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Anomalous Convergence of a Continued Fraction
for Ratios of Kummer Functions*

By Walter Gautschi

Abstract. We exhibit a phenomenon of apparent convergence to the wrong limit in con-
nection with a continued fraction of Perron for ratios of Kummer functions. The phe-
nomenon is further illustrated in the special cases of Bessel functions and incomplete
gamma functions.

1. Introduction. From the differential equation satisfied by Kummer’s function

o422 ae+)) 2
M(a’b’z)—1+b]!+b(b+1)2!+""

Perron [4, p. 278] develops the following continued fraction,
L1 zM'(a, b;z) _ _az (@a+ 1) (@ +2)
a1 M@, by;z) b-z+ b+1-z+ b+2-z+""""
where M'(a, b; z) = (d/dz)M(a, b; z) = (a/b)M(a + 1, b + 1; z). While the continued
fraction converges for any complex z not a zero of M(a, b; z), the convergence behavior
can be extremely deceptive, when |z| > max(lal, |b|), particularly if Re z > 0. The
point is illustrated by concrete examples involving Bessel and incomplete gamma func-
tions.

b#0,-1,-2,...,

2. The Phenomenon of Apparent Convergence to the Wrong Limit. We assume,
for simplicity, that e # 0 and b —z #0, -1, -2, ... . Equation (1.1) can then be
written in the form
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Alternatively (cf., e.g., Wall [6, p. 17ff]),

(2:3) b-zM@bi2) _ &
a M@ byz) = Pe

where
Po=1, Dpr=p.05 "0, k=12,3,...,
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and

_ —a;(1 +0k_1)
Pe =T+, +p,_))’

24 po =0, k=1,2,3,... .
The infinite series in (2.3) represents the continued fraction in (2.1) in the sense that
the nth partial sum of the former is equal to the nth convergent of the latter, n =
1,2,3,....

Evidently, the terms p, in the series of (2.3) decrease or increase in absolute value
according as lp, | <1 or |p,| > 1, respectively. It is useful, therefore, to examine
the behavior of |p, | as a function of k.

Assuming |p,_ | < 1, then |p,| <1 certainly if |g;| <%. On the other hand,
by (2.2), if Iz| > |b| + k, then |a;| < (lal + k)lzI(lz| — 6] - k)~2, and an elementary
calculation shows the upper bound for la, | to be < % if

2.5 lz| = 2(16| + 2la| + 3k).

It follows that (2.5), together with |p, _;| <1, implies |o;| < 1. Since, initially, py =
0, we obtain by induction that |p,| <1 for all k satisfying (2.5).

If |z| is large, we see that the terms p, in (2.3) must decrease initially, the rate of
decrease being greater the larger |z|. The continued fraction in (2.1) then gives the
appearance of converging rapidly to a value of the order of magnitude 1, yielding for
M'(a, b; z)/M(a, b; z) a value approximately equal to —a/z. This is obviously the wrong
answer, if Re z > 0. Indeed, from known asymptotic formulas [5, Eq. 13.1.4],

(2.6) M@ bz)

M bz) 10 |z| — oo in Re z > 0.

What is likely to happen, then, is that the terms p,, after the initial descent, begin to
increase again, and converge to zero only after reaching some peak values which are
sufficiently large so as to contribute to a limit consistent with (2.6). It is only during
the “final descent” of the terms p, that the correct limit will be attained (assuming no
rounding errors).

The phenomenon of apparent convergence, while prevalent for Re z > 0 and |z|
large, need not occur if Re z < 0, since in this case [5, Eq. 13.1.5]

2.7 M byz)  _a
z

M@, b, 2) as |z] — o0 in Re z < 0.

Nevertheless, we will see in examples that the phenomenon persists if 7/2 < larg z| < 7,
albeit in a weakened form.

3. The Case of Real z. It is instructive to examine in more detail the case of
real arguments z and real parameters g, b satisfying0 <a+ 1ifz>0,and 0<a + 1
<bifz<O.

It will be convenient to introduce the quantities

(3.1) o,=1+p, k=0,1,2,...,

for which the recursion (2.4) gives
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1
3.2 = R S —
(3.2) 0, =1, O =713 N o k=1,2,3,....

3.1. The Case z=x >0,a+ 1> 0. We consider two subcases, (i) b —x > 0,
(i) b —x <0.

In case (i), it follows from (2.2) that @, > 0 for all K > 1, hence from (3.2) that
0 <o, <1forall k> 1, and therefore from (3.1) that =1 < p, < 0. We see that the
terms p, in (2.3) alternate in sign and decrease monotonically in modulus. In fact,
since @, —> 0, hence a; 0, _; — 0 as kK — o, we have o,, — 1, and so p,, — 0,
meaning that the series in (2.3) converges faster than any geometric series. Indeed,

(3.3) pk~—3‘]; as k — oo,

as is easily verified.

In case (ii), there exists a unique integer k; > 1 such that x —b <k, <x—-b + 1.
Therefore, a; | <0, while ¢, > 0 for all k # k,. It follows as before that —1 <
pr <O for k <ky. If Ok > 0 (even though %o < 0), then -1 < p, <0 also for all
k =k, and we have the same alternating and supergeometric convergence behavior as
in case (i). If, however, o, 0 < 0 (which will be the case if x is large), then kaol > 1.
Since @, > 0 for k > k), the inequality |p, | > 1 will persist as long as o, remains
negafive. Eventually, however, o, has to turn positive (the series in (2.3) being conver-
gent), and from this point on, all subsequent ¢’s remain positive, and the correspond-
ing p’s less than one in modulus. Therefore, if x is large, the sequence {Ip,|} initially
decreases, then increases, and finally decreases to zero at a supergeometric rate given
by (3.3). The “dip-and-peak” effect is more pronounced, the larger x, and is what gives
rise to the phenomenon of apparent convergence.

