover,

lx, — x*I < (By2) 20)25). O

We need below to be assured of the existence (and uniqueness) of solutions to
certain differential equations. The following theorem (which follows easily from Theo-
rems 1.2—the Cauchy-Peano existence theorem—and 2.2 of [Coddington and Levinson,
1955]) suffices for our purposes.

(5) THEOREM. If F: R" — R" is continuous, then for each xo €ER"and ty €
R there exists a continuously differentiable function x: R — R” such that

(6a) x(ty) =x, and
(6b) x'(t) = F(x(t)) forall t €R.

Moreover, if F is locally Lipschitz continuous, then the solution x(t) of (6) is unique.
]

3. Modifying Singular Values of J(x). The region of convergence of Newton’s
method (4) may often be enlarged by the introduction of appropriate damping factors
A, > 0, in which case the iteration becomes

™) Xip1 = X = NI ) fxy).
This amounts to Euler’s method applied to the differential equation

(8a) x(0) = x,,

(8b) x'(t) = =Jx) " f(x),

which, following Gavurin [1958], we call the “continuous analogue” of (4). This is
of interest because, for fixed £ > 0, x; . | — x(¢) as max{};10 <i <k} — 0 with
2;‘=0 A\, = t. If J(x) is singular then (4), (7), and (8) are undefined, while if J(x) is
nearly singular, then numerical attempts to compute (4) or (7) or to solve (8) encoun-
ter serious difficulties. We could make (4), (7), and (8) well defined by changing
J(x)™! to J(x)T, but J(x)* is discontinuous at—and unbounded near--points x where
J(x) changes rank. Thus it is much more appealing theoretically to modify the singu-
lar values of J(x) to produce a continuous substitute J* (x) for J(x)~'. We shall do
this as follows. Given 4 € R”*" with singular value decomposition 4 = USVT =
N 9;,U, Vi as in Theorem (1) and § = diag(oy, . . . , 0,,), let a; denote the modified
form of o}, let § = diag(cAJlA, cee a,,), andlet 4 = USVT = 2]'.‘=1 alelVlT. Although
the notation suggests that 0; should depend only on 0;, in fact we shall allow 6]. to
depend on all of 0, ..., 0,. Specifically, for any § >0 and 4’ = U'S'V'T with
l4 — A'll <& we shall require the choice of 6]. to be such that for some tolerance
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e>0andalljand k, 1 <j<n I <k<n,

(%a) 0<6} <1/e,

(9b) lof — 6,1 = 0@ + lo; - o}, 1),
©c) 0 =0, =0 =5}, and
9 5 = 0)

At times we shall also require

(e) 0<o;0} <1.

(10) LEMMA. With the above notation, if 0; # oy, then

(11 lufu 1 <8/lo; ~ o I.
Proof. From uTA = o,v] and 4’ vk = okuk we obtain ojv]Tvk = uTAvk and
oku,T u, = TA Vgs whence
(12a) ol uy — oplvy, = ul' (4’ — Ay
Similarly, since Av; = oju; and ulA' = 0,v,F, we obtain
(12b) —oulu; + opvfv, = w4 - A,

Adding o times (12a) to o; times (12b), we have
(02 - ojz)ujTu;c = o;cujT(A' - Ay, + oju;cT(A' - Ap;.

Since u;, v;, uy, and vy are unit vectors and 4’ — Al <&, we thus have |ujT u, | <
8(oy, + c:J])/lo;c2 - oj2 |, whence (11) follows. [

(More generally, if M, E € C"*P are complex n x p matrices and x, y are unit
right singular vectors of M and M + E with corresponding distinct singular values A
and u > 0 and unit left singular vectors X and 7, respectively, then similar reasoning
shows that (u? — N2 )Hx = uyHEx + WHEPX, whence again 1yFx| < IEI/IN - wl.)

We may now prove that At isa Lipschitz continuous function of A4:

(13) THEOREM. If (9b)—(9d) hold, then

(14) 14+ - 4" = o(l4 - 4'1).

Proof. We shall show for any 4 € R”*" that (14) holds whenever § = 4 — 4’|l
is sufficiently small, say § < §,(4), where O(8) is independent of 4. A simple com-
pactness argument then shows that (14) holds no matter how large § is.

