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Computing the Strict Chebyshev Solution
of Overdetermined Linear Equations

By Nabih N. Abdelmalek

Abstract. A method for calculating the strict Chebyshev solution of overdetermined
systems of linear equations using linear programming techniques is described. This
method provides: (1) a way to determine, for the majority of cases, all the equations
belonging to the characteristic set, (2) an efficient method to obtain the inverse of
the matrix needed to calculate the strict Chebyshev solution, and (3) a way of recog-
nizing when an element of the Chebyshev solution equals a corresponding element of
the strict Chebyshev solution. As a result, in general, the computational effort is con-
siderably reduced. Also the present method deals with full rank as well as rank defi-

cient cases. Numerical results are given.
1. Introduction. Consider the overdetermined system of linear equations
6] Ca=7,

where C is a given real n x m matrix of rank k < m <~ and f is a given real n-vector.
Let E denote the set of n equations (1). The Chebyshev solution (C.S.) of system (1)
is the m-vector a* = (a}’.") which minimizes the Chebyshev norm z,

2 z = maxlria)l, i€E,
where r; is the ith residual in (1) and is given by
3) rp=cpa, *-r+oea, ~f, i€E

Let us denote the C.S. a* by (¢%)¢ g -

It is known that if C satisfies the Haar condition, the C.S. (¢*). g is unique.
Otherwise it may not be unique. Rice [7] introduced a particular C.S. for functions
defined on a finite point set, which is always unique, and called it the strict Cheby-
shev solution (S.C.S.). See also [8, pp. 237—246]. When the C.S. is not unique,
there is a certain degree of freedom for some of the residuals (3). For these residuals,
the maximum absolute value is minimized over the C.S. The resulting solution is the
S.C.S.

Later, Descloux [2] presented the same S.C.S. to system (1), in a slightly dif-
ferent manner. His presentation is particularly suitable for algorithmic procedures.
He proved also the important result that the L, solution of system (1) converges to
the S.C.S. as p tends to infinity. We denote the S.C.S. of (1) by (¢*)g g -
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Descloux presentation may be summarized as follows. Assume that matrix C is
of rank m and let the Chebyshev deviation to system (1) be z§¥ = z*. It is known that
(@*)¢cg and z¥ are the solution of (m + 1) equations of £ known as the reference set
(RS). They have the form

4) a4yt tepa, +6z=f, Ii€ERS,

where 8, is either + 1 or —1. For later use we write (4) as

4" ¢yt +oea, =1 -8z i€RS.

im“m i
Assume that the C.S. (a¢*) g is not unique and let W, be the set of all Cheby-
shev solutions to system (1). Let R, be the collection of all equations i € E' for which
[r{a)| = z¥ for all the (¢*).g € W,. R, is denoted by Descloux as the characteristic
set of f relative to C. Each of W, and R, is nonvoid and W, is a subset of the solu-
tions of the system

(5) i1 +'..+Cimam =fi—6iz’ iERp
where §; is either +1 or — 1. System (5) is of rank s; < m.

The original problem may now be viewed as follows. It is required to obtain
the C.S. of the system (E' — R,) subject to the s, conditions (5). This may be done
by eliminating s, appropriate elements of the vector @, from (£ — R ) using (5) and
then calculating the C.S. of the obtained reduced system.

System (1) thus reduces to the system of (£ — R ) equations in (m —s,) un-

knowns of the form
(6) C(2),(2) = £(2)

where C) s of rank (m — 5,).

The same procedure is now repeated for system (6). If the C.S. of (6) is not
unique, the characteristic set R, of (6) is obtained. Again, we eliminate s, appropriate
elements of a(?) from (E - R, —R,) and obtain the C.S. of the further reduced
system.

The above process is repeated if necessary a finite number of times, until the
C.S. of the most reduced system is unique. A nonsingular system of m equations
then presents itself, the solution of which is the S.C.S. of (1). This system consists of
§, equations of R, plus s, equations of R, plus ... . Let this system be

(7 Da =d.

For later use, from (7), we write the S.C.S. as

™) @)3cs, = d" (DT,
where the T refers to the transpose.

The first attempt to describe an algorithm for calculating the S.C.S. of (1), fol-
lowing the presentation of Descloux was given by Duris and Temple [4].

The present algorithm is essentially that of Duris and Temple. However, our
computational scheme differs in several significant respects with the result that,
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normally, the computational effort is reduced considerably. The features of this
scheme may be summarized as follows.