3.2. The Case z =—x<0,0<ag+1<b This time, g, <O forall k > 1.
Noting that the function x(b +x + k= 1)"1(d + x + k)~ ! on 0 < x < oo assumes a
unique maximum at (b + k — 1)”2(b + k)*, we find that

a+k

< >
S s Y ey AL
and thus, in particular,
o] < a+k < a+k
S ¥2k—-1+2b+k-Wb+k "26+2k—-1+20b+k-1)
1 a+k
<ibtk-1

Since a + 1 < b, it follows that

4, <0, lagl <% forall k> 1.

From this, and (3.2), we deduce inductively

1<ok<2kk_:_21) forall k > 1,

hence, in particular, 0 < p, <1 for all k > 1. The series in (2.3) is now a series of
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positive monotonically decreasing terms, and convergence thus monotone and, as before,
supergeometric.

4. Examples.

4.1. Bessel Functions. We specialize (1.1)toa=v + %, b = 2v + 1, where
v > Y%, and use M(v + %, 2v + 1; z) = I'(1 + v) exp(%4z)(%z) "I (%z2), together with
the differential-difference relation I,(z) = 1, _,(z) — vl,(z)/z, to obtain

lzgl";l(.éz_) — 4_V + 12
27| I1,(%2) z
4.1) (V + %)z <V + %)Z <V + %)Z (V + %)Z i
_ PR N — pk'

T wHl-zh WwH2-z+ W3-z WwH1-z 2

In Figure 4.1, the moduli of the terms, Ip, |, are plotted in function of k, for v = 1,
and z = re’, r = 10, 20, 40, ¢ = 0, 7/8, 2/8, . . . , m. The behavior of Ip, |, when r
is fixed and ¢ varies between 0 and /2, is almost identical and is represented by one
curve in Figure 4.1. The dependence on ¢ is shown only in the case r = 40, but is
analogous for the other values of r.

[y

FIGURE 4.1
Anomalous convergence of (4.1) for v =1 and z = ré’®
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It is seen, typically, that the terms |p,| decrease rapidly at the beginning, then
bottom out and rise to a sharp peak, before finally converging to zero. The dip of
the curve, and the upswing that follows, are quite substantial if 0 < ¢ < n/2 and 7 is
large, for reasons explained in subsection 3.1, case (ii). As ¢ increases from /2 to m,
the peaking of the curves gradually weakens and finally disappears when ¢ = 7. A
similar attenuation takes place upon increasing the value of v, as is to be expected
from the discussion in subsection 3.1, case (i).

The seriousness of the convergence anomaly can be seen, e.g., in the case v = 1,
r=40,0 < ¢ < n/2. If we require ten decimal digit accuracy, we will attain it at
about k = 15 and retain it through about k = 60, the partial sums in (4.1) all having
the same value to ten decimal digits in the range 15 < k < 60. This “apparent limit”,
of course, is totally incorrect, as the main contribution to the series comes from the
few terms around k = 100. The situation is aggravated by the fact that the numerical
process of generating the terms p, is accompanied by a substantial loss of accuracy
during the upswing of the curve, amounting to a loss of about 16 digits when r = 40.
A further complication is the apparent lack of warning signals: Known a posteriori
error estimates (see, e.g., [3]) either do not apply, or seem to apply only in the region
of “final descent”.

-On the other hand, the convergence behavior of the continued fraction in (4.1) is

quite acceptable when ¢ = m, i.e., z = —x, x > 0, in which case (4.1) can be given the
form

@2) lx;h__l_(%x_) 4 1% _—Q+%>x ("J'%)x (+3)r

VT hx) x| T wAHlHtx- wH2+x A3 +x-

Convergence is more rapid the larger x and/or v. The use of this continued fraction,
in combination with Gauss’ continued fraction, is further discussed in [2].

4.2. Incomplete Gamma Function. We have M(a, a + 1; z) = a(—2z)"%v(a, —2),
where (g, - ) denotes the incomplete gamma function. Noting that

' __a .
M, a+1;2) =27 1M(a+ l,a+2;2),
Eq. (1.1) now takes the form

Yae+1l,-z)  -—az @+ 1) @+2z .
¥(a, —2) a+1-2+ a+2-2z+ a+3-z+ ’

(4.3)

The convergence behavior of (4.3) for a > 0 appears to be quite analogous to that of
(4.1), exhibiting the phenomenon of apparent convergence for z large in the complex
plane cut along the negative real axis. Along the negative real axis, we have monotone
convergence, if @ > —1, according to the results of subsection 3.2. In this case,

Y@+1,x) ax (@+ 1) (@+2yx
“.4) v@ x) a+1l+x— a+2+x- a+3+x- » x>0
We may combine this with y(a + 1, x) = ay(a, x) — x%¢”* to obtain

_ 1 ax @+1x  (@+2x

a —_ e .
@5) e"'y(a,x)—a_ a+1+x- a+2+x- a+3+x- » x>0
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The use of this continued fraction, in combination with other methods, to evaluate in-
complete gamma functions is discussed in [1].
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