It suffices to show for arbltrary j, 1<j<n, that I(4* —A"")u I = 0@).

Since A+u]. = yst UTuj = ]- VUTu]., we have

AT = A"yl < 1V @GHT - 50 Tull + 37 1707 = V'U T,
whence we need only show that

(15) 161 = S")U'Tull = 0) and
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(16) SHIVUT = VUl = 06).

To demonstrate (15), it is enough to show for each k, 1 <k < n, that

17) 15" = 0,7 Y Tu;l = OB).
We may assume that the singular values are arranged in decreasing order: ¢, = - - >

0, = 0 and o= 0;, > 0, whence (by Theorem 6.6 of [Stewart, 1973]) Ioj -
o]'-l <$4. If 0; = 0, then (17) follows from (9b), (9c). Otherwise we may assume
6 <'lo; = 05 1/2, whence (9b) becomes |8].+ ot = O(lo; = 0, 1) and (17) follows
from Lemma (10).

If 0; = 0, then (9d) implies 5]* = 0, whence (16) holds. Otherwise, since uiT A
= o]-ujTUVT, we have

(A - AYu, = (WVsUT - V'S'UTw; = V'(od = SHU'Tu; + o (VUT = V'U' ),

whence

! ’ 1 ’ 1 ’ !
o™ = v'uTul <o—j[II(A = AT ul + V' (0,0 = S"YU'Tu,l]

1 _ r T
<0—j[a + (o = "YU Tu, .

Lemma (10) thus implies I(VUT — V'U'T)uill < 0(8)/0;, which, together with (9d),
yields (16). O
(Note that if 4 and A" are symmetric, then we may substitute the eigendecom-
position for the singular value one, with the result that V' = U and V' = U’', whence
the left-hand side of (16) vanishes and Theorem (13) holds without (9d). This has
implications for minimization problems, but we shall not pursue them here.)
Suitable choices for 67 include

(18) ot = min{o/e?, 1/0} = o/[0® + max{0, €2 — 0?}],
(19) 0" = o/[0* + €*/4], and
(20) ot = 0/[0? + max{0, €2 — 02},

where 0, is the smallest singular value of 4. Choices (19) and (20) amount to the
Levenberg-Marquardt modification At = ATA + un14” (see [Levenberg, 1944]
and [Marquardt, 1963]) with a special choice of the modification factor u. If 4 =
USVT, then choice (18) may be similarly expressed as A™ = (474 + M) ' AT, where
M is the positive semidefinite matrix V diag(d,, . . ., dn)VT, with d; =

max{0, €2 — 0,-2 }. As such, this modification bears some resemblance to the modifi-
cation which Murray [1972] has proposed for the Cholesky decomposition of a
symmetric matrix. Choices (18) and (20) have the virtue of producing no modifica-
tion when the smallest singular value o, > €, while choice (19) is a bit easier to com-
pute.

It is readily verified that choices (18) and (19) satisfy (9). As for (20), it is easily
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seen that (9a) and (9¢)—(9¢) hold. To obtain (9b), note that if A’ has singular values
o) >0y>--->0,>0with 14 - A"l <8, and if u = max{0,€® — 0} } and u' =
max{0, €2 — 0/?}, then

oF— gt = 9% O;c _(Ojo;\: - #)(U;c —o)+ Oj(“, — M)
j k ' - .
of tu of +u (0} + u)o +u)

]

Since lo, — 0| <&, we have lo} — 0;l <8 + lo; — g, |. We may assume 8 < /2,
whence u = ' = 0if 0, > 3¢/2 and lu— W1 < lo2 - 021 = (0, + 0, )0, — 0,)!
< 4€6 otherwise. Since u < €2, min{ 01‘2 +u, 02 + '} > €2, and (92) holds, we thus
find 15/ — 6,71 < (56 + lo; — 0} 1)/€?, which establishes (9b) for (20).

We shall devote the remainder of this section to establishing and discussing an
existence theorem based on integrating the differential equation

(21a) x(0) = xo,
(21b) X(0) = ~TH () ).

Theorem (13) implies that J* (x) is well behaved for suitable choices of & : J*(x) is
continuous and is locally Lipschitz continuous whenever J(x) is likewise. Thus Theo-
rem (5) applies to (21).