(2) In obtaining the C.S. of (1), we solve the linear programming formulation of
the C.S. problem. By examining the final tableau of the programming problem, we
give a simple procedure by which, for the majority of cases, we determine all the equa-
tions belonging to a characteristic set R, . If this procedure is not followed, several
major iterations may be needed to obtain system (6) from system (1). (b) In the
present work, matrix (D7)~! of (7') needed for the S.C.S. is obtained in an efficient
way. This is done by successively modifying the inverse of the basis matrix B~! of
the programming problem. Normally, the effort in obtaining (D7)~! from B! is
small. (c) The present method provides a way to recognize when an element of @)gcs.
equals a corresponding element of (¢*).g . In some cases this results in considerable
saving of the computing effort. Example 2 in Section 2.4 and Table 1 in Section 4
below demonstrate the efficiency of the present method. (d) The present method also
deals with rank deficient as well as full rank cases.

2. Analysis and Description of the New Method. The C.S. of system (1) is
obtained by solving the corresponding linear programming problem, using the algorithm
described in [1]. Without loss of generality, assume that rank(C) = m. Again let the
(m + 1) square matrix B denote the basis matrix for the optimal C.S. and B! be its
inverse. Let also by be the optimal basic solution and {z; = f;},i =1, ..., 2n, be the
marginal costs in the final tableau. It is known [6] that B is the transpose of the
coefficient matrix on the Lh.s. of (4). Also the residuals (3) are given by r; =
t [(z; = f) —z*]. So thatif (z; - f;) =0 or 2z*,r, is given by |r;| = z*. From the final
tableau of the programming problem we find out whether the C.S. of (1) is unique.
We may also determine the characteristic set R .

2.1. The Characteristic Set R | .

LEMMA 1. If by has no zero components, the C.S. of (1) is unique.-

Proof. 1t is known that the elements by of by and the elements w; of the vec-
tor w introduced in [4, p. 692] are given by bB,- = *aw,, where « is a constant. The
lemma is thus proved from Lemma 2.3 in [4], as in this case rank(R,) = m.

Assume that we have obtained all the optimal basic solutions of the linear pro-
gramming problem for system (1). Let bB(l), bB(z), ... be such solutions. Assume
also that each of these solutions is degenerate. That is each has one or more zero
components. We again deduce from Lemma 2.3 in [4] and from the definition of R,
that R, consists of the union of the equations in the reference sets (4) associated with
the nonzero elements of the corresponding bg o

To obtain all the optimal basic solutions and hence the characteristic set R, , we
may follow the procedure suggested in Hadley [5, pp. 166—168]. However, this pro-
cedure is costly in both time and programming effort. That is because it requires the
changing of the final simplex tableau.

A simpler procedure is here followed which requires the calculation of some of
the optimal solutions without the need to change the simplex tableau. To start with,
the equations in (4) corresponding to the nonzero elements of the by at hand belong



CHEBYSHEV SOLUTION OF OVERDETERMINED EQUATIONS 977

to R,. The nonbasic columns are then examined and those which have zero marginal
costs are considered. Let i be one of such columns. Check in the usual manner

[5, p. 167] if column i may enter the basis with positive level. If so, calculate the new
optimal solution bi;, without changing the simplex tableau. Then the equations of the
new RS (4) which correspond to the nonzero elements of b}3 belong to R,. This of
course includes column i itself.

This procedure is repeated for every nonbasic column having zero marginal cost.
The reduced system (6) is then calculated as described in Section 2.4 below. The equa-
tions in (6) which have zero coefficients also belong to R, and are to be deleted from
system (6). We call this the simplified procedure.

This simplified procedure does not in general calculate all the optimal solutions,
but it is successful in the majority of cases in finding the set R,. In Table 1 of Section
4 below, this procedure did work for all examples but one (Example 3a). For this ex-
ample, two major iterations instead of one were needed to determine R .

LEMMA 2. Assume that we have used the simplified procedure to obtain the
optimal solutions bg ay bg pas Assume that these solutions have q zero com-
ponents in common. By a zero component in common, we mean that each by - has
its jth component say, = 0. Then the equations corresponding to the nonzero elements
of these solutions have rank (m — q).

Proof. 1t is easy to show the following. For these bg 9 to have q zeros in
common, the columns in the simplex tableau associated with the nonzero components
of these bp;, each has g zero elements in common with the g zeros. The proof of the
lemma thus follows.

