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Real Quadratic Fields With
Class Numbers Divisible by Five

By Charles J. Parry

Abstract. Conditions are given for a real quadratic field to have class number divisible
by five. If 5 does not divide m, then a necessary condition for 5 to divide the class
number of the real quadratic field with conductor m or 5Sm is that 5 divide the class
number of a certain cyclic biquadratic field with conductor 5m. Conversely, if 5 di-
vides the class number of the cyclic field, then either one of the quadratic fields has
class number divisible by 5 or one of their fundamental units satisfies a certain con-
gruence condition modulo 25.

1. Introduction. While a necessary and sufficient condition for 3 to divide the
class number of a real quadratic field has been given by Herz [3], no similar condi-
tion seems to exist for 5. In this article, we will extend the methods of Herz to ob-
tain such a result. Although Weinberger [9] and Yamatoto [10] have proved the ex-
istence of infinitely many real quadratic fields with class number divisible by any in-
teger n, their results are quite different from those of Herz and those of this article.

Certainly 5 divides the class number of one of the quadratic fields kK, = ‘Q(\/r;)
ork, = Q(\/gn_) if and only if 5 divides the class number of their biquadratic compo-
situm K. We show if 5 divides the class number of K, then 5 divides the class num-
ber of a certain imaginary cyclic biquadratic field K, with conductor 5D, where D is
the discriminant of k,. Conversely, if 5 divides the class number of K,, then either
5 divides the class number of K, or one of three congruence conditions holds modulo
5 or 25 on the fundamental units of k, or k,.

2. Notation.

g— — 8211’1‘/5_

m: a square free positive rational integer with (5, m) = 1.
Q: the field of rational numbers.

ky = Q(\/a)

ky = 0(W/5m).

ky = QW/5).

L = 0, vm). _

K, = Q(\/g, \/m)

K, = 0~/~-10m + 2mn/5): cyclic biquadratic subfield of L.
K3 = 0.

D = discriminant of the field ;.
h = class number of L.
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h; (i =1, 2, 3): class number of K;.
¥(@ =1, 2, 3): class number of k;.
E': the group of units of L.

é

€

>

: the subgroup of E generated by the units of fields K;(i=1,2,3).
the subgroup of € generated by the units of the fields k; (i = 1, 2, 3).

Qp=(E:0).

0, =(e:e).

€; (i = 1, 2, 3): the fundamental unit of the field k;.

3. Class Number Relations.

THEOREM 1. 2h =h h,.

Proof. Since the Galois group of L/kj is bicyclic of order 4, it follows from
Theorem 5.5.1 of Walter [8] that 2hh% = Q,h h,h;. However, it is well known that
hy =h%=1.

To complete the proof we need to show @, =1. f E€ E, Theorem 1 of Parry
[7] shows

E? = t¢e = +{%,
where e € K. Thus,
(%) = ze.

Ife, =E/> ¢ K,, then L =K (e,) = Kl(\/i_e) so only the prime divisors of 2 in
K, could ramify in L. However, the prime divisors of 5 in K| ramify in L. Thus, e,
€K, andso E = {’e, €. Hence, £ C és0 Q, = 1.

THEOREM 2. 4h, = Q h¥h% with Q, =1 or 2.

Proof. Immediate from Satz 1 of Kubota [5] and Satz 11 of Kuroda [6] since
h% =1 and the fundamental unit of k3 has norm —1.

CorOLLARY 3. 8h = Q hth%h,.

4. Class Number Divisibility.

LEmMMA 4. If 5|h,, then 5 |h,.

Proof. If M/K, is cyclic of degree 5, then M({)/K, is cyclic of degree 10. A
generator o of the Galois group G(M/K ) can be extended to an element of G(M({)/K )
by setting {® = ¢. Hilbert’s Theorem 90 gives an element o € M({) satisfying a7l =
¢. Moreover, o is uniquely determined up to multiplication by § € L.

