MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 140
OCTOBER 1977, PAGES 1009-1018

Computer Methods for Sampling
From Student’s ¢ Distribution™®

By A. J. Kinderman**, J. F. Monahan*** and J. G. Ramage**

Abstract. Several new algorithms for generating deviates from the ¢ family for the
degrees of freedom parameter > 1 are presented. Both acceptance-rejection and
probability mixing procedures are developed. The new algorithms outperform
traditional methods for generating deviates from the ¢ family. Recommendations are
made concerning choosing an algorithm suited to its application.

1. Introduction. The family of Student’s ¢ distributions has been widely used
in both theoretical and applied work in statistics since Student’s original paper in
1908 [14]. Traditional methods for generating samples from the ¢ family make use of
the representations of a ¢ random variable as the ratio of a standard normal variable to
the square root of an independent normalized x> variable [7], and as the square root
of an F random variable, generated as a transformation of a beta random variable [13].

Several new algorithms for generating deviates from the ¢ family for the degrees-
of-freedom parameter =1 are developed in this paper. The choice of an algorithm
will depend on the nature of the application. In many applications, a long sequence
of deviates is needed for each of a few members selected from the family. Then it
makes sense to use an algorithm which can be modified, with some setup cost, for
each family member. In other cases, only a few deviates will be generated for a given
choice of the degrees-of-freedom parameter, which will be frequently altered. The algo-
rithm with repeated modifications would then be expensive relative to a fixed algorithm
designed to exploit features common to the entire family.

The paper is organized as follows. Three acceptance-rejection procedures are dis-
cussed in Section 2. Two algorithms which make use of probability mixing are given in
Section 3. The normal and Cauchy distributions, extreme cases of the ¢ family con-
sidered in this paper, are discussed in Section 4. Implementation issues and timing
comparisons for the algorithms are discussed in the final section. All of the algorithms
outperform traditional methods for generating the ¢ family. The choice of an algo-
rithm will depend on whether the application requires few or many deviates for a

Received July 8, 1975.

AMS (MOS) subject classifications (1970). Primary 65C10; Secondary 68AS5S.

Key words and phrases. Random number generator, Student’s ¢ distribution.

*Work performed under the auspices of the ERDA.

By acceptance of this article, the publisher and/or recipient acknowledges the U.S. Govern-
ment’s right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper.

**This research was supported in part by the National Science Foundation under Grant Num-
ber GS 38609 at Carnegie-Mellon University, Pittsburgh.

***This research was supported in part by the National Science Foundation under Grant

Number SOC73-09243 and Grant Number GS 38609 at Carnegie-Mellon University.
Copyright © 1977, American Mathematical Society

1009

1010 A. J. KINDERMAN, J. F. MONAHAN AND J. G. RAMAGE

given member of the ¢ family. As expected, the modifiable algorithms perform best
when the degrees-of-freedom parameter is held fixed.

2. Acceptance-Rejection. In the classical acceptance-rejection procedure [1] a
variable is generated from the distribution with density function f{x) by sampling a
pair (4, x), where u is a uniform (0, 1) variable and x is an independent variable from
a distribution with density proportional to an upper envelope g(x),

f) <glx), —o<x<o,
and then accepting x as a variable from the required distribution when
u < f(x)/g(x).

There is typically a tradeoff between efficiency of the procedure, which depends on
the tightness of the upper envelope g(x), and the ease of sampling from the distribution
with density proportional to g(x). Also, f(x)/g(x) is usually costly to evaluate. A good
acceptance-rejection algorithm will often combine a rather simple function g(x) with
upper and lower bounds on the ratio f(x)/g(x),

b(x) < f(x)/g(x) < B(x), —oo<x < oo

which are more easily computed than f(x)/g(x) itself. The procedure is as follows:
Generate u.
Generate x from a distribution with density proportional to g(x).
If u < b(x), deliver x.
If u > B(x), go to 1.

5. If u < f(x)/g(x), deliver x; otherwise go to 1.
Here and in what follows, “generate u” (v, u,, u,) means obtain a pseudorandom
deviate, uniformly distributed on the interval (0, 1). The phrase ‘“‘deliver x means
that x is the desired deviate and no further computation is needed.