Now we prove the main result of this paper. While we allow J(x) to be singular,
we require a certain kind of nondegeneracy: we must assume that f and J are such
that

(22) A (X)TJ(x).;+ ) &) = 0lf)N?

for some fixed 8 > 0 and all relevant x € R”. We shall discuss this condition in more
detail below. The following theorem rests heavily upon it.

(23) THEOREM. If f€ CY(R") and (92)—(9d) and (22) hold, then for each Xy, €
R"” there exists a solution x(t) to (21). Such a solution has an asymptote x* =
lim,_, ., x(¢) with f(x*) = 0. Moreover, the following bound holds:

(24) Ix(2) = x*Il < [If e g)I/(B€)] 7.

Proof. Fix x,. As already remarked, the existence of x(z) follows easily from
Theorems (13) and (5).

Note that lim,_, ., f(x(r)) = 0. Indeed, let ¢() = If(x())I*>. Then ¢'(s) =
~2fTITf, s0 (22) implies ¢'(£) < —20 I fGe(£))I2 = —20¢(z). Hence ¥(£) = In ¢(2)
has Y'(£) < —26, so (for t > 0)

YO =v(O) + f; Y'(r)dr < Y(0) - 20t
and

()2 = ¢(r) = ¥ @ < lfixy) 1267207

Now we show that lim,_, ., x(#) = x* exists and (24) holds. It suffices to show
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that
lx(z,) = x(t )1 < [IfGeo)I/(Be)] le072 — 70011,
which follows from (9a), since

Ix' @)l = IT* £ < IFGe()lfe < (If(x )l fe)e ™,

whence
_ 2 ty IFGe )
Ix(2,) = x(2,)] —l ftl x(ndr|| < ftlz lx'(r)ldr <%)—)— f:z e 97dr
1
Thus the sequence x(¢,), x(¢,), x(¢5), . . . is a Cauchy sequence for any choice of
tysty, ... with lim;,  #; = 40, whence x* = lim,_, ., x(¢) exists. By the continuity

of £, f(x*) = lim,_, . f(x()) =0. O

It complicates the proof only slightly if Theorem (23) is restated in “‘semilocal”
form; we state this form as a corollary:

(25) COROLLARY. Suppose f € CY(D), where D C R", and assume that (22)
holds on D. If x, € D is such that B(x, |f(x,)|/(6€)) C D, then the conclusion of
Theorem (23) holds, x* € D, and x(t) € D for all t € [0, ). O

While Theorems (3) and (23) are both existence theorems, they differ in a sig-
nificant way. Whereas the nondegeneracy assumptions of (3) imply that J(x) is non-
singular at each Newton iterate x;, the corresponding assumption (22) of (23) allows
J(x) to be singular everywhere (as we shall see presently). This weaker nondegeneracy
assumption is made at the cost of one of the prime conclusions of (3): the unique-
ness of x*. For example, if f: R* — R? is the linear mapping f(x) = ((1) g)x, then
(22) holds with & = 1 and x* can be any point in the set {0} x R.

Note that (22) implies

(26) 7G0T Gf el = 0 l£x)l.

On the other hand, if (9¢) holds, then (26) implies f7JT T f(x) = 62 IfI2. To see this,
let J = J(x) have singular value decomposition USV'T, whence

FLITHf = (UTHTSST(UTS) = (UTHT(SSH 2 (UT) = IIT*fI2 = 627112

Thus (22) and (26) are qualitatively the same, and we could have assumed (26). We
have chosen (22) since it yields sharper bounds.

Let us see what (22) means if f(x) = Ax — b is affine. We may assume that b
lies in the column space of A, for otherwise at x = ATh we would have f"'(x)f(x) =
0 with f(x) # 0, whence (22) could not hold. By the change of variables y = x —
A*b we may thus arrange that » = 0, and hence f(x) = Ax. Let A = USVT be a
singular value decomposition of A, with the singular values o; ordered so that o, >

0,=""">0,>0=0,,, = =0, Ifdisgiven by (18), then 0;5;" >
min{1, 62/e*} forj <v,so ifg = (g, - - - » &,)T = UFA(x), then g=0forj>v,
and

FLIT* f(x) = fTUSS*UTS = g7S§* ¢ > lgh2min{ 1, 02/e?}.
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Since If(x)I = llgl in this case, we thus see that (22) holds with 8 = min{ 1, 02/€*}.