Let p be the unique element of G(M($)/K,) which has order 2 and define quanti-
ties§,aandeby =a+a’,a =o't ande =a*? +a**"!. Nowg e €K,

9 €M, M =K,(0)and 05 - 520> + 520 — ae = 0. Since M/k, is dihedral, the non-
trivial automorphism of K /k5 can be extended to an automorphism 7 of M)k,
satisfying the following properties:

(=t =1, pr=r1p, 710=0"r.

If =a ! then
7 = (1) =a T = A0y [(5a) = {o ffa = o7 =B,
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so that B € L. Replace a with (1 + B)a if 8 # —1 and with (¢ — ¢*) aif § = —1.
This gives @ = o” so that o’ € K, and « is uniquely determined up to a factor y of
K,. Thus we can take a to be an integer of K, and so a and e will be integers of k5.
Theorem 1 of Parry [7] shows that the only units of K, are the units of k5, so if

a’ were a unit of K,, then «® € K. This would mean that M = K ()= Kl(i/gg)
and so M/K, would be a nonnormal extension. Thus, o’ is not a unit of K,.

If 5|h,, then we may assume M/K, is unramified; and hence, M({)/L is also
unramified. Because M({) = L(f/a_s), a prime ideal B of L can divide («°) if and only
if B° divides (o®). Since & € K, a prime ideal p of K, will divide () if and only
if p3 divides («®). Since we may assume a° is not divisible by a fifth power of another
integer of K, (except units), it follows (o) = » - pt)s where p,- - - P, is a non-
principal ideal of K, whose fifth power is principal. Thus, 5 divides &,.

THEOREM 5 (MAIN RESULT). If 5 |h,, then either 5 |h, or the fundamental
units €, = (a + b\/m)/2 of k, and e, = (c + d\/5m)/2 of k, satisfy one of the
following conditions:

(1) a=0o0r b =0 (mod 25).

(2) m =+2 (mod 5) and €, = +¢ or +7e (mod 25) where € = r + m*\/m
with r = 9 or 12 according as m = 2 or —2 (mod 5).

(3) d=0 (mod 5).

Conversely, if 5 |h, or one of conditions (1)—(3) holds, then 5 |h,.

Proof. We begin by reversing the roles of K, and K, in the proof of the pre-
ceding lemma. Thus, if 5|h,, then M/K, is an abelian unramified extension of degree
5 and M(t) = L(a) with o® € K, If o’ is not a unit of K, then it follows as in
Lemma 4 that 5 |h,. If &> = e is a unit of K, then a may be replaced with o? so
that «® = e = e e,e, with e; €k, (i = 1, 2, 3) (see Theorems 1 and 2). Satz 119 of
Hecke [2] shows that L(i/g)/L; and hence, M/K, will be an unramified extension if
and only if

) x5=e mod(l —¢)°

is solvable in L. By applying the relative norm function for L/K,, it is seen that (4)
is solvable if and only if

©) x5 =e mod(5V/5)

is solvable in K. Applying the relative norm functions for K, /k; (i = 1, 2, 3) to (5)
shows that

(6) x5 =e; mod(25),
@) x5=e, mod¥p3,
(8) x5 =e; mod(5v/5)

(where p = (5, \/§n_)) must be solvable in k,, k, and k, respectively. First of all,
it is easy to see that (8) has no solution unless e, is the fifth power of a unit of 5.
Thus, we may take e; = 1 and &® = e = e,e,. Next observe (7) is solvable if and
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only if e, =u + v/ 5m (mod 5) with v = 0 (mod 5). Suppose e, = €}, where ¢,
is the fundamental unit of k,. Certainly, we may assume that # is reduced modulo 5.
Moreover, if ¢ # 0 (mod 5), then (7) has a solution if and only if

5= 3
x> =Ze, mod p;

has a solution; i.e. we may assume ¢ = 0 or 1. If # = 1, then condition (3) of the
theorem holds. If # = 0, then e; # * 1, since otherwise o would be a 10th root of
unity. Hence, we may assume that (6) holds where e, = ¢, is the fundamental unit
of k;.

We need to determine exactly when

©) x5 =¢, (mod 25)
has a solution in k.