W =

The density function of the ¢ family is given by

t,(x) = c (1 + x%ja)y™(@*+1)/2,

where
¢ = D((e + 1)/2)/ [(ne)*T(@/2)] -

This departure from the more conventional use of v for the degrees-of-freedom param-
eter emphasizes that « is not restricted to be an integer. Though ¢,(x) is a proper
density function for all @ > 0, we restrict attention in this paper to values of a > 1.
This restricted ¢ family thus ranges from Cauchy (a = 1) to normal (& = o). It is
particularly convenient to work with the unnormalized densities for the ¢ family,

Ua(x) = t(¥)fe = (1 + x2[ay (*+ 112,

since they are all symmetric about 0, where they attain a common maximum of 1.
The following inequalities are basic to all of the generation algorithms developed in
this paper for the ¢ family.

STUDENT’S ¢t DISTRIBUTION 1011

THEOREM 2.1 (TAIL BOUND). For a = 1 and —o0 < x < o,

uy(x) < 1/x2.

In the extreme tails this bound is sharp, in the sense that the ratio for a = 1,
xru () = (1 + 1/x?)71,

converges rapidly to 1 as |x| increases.
Proof. For a = 1, the proof is immediate. For a > 1, let

s(x) = In(x%u,(x)) = In(x?) — %(a + DIn(1 + x?/a).
Since
s'(x) = 271 = x% (e + 1)/2(a + x2)]
has its only zeros for xg = 2a/(a — 1) which yields a maximum, we have s(x) <
s(x,), where
s(xq) = InQa/(a — 1)) = %(e + Din(1 +2/(a — 1))
= In(2e) — [%(a + Din(a + 1) + %(1 — a)in(a — 1)].

LetA\=%a+1),a=a+1,b=a—1. Then%(l1—a)=1-ANand da + (1 — A
= 2a. Since In(x) is concave and A > 1 for a > 1, s(x) < 0. Thus, s(x) =
In(x%u,(x)) < 0 for all x. O

THEOREM 2.2 (INNER TRIANGLE). For a 2 1 and — < x < o,

u,(x)=1- Ixl/2.

The triangle formed by the lower bound for |x| < 2 is the largest possible fixed tri-
angle under the unnormalized t family.

Proof. The proof is immediate for Ix| > 2. By symmetry about 0, we need on-
ly consider x > 0. Since u,(x) has derivatives

uy(x) = —x[(a + 1)/(a + x2)]u,(x), and
un(x) = [(a + 2% —a] [(@ + D/ + x2)*]ug(x),

u,(x) is concave for 2 <afl@+2)= xg, say, and convex for x2 > x%. Also, the
tangent line to u (x) at x = 1 is

1,0) = (2 = x)u(1).
Note that /,(x) = 1 — x/2 is the lower bound of interest. By convexity, /,(x) lies
below u,(x) for x2 > af(a + 2). If u,(1)is written as u (1) = (1 — 1/(a + 19)CRRPEN
it is clear that u (1) is increasing in «; and hence,
L(x)<I(x) for0<x<2,a>1.
As noted above, by the convexity of u,(x) for x = x, it is immediate that

I,(x) <l (x) <uy(x) forx,<x<2.

1012 A. J. KINDERMAN, J. F. MONAHAN AND J. G. RAMAGE
Similarly, if £, (x) = u,(x) —I,(x), we have

f,(x) is concave for x <x,, f,(xq) =0, [f,(0)=0,
and, by the concavity of f(x),

o) =u,(x) = 1,(x) =0 for0<x<x, O

The first algorithm for generating the ¢ family by rejection makes use of an up-
per envelope and lower bound provided by Theorems 2.1 and 2.2. Deviates with a
density proportional to the upper envelope,

(1, Ixl <1,
g*(x) =

1/x2, IxI>1,

are very easily generated by computer. Since the central (Ix| < 1) and tail areas un-
der g*(x) are equal, it suffices to generate with equal frequency the deviates +u (cen-
ter) and * 1/u (tail). Note that 1/u has density 1/x? for x = 1. This upper envelope
is also reasonably good in the sense that the area under u(x) lies between V2m and
m, as compared with area 4 under g*(x). Thus the expected number of uniform pairs
required per deviate is 4c,,, where

1.27 < 4c, < 1.60.
The triangular lower bound
h()=1-Ix1/2

is checked for Ix| <2 to save computation of the more complex function u,(x). The
complete algorithm is as follows.