From Lemma 2, if ¢ = 0, the C.S. is unique.

Example 1. Consider the C.S. of the equations
®) a, —15a, = -5, —=.Sa; +7.5a, =175, 2ay) =12, —4da, = 6.

Two of the optimal basic solutions obtained by the simplified procedure are
(0, 2/3, 1/3)T and (1/3, 0, 2/3)7. They correspond respectively to Egs. (1, 3 and 4)
and (1, 3 and 2) in (8). That is all four equations (8) form R,. Again, these two
solutions have no zero component in common. Thus the C.S. is unique where @)cs
= (0, )7 and z* = 10. -

Because we are using the simplified procedure, we assume that R, refers to the
union of the equations associated with the nonzero components of the solutions
by i obtained by the simplified procedure and s, refers to the rank of these equations.
Also assume that these by ; have q zero components in common.

2.2. Calculating Matrix (DT)~1. As mentioned before, this is done by succes-
sively modifying matrix B~ 1.

In the product form, B~ may be given by
) B l=FE E e F

m+1-m 1°
where the E; are (m + 1) square matrices and are given for example in [5, p. 48]. It
is known that the factorization (9) is not unique. In the present algorithm, we need

to calculate the matrices (E,,} \B~1), (E,'E;} B~Y), ..., E‘!H_q --- E;V B

If necessary we exchange the rows of B~! before calculating E;,{H and the columns
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of (E,;% ,B™1), ..., before calculating E;,", ... . One of the reasons is to achieve
maximum numerical stability in calculating the E; 1 See also Figure 1 below. The
following is a useful lemma.

LEMMA 3. The last column in B~ equals by.

Assume now that we have obtained a degenerate optimal solution bg. Assume
that g of the zero elements of by are common among the other optimal solutions ob-
tained by the simplified procedure. Assume also that these g zero elements in by are
the elements m, m — 1, ..., (m —q + 1). If not, permute the elements of by and
the corresponding rows B~ !,

FIGURE 1

by B! EglB~! EJ'ES'B™Y EF'EF'ESBT!
X X X X XXX xxxxx0 xxxx00 xxx000
X X XX XXX xxxxx0 xxxx00 xxx000
X X XX XXX xxxxx0 xxxx00 xxx000
0 x xXxxx0 xxxxx0 xxxx00 xxx100
0 x xXxxx0 xxxxx0 xxxx10 xxx010
X X X X XXX xxxxx1 xxxx01 xxx001
@ (b) (© @ (©)

Figure 1 shows vector by and matrix B~! for m = 5 and ¢ = 2. The matrices
Eg'B™', ESEZ'B™! and E; 'ES'EZ'B™! are also shown. An x denotes in general
a nonzero element.

Let [P],, x,, denote the upper left m by m submatrix of a given matrix . Then
we mention here that [E;,l_HB_l] m xm 18 the inverse of the transpose of the coeffi-
cient matrix of the first m equations of (4'). Thus from (4"),

(10) (@) = T ERY B xm»

where the elements of f are the first m elements on the r.h.s. of (4). See also Eq.
(5) in [1].

Consider now the nonsingular system (7). In Figure (2a), we assume that system
(7) consists of 5, (= 3) equations of R, plus s, (= 2) equations of R,. The elements
of a1 are permuted such that a?) is obtained by eliminating the first s, elements of
M. 1t is not difficult to show that (DT)~! would be given by Figure (2b), where
again, an x denotes in general a nonzero element. Figure (2¢) will be referred to later.

FIGURE 2
D (DT)—I (DT)—l
X X X X X x xx 00 xxx 00
X X X X X xxx 00 x xx 00
X X X X X x xx 00 xxx 00
000 x x X X X X X 0 x x x x
000 x x X X X X X 0 x x x x

(@ (®) ©)
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Again in the product form, matrix (D7)~ may be given by

) ®H~! =(Ep =)0 (Esl+s2 teT Esl+1)(Esl -+ E)),

where the E; are suitable m by m matrices.
LEMMA 4. Let matrix G, be defined by G, = E;,lﬂ_q - EJ1ESY BT
(G, is illustrated by Figure (1e)). Then matrix (Es, *«+ E,) given in (11) and matrix

G, are related by
(12) B, -+ ED) = [Gy] 0 xm-

Proof. Since m —q = s,, from (9)
(13) Gy =E -+ E,F,.