If m = %1 (mod 5), then (25) = (p,9,)? in k; where p, and p, are distinct
prime ideals. Now (9) has a solution if and only if

5

(10) x5=¢, (modp?)

has a solution for i = 1, 2. Also, the reduced residue system modulo 25 forms a
reduced residue system modulo pl? ; and the fifth powers m(;dulo p,.z are precisely
tland +7. Ife, =u + rWm (mod 25), then +1 = u? — mv? (mod 25); and since
m = *1 (mod 5), either u =0 or v =0 (mod 5). It follows that u?=+1orm?=
+1 (mod 25), and thus u = £1, 7 or v/mv = +1, 27 (mod p?). Suppose

€ =u+ wm (mod p?),

where v = 0 (mod 5). Thus, both €, and u are fifth power residues and v =0 (mod p,).
It follows that
€, =u (mod p?),

and so vW/m =0 mod p? which implies v = 0 (mod 25). A similar argument shows
that ¥ = 0 (mod 25) when u = 0 (mod 5).

If m = +2 (mod 5), then 5 stays prime in k, ; and there are 600 reduced resi-
dues modulo 25, 24 of which are fifth powers. A complete set of fifth power resi-
dues may be obtained by taking all products from the sets

S={t1,%7, tm®/m, +Tm?>/m} and T={t1,rtm?>/m},

where » = 9 or 12 according as m =2 or m = 3 (mod 5). Note that r2 —m> =1 or
—1 (mod 25) according as m =3 or m =2 (mod 5). Thus, only *1 and *7 times
rt m%/r? can be units. It is now obvious that (9) has a solution if and only if (1)
or (2) holds. ‘

We have now proved that if 5|4, and 5t h,, then one of (1)—(3) must hold.
Conversely, if one of (1)—(3) holds, set e = €, if (1) or (2) holds and e = ¢, if (3)
holds. The above discussion shows that (4) has a solution for this choice of e. Satz
119 of Hecke [2] shows that L(f/g)/L is unramified so that 5 |h. Theorem 1 shows
S|hy or 5|h,. If 5|h,, then Lemma 4 shows 5 | h,, also.
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The following corollary gives a more convenient version of condition (2).

COROLLARY 6. The fundamental unit €, of k, satisfies condition (2) if and
only if Tr(e;) = 1, +7 (mod 25) where Tr denotes the trace function.

Proof. Certainly, if €, satisfies condition (2), then Tr(e,) = £1, £7 (mod 25).
Conversely, suppose € = €, =a + by/m (mod 25) with Tr(e) =22 =+1, +7 (mod
25). Thus,

t1=Ne)=a* - b?m (mod 25),
SO

*4 =44% - 4b>m = Ti(e)? - 4b°m

=%1-4b*m (mod 25).

Since m ¥ 0 (mod 5), the choice of * signs must be the same on both sides and, in
fact, is the sign of Tr(e)?. Thus,

4b’m = -3 Tr(e)> (mod 25),
NeJ
b*m =18 Tr(e)’> = -7 Tr(e)> (mod 25).
Squaring gives

b*m? =-1 (mod 25),

SO
b=-bm?® (mod 25).
Now
b*m=-7 Ti(e)> =-2 Tr(e)®> (mod 5),
SO

b% = £Tr(e)> (mod 5),

where the sign is + if m = 3 (mod 5) and — if m =2 (mod 5). If m =3 (mod 5),
then

b=1*Tr(e) (mod 5),
s0
b=-b5m? = +Tr(e)ym? (mod 25).
Thus,
€=a tTr(e)mz\/r—n— (mod 25)

=~ Tr(e)(12 + m3/m) (mod 25).
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If m =2 (mod 5), then

b2 =-Tr(e)> (mod 5),

)
b=2x7 Tr(e) (mod 5).
Hence,
b=-bm? =+7 Ti(e)ym® (mod 25),
SO

€ =13 Tr(e) £ 7 Tr(eym®/m  (mod 25)
=-Ti(e)(12 £ Tm®/m) (mod 25)
=£7 Tr(e)9 £ m>/m)  (mod 25).

Thus, in either case (2) is satisfied.

The distinction between conditions (1) and (2) of Theorem 5 is somewhat
artificial as is seen by the following result.