Algorithm TAR: (Acceptance-Rejection).
1. Generate u. If u <.5,g0 to 2. Setx = 4u — 3. Generate v. Go to 3.
2. Set x = .25/(u — .25). Generate u, and set v = x 2u,.
3. Ifv<1-IxI/2, deliver x. If v <u,(x), deliver x. Otherwise go to 1.

The basic acceptance-rejection algorithm can be improved somewhat by means
of the upper bound provided in the following result.
THEOREM 2.3 (UPPER BOUND FOR %,(x)). For a = 1 and — < x <,

u,(x) < H,(x) < H(x),
where
H,(x) = 2u, (x)u, (1) = 2(1 + x?)"1(1 + 1/a)y~(@+ D)2
and

H(x) = 2u,()u (1) = 2(1 + x2)"le*%,

Equality is attained for the first bound only when o = 1.

STUDENT’S ¢ DISTRIBUTION 1013

Proof. We want to show u,(x)u, (1) < u;(x)u,(1). Let s(x) = u,(x)/u,(x),
then it is sufficient to verify s(x) < s(1) for « > 1. Since the derivative of s is

s'(x) = x[2/(1 + x2) — (@ + 1)/(a + x?)] s(x),

s'(x) has its only zeros for xo=0or xg =1if a > 1. If s(1) is written as
2(1 = 1/(a + 1)@T /2 it is clear that s(1) > 1 for @ > 1. Since s(0) = 1 and
lim, _, ., s(x) = 0 for @ > 1, s(1) is the maximum value of s(x). O

The new upper bounds provided by Theorem 2.3 will of course be most useful
where they lie beneath the upper envelope g*(x). It is easily verified that H (x) <
g*(x) iff |x| lies between (2u,(1)— 1)* and QQu, (1) - 1)™%. Since u,(1) is increasing
in @, the fixed upper bound H(x) is useful for Ix| between (2u. (1) — 1)* and
Qu. (1) = 1Y%, or for Ix| € [(2¢7% - 1)%, 2% — 1)7%].

Two refinements of the basic acceptance-rejection algorithm TAR make use of
the upper bounds of Theorem 2.3. In both, it is convenient to make use of the upper
bounds only out to 2, which is only slightly smaller than (2e"1/2 —1)"%. The first
uses the upper bound H(x), which is independent of a. The second uses the tighter
upper bound H,(x), which requires the relatively expensive calculation u,(1) =
(1 + 1oy @* /2 In many applications, a long sequence of deviates for a given
will be required, and & will be changed only infrequently. In such cases, u,(1) need
be computed only once for each choice of a, and it will be advantageous to use the
second algorithm. In other applications, @ may be changed frequently, and the first
algorithm, which avoids the setup cost of computing u,(1), will be preferred. The
refined acceptance-rejection algorithms are as follows.

Algorithm TIR: (Improved Rejection).

0. Calculate the constants b = (26 — 1) = 4615856577, b/2 and 1 + b? =
277,

1. Generate u. If u>b/2,g0to 3. Setx = 4u —

2. Generate v. Ifv<<1— Ix|/2, deliver x. Ifv<u (x) deliver x; otherwise
go to 1.

3. Ifu>.5,goto5. Setx = [l4u—1—-bl+ b] sign(4u — 1 — b). Generate
v.

4. Ifv<1- Ixl/2, deliver x. Ifv=>(1+b2)/(1 +x2),gotol. Ifv<
u,(x) deliver x; otherwise go to 1.

5. Ifu>.75go to 6. Setx =2/[18u — 5| + 1]sign(8u — 5). Generate u,,
set v = x"2u,, and go to 4.

6. Set x = 2/(8u — 7). Generate v. If v < x%u,(x), deliver x; otherwise go to
1.

Algorithm TIRS: (Improved Rejection With Setup).
0. Set b = (2u,(1) — 1)* and calculate b/2 and (1 + b?) = 2u,(1).
1.—6. Identical to algorithm TIR. For repeated calls with the same a, enter
algorithm at 1.