Assumption (22) implies that only zeroes x* of f can be critical points of the
least squares function ®(x) = lf(x)I2. But it implies more than this, at least when
J(x) is locally Lipschitz continuous, which we henceforth assume. In this case the
zeroes of f form a connected set, and if J(x*) is nonsingular for some zero x*, then
this set consists exactly of x*, i.e. f has a unique zero. Indeed, from Theorems (13)
and (5) we see that the solution x(¢) of (21) and hence x* = lim,_, ., x(f) are uniquely
determined by x, = x(0). Thus we may define X: R” — R" by

27 X(xg) = x*.

Note that fo X =0 and X(x*) = x* for any zero x* of f. Therefore, X(R") =
f1(0), i.e. the range of X is the set of zeroes of f. The above claims about this set
now follow from

(28) THEOREM. The mapping X defined by (27) is continuous.

Proof. Let y, € R" and { > 0 be given: we must demonstrate the existence of
§ > 0 such that X(B(vy, 8)) C B(X(y,), ). Let y(2) solve y'(f) = —~J* (»)f(y) with
¥(0) = y,. Using (24) and (13), it is easy to show that there are constants I' and K
such that if x, € B(y,, 1) and x(7) solves (21), then lx(#) — x*I < Ke™®* and lx(z) -
YOI < lxg =y, leF? for all ¢ € [0, ) (with x* = X(xy)). Let t* be large enough
that Ke™9*" < ¢/4, and let 8 = min{1, {¢ T*"/2} > 0. Setting y* = X(y,), we then
find for llx, — y, Il <& that

1XCeg) = X0l < Ix(r%) = x*1 + Ix(r¥) = y(r*)l + Iy(e*) — 1
<2Ke™? + lx, — v, el
<¢R+¢R2=¢ 0O

4. Practical Implications. Theorem (28) implies that if £~1(0) has at least two
components (in particular, if f has at least two isolated zeroes), then (22) cannot hold.
(Note that the existence of 6 such that (22) holds does not depend on which value of
€ > 0 has been chosen, though the value of 8 does, of course, depend on €.) Thus,
we may expect (22) to hold globally only for a small class of problems. However, it
appears very likely that (22) would often hold in a region D (as in Corollary (25))
containing points x where J(x) is singular.or nearly so and thus that methods using
J *(x) instead of J™!(x) would enjoy a larger region of convergence.

Boggs [1971] advocates the use of A-stable integration techniques for numerical-
ly solving (8). His arguments suggest that weakly A-stable integration techinques (see
[Boggs and Dennis, 1974]) would be appropriate for attacking (21) directly: such
techniques aim to determine the asymptote x* quickly without spending excessive
time to compute x(f) accurately. In practice, Boggs [1976b] has experienced numeri-
cal difficulties when J(x) becomes singular or nearly so. Intended numerical experi-
ments will hopefully indicate how much these problems can be alleviated by using
J*(x) in place of J71(x).

The damped Newton’s method (7) results when (8) is numerically integrated by
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Euler’s method with kth stepsize A,. By considering (21) in place of (7), we obtain
a modified damped Newton’s method x; , , = x; — )\kJ"'(xk)f(xk). While a proper
choice of the damping factor A, surely makes this more robust than the undamped

method
(29) Xprr =X —JT(x0cy),

it is possible for (29) to state a theorem similar to (3) (but without the uniqueness
assertion), as the following crude example illustrates.

(30) THEOREM. Suppose f: D, — R" is continuously differentiable and that
(2) holds for x, y € D, C R". Suppose further that Xy €D and 6 € [0, 1] are such
that

31) o=t Ilf(xo)ll +Vi-62<1,
B(x,, t*) C D, and (26) holds for X € B(x,, t*), where

(32) o ||f(x0) Il
(1 —a)e’

If (92), (9¢) hold, then the iterates x, generated by (29) are well defined, remain in
D, and converge at least. Q-linearly to a zero x* € D, of f. Moreover,

(33) lx, —x*I < r*ak.