CoROLLARY 7. If €, satisfies condition (2), then ef satisfies condition (1).

Proof. Simply cube € = r + m2/m and note that m* =7 or—7 and r =9 or
12 (mod 25) according as m = 2 or —2 (mod 5).

We now classify those fields K, which have class number divisible by 5 into
three types:

Type 1. Condition (1) or (2) of Theorem 5 is satisfied.

Type 2. Condition (3) of Theorem 5 is satisfied.

Type 3. 5 divides h, .

Type 3 fields can be subdivided into two further types:

Type 3a. S divides h¥.

Type 3b. S divides h%.

The next corollary gives the sought after condition for 5 to divide A, .

CoRrOLLARY 8. If 5|h, and K, is not of Type 1 or 2, then S |h,.

CorOLLARY 9. If K, is both Type 1 and Type 2, then 25 |h, and the 5-class
group of K, is noncyclic.

Proof. Under our assumptions L(\/e ) and L(\/ez) are distinct unramified abeli-
an extensions of L of degree 5. There exist correspondmg unramified abelian exten-
sions M, /K, and M, /K, of degree 5 with M; C L(\/e Yfori=1,2. Since L(\/el)
=#L(\/e2) we see M, # M,. Thus, M, = M, M, is an unramified abelian extension of
K, of degree 25 with noncyclic Galois group. Thus, 25 |k, and the S-class group of
K, is noncyclic.

CoRrOLLARY 10. If K, is of Type 1 and Type 3b or Type 2 and Type 3a,
then 25 | h, and the S-class group of K, is noncyclic.

Proof. 1f K, satisfies both Type 1 and Type 2 conditions, then we are done by
Corollary 9. When K, is of Type 3a (3b), there exists a nonprincipal prime ideal p of
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k, (k,) such that p5 = (r + sv/m)is principal. (Here we temporarily change notation
to allow m = 0 (mod 5) when K, is Type 3b.) If we can choose a = r + s\/m $O
that 5 does not ramify in L(Y/a), then we are done. This is so because LR/a)/L and
L(\/e,.)/L (@ =1 or 2 according as K, is Type 3b or 3a) will be distinct unramified
abelian extensions of degree 5. At this point, we can use the proof of Corollary 9.

In order to see that a can be chosen properly, it will be necessary to consider
three cases:

Case 1. K, Type 2 and Type 3a, m = %1 (mod 5). Here (25) = (p,9,)?
where p, and p, are prime ideals of k;. There are 20 reduced residues modulo p,.z
and the fifth powers are precisely £1,+7. Since €, is not a fifth power residue, the
powers e’i (G=0,...,4) form a complete set of coset representatives for the sub-
group of fifth power residues in the whole group modulo p?. Thus, €i(r + sv/m) is a
fifth power residue modulo p? for some j. We need to observe that j does not depend
oni. If

e +s Vm)=u +wnm  (mod 25),

then as in the proof of Theorem 5 we must have # = 0 or v = 0 (mod 25). Thus,
a= ef;(r + s\/g) is a fifth power modulo 25 and Satz 119 of Hecke [2] shows
L(i/&)/L is an unramified extension.

Case 2. K, Type 2 and Type 3a, m = £2 (mod 5). Here L({/&)/L will be
unramified if a is a fifth power residue modulo 25. Since 5 remains prime in k|,
there are 600 reduced residues in &, modulo 25 and 24 of these are fifth power resi-
dues. If 4 denotes the ring of algebraic integers of k,, then the norm function defines
a surjective homomorphism

N: (4/254)* — (Z/252)*.

The kernel of N must have order 30 and the preimage, H, of {+1, +7} has order 120.
Note that €, a and the subgroup, F, of fifth power residues all belong to H. Since
€, is not in F, the powers ej1 (G=0,...,4)gve acomplete set of coset representa-
tives for F in H. Thus, el € F for some choice of j. If a is replaced by €} a, then
L(Y/@)/L will be unramified.