1014 A. J. KINDERMAN, J. F. MONAHAN AND J. G. RAMAGE

3. Mixing. The method of probability mixing is based on generating a deviate
from a randomly chosen member of a set of distributions according to some fixed
weights. If the distributions F, . . ., F}, are chosen with probabilities p,, . . . , py,
the generated deviate has distribution

F=pF + - +pF,.

Efficient algorithms for the target distribution F' are achieved by generating deviates
from very simple component distributions with high probability and correcting the
overall mixture with deviates from more complex component distributions with low
probability. This method has previously been applied to construct individual algo-
rithms for specific distributions or specific members of families of distributions [1],
(61, 101, [11], [12].

The mixing algorithms for the ¢ family presented in this section are based on
decomposing the ¢ density into two components:

ta(x) = plfl (x) + szz(x).

The first component, the triangular density

_ %1 - 1Ix1/2) for Ixl <2,
f10) =
otherwise,

is generated with probability p, = 2¢

o
2, =2/n<p, <\2/m =2,..

With probability p, = 1 — p,, a random variable with density proportional to the
difference function

pzfz(x) = ta(x) - plfl (x)
co(ul(x) — (1 = Ix1/2)) for Ixl <2,

Colte () otherwise,

is generated by rejection techniques similar to those of the previous section.

In using a mixing technique for the ¢ family, there is no way to completely
avoid calculations dependent on a. In the setup case, where many deviates are drawn
for a given a, computations independent of x are done only once per choice of & and
hence are not regarded as costs. When a is to be changed frequently, however, it is
worthwhile reducing the a-dependent computations as much as possible. The first
mixing algorithm described below reduces dependence on a as follows. According to
the bounds for the first mixing probability p,, f; (x) will always (any a) be carried
out 2/m of the time, and f,(x), (1 — \/5_/;) of the time. For the remaining (\/2/—7r -
2/m) of the time, p, = 2c, must be computed exactly to attain the proper mixture.

Both versions of the mixing algorithms also reduce dependence on a by restrict-
ing the triangular component of the mixture to the range x| < 2. The triangles

STUDENT’S ¢t DISTRIBUTION 1015

f1(x) are thus not the largest possible except in the extreme case a = 1. In the
worst case, however, when a = o (normal), the largest triangle extends only to ap-
proximately Ix| = 2.2. Then the area of the largest triangle is approximately .88, as
compared with v/2/m = .80 for the fixed-base triangle [6].

The acceptance-rejection part of the mixture can fortunately be carried out in
an unnormalized form comparable to those of Section 2, as is evident from the factor-
ization of f,(x) above. The central part of the acceptance-rejection (lx| < 2) makes
use of an outer envelope consisting of the (numerically determined) best two-piece
step function above the family of difference functions,

uy,(x)— (@1 - Ix1/2).

In the setup version, the upper bound H,(x) is used as in algorithm TIRS to improve
the rejection.

Algorithm TMX: (Mixing).

1. Generate u. If u<2/m ,goto2. Ifuz= \/2/_11 go to 3. Compute c,,.
If u > 2c,, go to 3.

2. Generate u,, u,. Deliver x = 2(u; +u, —1).

3. Generate u. If u < 3622520694 go to 5. Set x =
1/(1.0680176321 — 1.5680176321u). Generate v.

4. If v < x%u,(x), deliver x; otherwise, go to 3.

5. If u < .0530096080, go to 7. Set x = 11.5909050257u — 2.406629332.
Generate v.

6. If .13528v < u, (x) — 1 + Ix1/2, deliver x; otherwise, go to 3.

7. Set x = sign(7.840088159u — .2078)[17.840088159u — .2078| + 1.7922].
Generate v.

8. If 2v<uy(x)— 1+ Ix1/2, deliver x: otherwise, go to 3.

Algorithm TMXS: (Mixing With Setup).
0. Compute ¢, and (1 + b2) = 2u,(1).
1. Generate u. If u > 2c,, go to 3.
2. Generate u, and deliver x = 2(u, — 1 + u/2c,).
3.—8. Identical to algorithm TMX, with the insertion
5.5. If 135280 > (1 + b2)/(1 + x2)— 1 + Ix!/2, go to 3.