Also since the first s, equations of (7) are themselves the first s, equations of
(4", (12) is true and the lemma is proved.

The calculation of (DT)~! is now obvious from (11) and (12). Matrix [G;],,, xm
is calculated from B! of system (1). Similarly, [G214xq is calculated from B~ of
system (6). We mention here that B~! of system (6) would be calculated and stored
into the right lower (¢ + 1), i.e. (m + 1 —5,) unit submatrix resulting from calculating
the matrix G,. See Figure (le). The premultiplication of [G],, xm bY [G5]4xq i
then performed. This is simply done by premultiplying the g rows (s + 1), ..., m of
[G1]m xm by the submatrix [G,] This procedure is continued until (D¥)~! is
calculated.

2.3. When Does an Element of (a*)g s Equal a Corresponding Element of
@)cs-

LEMMA 5. Consider the first s; columns of matrix G, defined above. If in any
one of these columns j <s,, there exist q zero elements in the positions of the q zero
elements in by, then (a*)gcg = (@%)cs -

Proof. From (13) we write (11) in the form

qXxq-

(14) (DT)_l =E, '”Esl+l[Gl]m><m'

Consider a column j < s, of G, satisfying the assumption of the lemma. Be-
cause of the existence of the mentioned g zero elements in this column, and from the
structure of matrix E; 141 the last g elements of column j of (Es, +11G 11 xm) TE-
main zeros. By inductive argument, the consecutive premultiplication by Esl 20 00
E,, , result in having the last ¢ elements of column j in (D7)~ zeros.

Then from (7') and by realizing that [G, ]Sx xm = [(DT)_I]S1 xm > Where the
§; x m denotes the upper left s; by m submatrix,

m S1
(15) (@scs. = 2 a0t =3 501G Dl m xm>
i=1 i=1

where the f; in (15) are s, elements on the r.h.s. of (5).
Once more, from (9), we write

16) Epb B =B o By G =P (ay).

m
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s
leave the first m elements of column j in G, unaltered. Thus from (10) and (16),

By a similar argument, the premultiplication of G, by (E,, *** E| L+ 1), will

(7) @es. = 2 GlPilmn = T GG men:
i=1 i=

Comparing (15) and (17) completes the proof of the lemma.

Let us assume that Figures 1 and 2 relate to the same problem. Then since in
column 1 of Figure (2c), the position of the two zeros correspond to the position of
the two zeros of by in Figure (la), by Lemma 5, (a¥)gcg = (@})cs.-

Such zero elements may also occur in matrix G; of system g = ) =

2, 3, ..., and the same results are obtained. That is (af)s.c.s. = (”}k)c.s. for some j,
where the C.S. here refers to the C.S. of such systems.
Let us define an indicator set for vector a, as the index set I(a) C [1, 2, ... ,m],

with the property that [(¢})gcg = (@F)csli € 1(a)].

2.4. The System C¥g? = (2, Lemma 5 may be applied to G, and the
index set I(a) is obtained. For every j € I(a), the term ¢;;a; on the Lh.s. of each equa-
tion in the system is transferred to the r.h.s. If the number of elements in /(z) equals
s,, the set of equations (6) would be readily available. If the number of elements in
I(@) = 1<s,, (s, —1) Gauss elimination processes with partial pivoting would be per-
formed to (1), and system (6) would be available. The same is applied in calculating
any system CcDy() = f(i), i=3,4,....

Example 2. Consider the example of twenty-five equations in ten unknowns
whose S.C.S. is calculated in [4, p. 698].

For this example, the linear programming problem has one optimal solution bg
which has one zero element. It is also found that eight columns of G, each has a zero
element in the position of the zero element of bg. This indicates that (a}k)s.c.s. =
(”}k)c.s.’ for j corresponding to these columns. Namely forj=1,2,4,5,6,7,9 and
10.

The reduced system (6) is obtained as described in Section 2.4. It requires one
Gauss elimination step only. About 160 multiplications are needed by our method.
Yet it needs about 900 multiplications by the method [4] to obtain system (6) plus
about another 300 multiplications to calculate the eight elements of (a*)g g from
Eq. (7).

3. Numerical Results. The algorithm described above may be illustrated by the
following example.
Example 3 [4, p. 697].

aytay=1, a,=1, a,~a, tay;=1, ay=3,
2a=0, a, —a, —a; =—4, 2a, —a, = 1.