Proof. Below we show that

(34) I (x) = TG ()Gl < /1= 62l £(x)l
for those x € D, of interest. Since (9a) implies
(3%) Ixgyy = Xl < TGOl < UGy,

we thus obtain the estimate

G D1 < W) = TG )T GGl + Ty, = x, 12
36) <V1 = 820f e, )l + L IfGx, )2

<\/1 52 + LG ")">|| feel.

Using (31), we find by induction on k that

(37a) I Cepe s I < alfGe),
whence
(37b) IfCe ) < fGxeg) .

Combining this with (35), we find
1= o Gl

lx, —x,
k200 = 1 —a €

b
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whence x; € B(x,, t*) for all k; moreover, we see that x* exists and (33) holds. Let
¢ = max{ If'Ge)l: x € B(x,, 1*¥)}. Since x,, x* € B(x,, t*), we have lIf(x,)I <
cllx, — x*I. Together with (35) and (37a), this implies

=) 1 o
by —x*I< 32 lxj—x;, 0 <z 2 Ireepl
j=k+1 j=k+1
Il & ca
< Do < =———=]lx; —x*I,
N €(l1-a)

which establishes the Q-linearity of the convergence. Now it only remains to establish
(34).

Without loss of generality J(x) = diag(o,, . . ., 0,). Writing f = f(x) =
fy>--- ,f,,)T, we see from (26) that IJ7* £l = Tlfl for some T € [6, 1] and hence

-~ n n
W7t 12 = ;Zjn (087 f)? = T? _Zl 1
= ]=
whence
@8)  NfF-Jita? = ];1 (1-0;81)* 2 = + THIA? - 2;1(0,-3,-*)1“,-2-

From (9¢) we obtain
n

3 0> Y (o5 = TR,
=1 j=1

which with (38) implies If = JJ7*fI? < (1 = T?)IfI2 < (1 — 62)lf12, whence (34)
follows. O

As can be seen from (36), the bounds (33) and (37) are not optimal, and a
value smaller than (32) would suffice for #*. However, a better factor 8, than oF
based on (36) would still satisfy B, > (1 — 62)¥/2.

As (34) suggests, even if f is linear the iterates generated by (29) may converge
only Q-linearly to x*. The speed of convergence depends strongly on €: in the linear
case, for instance, the iterates converge in one step if € is no larger than the smallest
nonzero singular value I7* I* and 6" is computed by (18) or (20). Moreover, the
factor 1/(0€) which appears in (24) may change with €: in the linear case, if (18) is
used, €, and €, are two choices for €, 8, and 6, are the corresponding largest pos-
sible choices for 6 in (22), and €, > €, > IJ*I*, then 0, = (¢, /€,)?0, and
1/(6,¢,) = [1/(6,€,)]1(€,/€,). From this standpoint, the tolerance € should be cho-
sen as small as possible. In practice, the accuracy to which fis computed implies a
lower bound on €. Moreover, the smaller € is, the closer the search direction -J* fx)
can come to orthogonality with the gradient 2/7f(x) of ¢(x) = If(x)II?; this phenome-
non can severely hamper the numerical solution of f(x*) = 0, so € should not be too
small. The intended numerical experiments should indicate how crucial the choice of
€ is.

Choices (18)—(20) for 6™ all behave similarly for 0 << € or 0 >> €: the relative
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difference between these choices remains bounded. Computationally, we should,
therefore, not expect major differences between the performances to which they lead.
Since the small singular values contribute little to fTJf *£/1f1?, we should expect the
same to be true of any other choice of 0¥ which satisfies (9) along with oot — 1
as g — +oo,

Once J(x) and f(x) are known, J* (x)f(x) can be computed with ot given by
(18) or (20) in (4/3)n® + O(n?) multiplications (and a similar number of additions),
as opposed to (1/3)n® + O(n?) multiplications for computing J(x)™"f(x) by Gaussian
elimination (assuming that J(x) is nonsingular without special structure); whvin (19) is
used, J* (x)f(x) may be computed in (2/3)n> + O(n*) multiplications; thus J* may be
introduced with only a minor increase in the cost of an iteration. Golub and Reinsch
[1970] show how the singular value decomposition of a matrix may be efficiently and
accurately computed. The above operation count for (18) assumes that the factors U
and V of the singular value decomposition USV7 of J = J(x) are not explicitly com-
puted, but rather that U Tf is accumulated and V is maintained in factored form.
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