4. Special Cases: Normal and Cauchy. When a particular member of the ¢
family is singled out for special attention, specific features of the distribution selected
can be exploited to improve on the algorithms for the general family, even for those
with setup features. For the ¢ family, the extreme cases @ = * (normal) and a = 1
(Cauchy) are often of special interest. The normal case has received a great deal of
attention (for recent discussions, see, for example, [1], [2]). A mixing algorithm
(KR) based on the largest triangle beneath the normal density and exploiting a special
technique for rejection over triangles [9] was developed by two of the authors [6].

The Cauchy distribution has not received comparable attention. Two traditional
methods involve generating a Cauchy variable as the ratio of two independent standard

. 1016 A. J. KINDERMAN, J. F. MONAHAN AND J. G. RAMAGE

normal deviates [4] or as the tangent of a uniform deviate on (—n/2, n/2) [3]. A
variant of the second method, sometimes known as the synthetic tangent algorithm,1r
yields a Cauchy deviate by generating a point (&, v) uniformly on the half-circle {0 <

<1,-1<v<1,u?® +v? <1} and delivering x = v/u. Algorithm TMX was re-
fined to exploit features peculiar to the Cauchy distribution. However, the resulting
algorithm proved inferior to the synthetic tangent algorithm CST, and is not included
here.

Algorithm CST: (Synthetic Tangent).
1. Generate u, v and set v =2v— 1, w = u? + V2.
2. If w>1 go to 1, otherwise deliver x = v/u.

5. Discussion. All of the algorithms were written as FORTRAN functions and
tested on the IBM system 360/model 67 under the operating system TSS. Uniform
deviates were generated by an assembler language subroutine based on the Lewis,
Goodman, and Miller [8] algorithm. For each ¢ algorithm, 1,000 single deviates were
generated in a DO-loop for twenty different choices of a. Ten repetitions were per-
formed. The times (in microseconds per deviate) are reported in Table I for selected
a.tT Algorithm TMX is reported for two versions: in the first, ¢, is obtained by a
call of a FORTRAN function which performed a table look-up, while in the second,
the FORTRAN function computed ¢, using standard function calls to EXP and
ALGAMA. The table also included times for CTN, the tangent algorithm for the
Cauchy distribution, CAR, algorithm TAR implemented for & = 1 (in which
1/(1 + x?) replaces (1 + x2/a)y™(®*1)/2) and KR, an algorithm for the normal dis-
tribution [6].

Some general remarks can be made about the algorithms, based on the results
in Table I. Good mixing algorithms can be written for a specific distribution, e.g.
normal (KR), or for the ¢ family when the necessary constants are known (TMXS).
The mixing algorithms are less efficient when the constants must be computed for
each call (TMX). The acceptance-rejection algorithms (TIR, TIRS) are competitive
for the ¢ family because the unnormalized densities u,,(x) all have a similar bell shape
and, as noted in Section 2, fit between an easily generated and close fitting upper
ehvelope and a good lower bound.

All of the new algorithms are to be preferred to the classic method for integer
o of generating @ + 1 independent standard normal deviates and forming ¢ =
\/axa +1/VZ 1x2 Because the number of normal deviates required grows linearly in
a, this algorithm will be slower than any of the new algorithms for even moderate a,
say 3 or 4. Another alternative, valid for all a, is to let £ = \/ax/v/2y, where x is a
standard normal deviate and y is a deviate from the standard gamma distribution with

T'I‘he authors thank David Hoaglin and the referee for communicating this algorithm which
was overlooked in the original version of this paper. Generalization of this algorithm is the object
of current research [5].

¥ Times for the complete list of @ = 1,1.5,2,2.5,3,4,5,6,7,8,10, 15,20, 25, 30,40, 50, 65,
80,100 and FORTRAN listings of the algorithms are available from the authors upon request.

STUDENT’S ¢t DISTRIBUTION 1017

parameter a/2 (2y has a x? distribution with a degrees of freedom). Dieter and Ah-
rens [3] have developed several algorithms for the gamma distribution. A FORTRAN
function for the ¢ distribution based on the gamma algorithm GO [3] was written
which required about 1950 microseconds/deviate and 1500 microseconds/deviate for
regular and setup versions, respectively. Since it is only valid for a greater than 5.07
[3], it was not included in Table I.