After rearranging the elements of b5 and the corresponding rows of B~! asin
Figure (la, b), also after exchanging columns 1 and 3 of B!, bz and B~! are given by
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by B!

33 - .33 33 33 33
0 0 -1 -1 0
0 0 0 -1 0

67 33 67 1.67 67

Here by is degenerate. Columns 5, 2, 6 and 4 form the basis. By examining
the simplex tableau, we find that no nonbasic column with zero marginal cost can
enter the basis with a positive level. Hence, R, has rank s, = 1 and the C.S. of (1) is
not unique with (@)cs. = (2,3, )T and z* = 2. Also it is noticed that there exist
two zeros in column 1 of B~! which correspond to the two zeros of bg. Column 1 of
B~! corresponds to a,. Hence according to Lemma 5, @)gcs = @)es = 1.

Since s; = 1 and one element of (¢*)g g is now known, system (6) is readily
available as explained in Section 2.4. It is given by

a, =0, a,=1, a;-a,=0, a, —a,=-3, 2a, —a,=1.

The vector by of this system has one zero element with columns 7, 6 and 3
forming the basis and z% = 1.5. However, the nonbasic column 2 has a zero marginal
cost and can replace column 3 in the basis, with a positive level. The obtained optimal
solution bjg is not degenerate. Hence according to Lemma 1, the solution of this re-
duced system is unique. Matrix (DT)"1 is then calculated as described at the end of
Section 2.2 and the S.C.S. is obtained from (7'). The final result is @®gcs =
a, 2.5, HT.

A computer program for the present algorithm is coded in Fortran IV and is
used in calculating the S.C.S. of several test problems on the IBM 360/67 computer.

A tolerance & is specified. A calculated parameter x is considered zero if |x| < §.
For the IBM 360/67 computer, the round-off error level is about 10~ for single pre-
cision and about 1071 for double precision calculation. For this computer we take
8 =10"% and 10™!"! respectively.

The main purpose of the results in Table 1 below is to compare the present
algorithm with an earlier version. In the earlier version no attempt was made to
obtain the characteristic set R, by using the simplified procedure. As a result the
sets R; are determined in steps. We call each of these steps a major iteration. In
Table 1, the data and the number of points are taken from a recent paper by Watson
[9, Table 2], who used this data for a different purpose.

Given are the number of major iterations, the total number of iterations which
is the total number of times the simplex tableau is changed and the execution (CPU)
time in seconds. This calculation is done in double precision.

The present method is seen to be superior over the earlier version in ten out of
fourteen examples.

In Duris and Temple’s algorithm [4] however, the exchange rule of Duris [3] is
used in obtaining the C.S. As pointed out by the referee, this exchange rule is much
superior to the linear programming exchange rule [1] used here. This has been con-
firmed by our calculation. Using the routine [4], the number of major iterations is
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TABLE 1
Earlier Version Present Method
Example Major  Total Time  Major  Total Time
C(n x m) Iter Iter (Sec.) Iter Iter (sec.)
la 16 x9 3 32 .19 3 32 .19
b 25 x 16 6 89 .88 6 89 .89
2a 16 x 9 5 44 29 3 24 15
32 16 x9 3 40 26 3 40 26
4 16 x9 4 34 .19 4 34 20
52 16 x6 8 40 .18 2 12 .07
b 25 x10 13 87 .61 2 20 21
¢ 36 x15 19 185 2.47 3 38 5
6a 16 x 6 8 42 20 3 20 .10
b 25 x10 10 85 .61 3 33 .30
36 x 15 15 163 2.28 4 56 1.03
7Ja 16 x 6 5 35 .16 2 17 .09
b 25x10 10 97 1 3 35 .33
36 x 15 15 185 2.50 4 58 1.07

the same as those of the present method for all but two of the above examples, where
it is slightly higher. The number of total iterations are significantly smaller than ours.
However, the CPU times of the routine [4], for the above examples, are between 1.5
and 3.3 times those of the present method. It would be worthwhile attempting to

use Duris’exchange rule in the present routine. The present method might be even
faster.

4. Concluding Remark. For the rank deficient cases, the columns of matrix C
which are linearly dependent on other columns are detected while obtaining the C.S.
by the algorithm [1] and are deleted. The parameters a; associated with these columns
are set equal to zero. In these cases, the calculated S.C.S. would be for the overdeter-
mined system whose coefficient matrix C consists of the linearly independent columns
of the given coefficient matrix.
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