Case 3. K, Type 1 and Type 3b, m = 0 (mod 5). We shall now return to our
standard notation and write & = r + sv/5m with (m, 5) = 1. Now L(\/a)/L will be
unramified if and only if « is a fifth power residue modulo ps where p, = (5, \/Sm)
There are 100 reduced residues modulo p3, and the subgroup of fifth power residues
is F={%1, £7}. If A denotes the ring of algebraic integers of k,, then the norm
function defines a homomorphism

N: (A/p3)* — (Z/252)*.

Since only integers congruent to +1 (mod 5) can be norms, the image of N has order
10. The kernel of N must also have order 10 and the preimage, H, of (1) has order
20. Note that €,, o and F all belong to H. Since €, ¢ F' we have, as in Case 2, eéa
€ F for some j. This completes the proof.



1026

CHARLES J. PARRY

TaBLEl (m = p)

h, h, type

e o
37 10 2
53 10 1
73 10 1
89 20 1
92 20 2
109 20 1
124 40 2
149 20 2
236 80 2
241 40 1
257 50 1,2
281 40 2
293 50 2
313 50 2
401 80 3a
428 100 1
433 90 1
457 50 2 1,2
508 100 1,2
509 100 4 1,2
541 80 1
556 80 1
557 130 2 2
617 130 1
673 90 1
761 80 4 1
764 200 1,2
796 160 2
809 100 4 2
844 200 1
857 170 1
881 200 2 1,2
892 260 2
908 180 2
937 130 2 2
997 130 2 2
1069 100 2 2
1084 200 1
1093 250 2 3a
1097 170 2 2
1129 180 2 2
1193 290 2 2
1213 250 2 1
1217 170 10 3b
1228 260 2
1289 180 1
1301 200 2 1
1321 360 1
1388 180 2
1428 180 2

D h, ht type
o &

1429 180 2 3a
1493 250 18 1,2
1597 250 2 1,2
1621 320 1
1637 450 14 1
1721 400 4 2
1741 400 4 1
1756 320 2 3a
1777 370 1
1861 320 1
1868 500 10 1,3b
1913 250 2 1,2
1916 320 2 2
1949 260 6 2
1973 370 2 2
1996 400 6 2,3a
2092 340 2 1
2348 500 2 1,2
2524 520 2 2
2572 500 2 2
2732 740 2 2
2876 640 1
2908 740 2 3a
2972 580 2 2
3356 1280 2 2
3548 740 2 2
3644 1000 10 3b
3788 900 2 1
3932 1220 1
4124 680 1
4204 680 1
4252 820 2 2
4348 1220 1
4492 1780 10 2,3b
4748 900 2 1
4924 1000 2 1,2
5116 1600 10 1,3b
5164 1960 2 2
5308 900 2 2,3a
5708 1220 2 1
5804 1000 2 2
5932 1220 6 2
6044 1640 2 2
6124 1000 6 1,2
6284 1640 2 2
6316 1360 2 2
6652 1940 1
6796 2320 1
6892 1780 1
7132 2340 2 2
7388 1300 10 3b
7628 1700 2 1,2
7916 1360 10 3b
7996 1600 6 1,2
8012 2900 2 1,2
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TABLE II (m = 2p)

_m h h type
& &

14 20 2
26 20 2
38 40 1
62 40 1
82 80 1
86 100 2
134 100 1
202 200 1
214 260 1
278 360 1
298 400 1,2
314 260 1
326 260 1
358 200 2
382 360 1
398 320 2
422 400 2 1
446 340 6 2
458 320 4 2
466 580 4 1
502 400 6 1,2
514 340 1
526 500 2 1,2
554 740 4 2
622 520 1
626 500 4 1,2
634 340 1
662 400 2 1
674 580 1
734 500 6 1,2
758 520 2 2
766 500 2 2
794 740 20 3b
842 520 4 2
922 1000 4 1,2
926 740 2 2
982 1040 6 1,3a
1006 1220 2 2
1018 640 4 2
1042 800 8 1
1114 1460 4 2
1126 900 0 2,3a,3b
1142 1360 2 2
1198 800 2 2
1214 1220 1
1226 1460 4 3a
1238 1000 o2 1,2
1262 1160 1