Similarly, algorithms based on generating an F deviate from a beta deviate would
require two standard gamma deviates or special methods for generating beta(%, a/2)
deviates. Since special methods are known only for beta distributions with parameters
greater than 1 [3], this algorithm would require two gamma deviates and hence,
would take more than 3000 microseconds/deviate.

TABLE 1

degrees of freedom a
Algorithm| 1 2 5 10 30 100

TAR 749 823 866 880 898 1027
TIR 709 798 838 862 876 1015
TIRS 607 688 754 773 803 931
T™MX 688 756 796 803 822 967
T™X 906 958 993 1020 990 1164
TMXS | 577 645 695 714 731 877

CIN |44 - - - - -
CAR [414 - - - - -
csT 320 - - - - -
KR - - - = = 2I5@a=)

Times in microseconds/deviate

The algorithms presented here are all easily programmed and valid for all a > 1.
In particular, TAR is the shortest and simplest and is only 20 to 30 percent slower
than the fastest algorithm, TMXS, and that occurs only when repeated calls are made
for the same a. Any one of TAR, TIR, and TMX would serve as a good general-pur-
pose algorithm for generating deviates from the ¢ family, and TIRS or TMXS would
perform well for the user who desires long sequences of deviates from the same ¢ dis-
tribution.

Department of Management Science
California State University, Northridge
Northridge, California 91330

Applied Mathematics Department
Brookhaven National Laboratory
Upton, New York 11973

1018 A.J. KINDERMAN, J. F. MONAHAN AND J. G. RAMAGE

Department of Statistics
University of Pennsylvania
Philadelphia, Pennsylvania 19174

1. J. H. AHRENS & U. DIETER, “Computer methods for sampling from the exponential
and normal distributions,” Comm. ACM, v. 15, 1972, pp. 873—881. MR 49 #1728.

2. J. H. AHRENS & U. DIETER, ‘“Extensions of Forsythe’s method for random sampling
from the normal distribution,” Math. Comp., v. 27, 1973, pp. 927—937. MR 48 #7532.

3. J. H. AHRENS & U. DIETER, “Computer methods for sampling from gamma, beta,
Poisson, and binomial distributions,”” Computing (Arch. Electron. Rechnen.), v. 12, 1974, pp. 223—
246. MR 52 #15949.

4. D. F. ANDREWS ET AL., Robust Estimates of Location, Princeton Univ. Press, Prince-
ton, N.J.,1972. MR 48 #9927.

5. A.J. KINDERMAN & J. F. MONAHAN, “Computer generation of random variables
using the ratio of uniform deviates,”” ACM Trans. Math. Software. (To appear.)

6. A.J. KINDERMAN & J. G. RAMAGE, ‘“Computer generation of normal random varia -
bles,”” J. Amer. Statist. Assoc., v. 71, 1976, pp. 893 —-896.

7. D. E. KNUTH, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,
Addison-Wesley, Reading, Mass., 1969. MR 44 #3531.

8. P. A. W. LEWIS, A. S. GOODMAN & J. M. MILLER, “A pseudo-random number genera-
tor for the system/360,” IBM Systems J., v. 8, 1969, pp. 136—146.

9. G. MARSAGLIA, “Random variables and computers,” Trans. Third Prague Conf. on In-
formation Theory, Statistics, Decision Functions, and Random Processes, Publ. House Czech. Acad.
Sci., Prague, 1964, pp. 499—-512. MR 29 #1721.

10. G. MARSAGLIA, ‘““One-sided approximations by linear combinations of functions,”
Approximation Theory (A. Talbot, Editor), Academic Press, New York, 1970, pp. 233—242. MR
42 #1307.

11. G. MARSAGLIA & T. A. BRAY, “A convenient method for generating normal vari-
ables,”” SIAM Rev., v. 6, 1964, pp. 260—264. MR 30 #2660.

12. G. MARSAGLIA, M. D. MACLAREN & T. A. BRAY, ‘““A fast procedure for generating
normal random variables,” Comm. ACM, v. 7, 1964, pp. 4—10.

13. T. G. NEWMAN & P. L. ODELL, The Generation of Random Variables, Hafner, New
York, 1971.

14. “STUDENT?”, “The probable error of a mean,’”’ Biometrika, v. 6, 1908, pp. 1—25.