It is interesting to note that when m = 982, K, is of Types 1 and 3a and

m h type
& &
1294 1300 2 2
1354 1220 12 2
1366 900 2 1,2
1382 1040 1
1402 1960 1
1466 1620 20 3b
1478 1640 2 2
1486 1460 2 3a
1514 900 20 3b
1546 820 4 2
1654 1300 2 2
1658 1040 1
1754 2340 1
1762 1360 1
1766 1700 2 3a
1838 2080 1
1874 2340 1
1882 1960 20 3b
1934 1700 10 3b
1954 1460 4 2
1966 1300 6 1
1982 1160 1

when m = 1123, K, is of Types 2 and 3b. However, 25 does not divide A, in either

case!

CoroLLARY 11. If K, is of both Type 3a and Type 3b, then 25 |h, and the
S-class group of K, is noncyclic.
Proof. Corollary 10 shows that we may assume that K, is of neither Type 1
nor Type 2. Thus, as in the proof of that corollary, we may choose ; € k; such
that L(i/;i)/L (i = 1, 2) is an unramified abelian extension of degree 5. Moreover, we
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may assume (o;) = P} where ¥; is a nonprincipal prime ideal of k, (i = 1, 2). If

L(f/al_) =L(i/;x:), then a; = 6501; forsome BEK, and t = 1, 2,3 or 4. Applying the

norm function for K, /k, gives a? = (N(B)PY)?, where p, is a prime integer. Since

L(i/oz—l)/L is of degree 5, we must have L(i/o—zl_) #* L(f/t_x:). The proof of Corollary

9 now applies. _
COROLLARY 12. Let K, be of Type i (i =1 0r 2), e = ¢;and 6 = Je + f/e',

where €' denotes the conjugate of € and both fifth roots are real. Then M = K 2@

is an unramified abelian extension of K, of degree 5 and 9 is a root of

f(x) = x5 — 5N(ex3 + 5x — Tr(e),

where N(€) and Ti(€) denote the norm and trace of €.

Proof. Merely reverse the roles of K| and K, in the proof of Lemma 4. Under
our assumptions we can take a = f/ € and o = i/ €. It is easy to see @ = N(e) and ae
= Tr(e).

5. Numerical Results. Since K, is an imaginary cyclic biquadratic field, its
class number can be readily computed using a result of Hasse [1]. The formula is

e ’

212

= 2 x(mn

n (mod f)

h,

b

where f is the conductor of K 2> the summation is over the smallest reduced residue
system modulo f and x(n) = (m/n)x,(n). Here (m/n) is the Jacobi symbol and
X, (1) is a primitive character modulo 5 defined by x,(2) =i = v/~ 1. The conductor
f = 5D where D is the discriminant of k,. When f is even, we can make the follow-
ing simplification:
THEOREM 13. If f is even, then

2

> xn)| .

n (mod f /2)

Proof. Note that

o+ 1) = (2 Do+ 1) = (72575) o,

since /2 = 10m. Now either m is odd or m = 2r with r odd. In the first case m =
3 (mod 4) and in both cases n is odd. In the former case

10m + n m

(._'"_> — (1)Cn-D/10m +n-1)/2 (10_mu)

= (-1)m+1)/2 (%) = (- 1)+ D2 =D (’_"_)

n
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In the second case

(ﬁrﬁ?) - (56%7) - <20r2+ n) (20rr+ n)
-(#)()--06)--G)--()-

In either case x(n + f/2) = — x(n) so

2 x(mn 2 xmn+xm+12)(n +1/2)

n (modf) n (mod f/2)

I

= X xom-xmm+f)=-f2 X  xm.

n (mod f /2) n (mod §/2)

The desired result is now immediate.

Using FORTRAN programs, we have computed 4, for all values of m < 2000
where m = p or 2p with p prime. In the tables above we list all such values of m
with 5 dividing #,. The type (or types) of each field was determined using the table
of Ince [4] and a program to compute e, (or €, modulo 100 when overflow occurred
in double precision) when 5m > 2025. If Corollary 10 did not show (h%, 5) = 1 and
m > 405, then h% was computed. This value appears in the tables whenever we com-
puted it.
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