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Implementing Second-Derivative Multistep Methods
Using the Nordsieck Polynomial Representation

By G. K. Gupta

Abstract. A polynomial representation for the second-derivative linear multistep
methods for solving ordinary differential equations is presented. This representation
leads to an implementation of the second-derivative methods using the Nordsieck poly-
nomial representation. Possible advantages of such an implementation are then discussed.

1. Introduction. In this paper we are concerned with the second-derivative
linear multistep methods (formulae). The differential equation being solved is

(1.1) V' =1 ), ¥0)=y,.
The second-derivative k-step multistep formula may be written as
k. k , ) &
— n
(1.2) Va1 = El OYVpt1— T H 'Zo BVnt1—r th Z 0
r= r= r=0

Several authors have recently studied such formulae and other formulae which include
higher derivatives, for example, Makinson (1968), Genin (1974), Makela et al. (1974),
Enright (1974a, b) and Liniger and Willoughby (1970). Also Lambert (1973, Sections
7.2 and 8.11) discusses such methods and calls them Obrechkoff methods. The moti-
vation for studying second-derivative and higher derivative formulae is that the usual
multistep methods cannot be A4-stable for orders higher than 2 (Dahlquist (1963)),
while A-stable multi-derivative formulae of higher orders exist as shown by Genin
(1974) and Jeltsch (1975). Therefore, higher derivative multistep formulae may be
suitable for solving stiff equations. Also while solving stiff equations, the Jacobian
9f/dy is required in the corrector iterations anyway; and therefore, y" = (3f/3y)f +
0f/dx can be computed quite easily.

Enright (1974a, b) has presented a subroutine SDBASIC for solving stiff equa-
tions and it was shown by Enright et al. (1975) that this subroutine is efficient and
reliable for solving a wide range of stiff test problems.

In this paper, we present a polynomial representation of the second-derivative
multistep methods and discuss how this representation may be used in implementing
the second-derivative methods using the Nordsieck representation. Advantages of such
implementations are then briefly discussed. The discussion in this paper is easily ex-
tended to higher derivative multistep methods.
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2. Polynomial Representation. A polynomial representation of the usual multi-
step methods has been presented in Wallace and Gupta (1973). We now show how
this representation can be extended to include the second-derivative multistep methods.

We assume that the step-size is fixed and, therefore, x, = nh and y , is the ap-
proximate solution at x,. Now suppose that the solution after the step to x,, is ap-
proximated by a polynomial P, (x) of degree m, with P (x,,) = y,. To advance the
solution from x, to x, ;, using a usual multistep method, we obtairi a new degree m
approximating polynomial P, , , (x) from the previous polynomial P,(x) by the relation

(21) Pn+l(x)=Pn(x)+5n+lc((x_xn+l)/h)’

where C is a fixed polynomial of degree m characteristic of the particular m-step meth-
od employed and §,,, , is chosen to satisfy

Pr,1+1(xn+l) =[Gt Prp1Gas1))-

In the second-derivative multistep methods we require that, in addition to
P, ,(x) satisfying the differential equation (1.1) at x,,, ,, it must also satisfy

2.2 Py () =S Gt P (ng1))s
where S is some constant, usually equal to 1.

Obviously the polynomial P, ;(x) in (2.1) is not capable of satisfying condition
(2.2) in addition to satisfying the differential equation at x, ., if we assume that C
is a fixed polynomial. However, if we assume that C is not a fixed polynomial then
both the conditions at x,,, , can be satisfied by the approximating polynomial
P, n+1 (x ) :

Before we proceed further, we present two examples. The first example illus-
trates the use of representation (2.1) for Adams-Moulton formulae, and the second
example shows how representation (2.1) can be extended to include the second-deriv-
ative methods.

Example 1. Consider the Adams-Moulton formula of order three. We require
that C has a zero at x,, and that C' has zeros at x, and x,_;. If we define t =
(¢ = X, 1)/h, then we require that C(f) be such that C(-1) = 0 and C'(-k) = 0; k =
1, 2. This gives us

B 32 5
C(t)=‘3" +T+2t+g.
Example 2. Consider the one-step 3rd order second-derivative formula presented
by Enright (1973). In the usual notation, the formula is
h n
yn+1 =Vn + 5(2fn+l +fn)_€ fn+l.
This formula is derived by using a polynomial P, , , (x) approximating the solution of
the differential equation such that
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Pos1Gn) =V Propi () =Fn Poy (1) =Fopy and Pri (x,, ) = fas1-
These conditions imply that P, , (x) is of degree 3 and also that C(#) must satisfy
the following conditions:

(2.3) C-1)=0, C'C1=0, C'(0)=1 (ay), C"(O0)=u,

where u is yet to be determined. We have put C'(0) = 1 arbitrarily because the scal-
ing factor gets included in §,,, ; in representation (2.1).
The above four conditions give us

24 - -

24 C(t)=@—8—y)+t+%ut2+£u—31—)t3.

Using this C(¥) in representation (2.1) means that we now have to compute # and
8,44 tofind P, (x). The two conditions which determine « and §,,, , are

Py (pp1) =FCnq 1 Ppyy(x,)) and Py (ps1) =L Cpirs Pap1®ng )
C(¢) may be written as C(¢) = p(¢) + uq(¢), where

_2, 13 _1, 1, 13
Note that p(¢) satisfies p(—1) = 0, p'(—1) = 0, p'(0) = 1 and p"(0) = 0. Also, q(?)
satisfies g(—1) = 0, ¢'(—1) = 0, ¢'(0) = 0 and ¢"(0) = 1. This shows that p(f) and
q(t) are easily obtained.
We may now rewrite representation (2.1) for the second-derivative method as

Q5 P, (x)=P,x)+8,, . {p((x—x, ) +uq((x —x,,,)H)}

It is interesting to note that representation (2.5) presents an equivalent variable-
coefficient multistep formula representation similar to that of Lambert and Sigurds-
son (1972) for all second-derivative methods. Also, the above representation indicates
that the method of ‘averaging’ used by Liniger and Odeh (1972) is related to the
multi-derivative multistep methods.

In the next section we discuss how this representation is helpful in implement-
ing second-derivative methods using the Nordsieck representation.

3. Implementation. In the representation suggested by Nordsieck (1962), a
polynomial P _(x) of degree m at x,, is represented by the following vector:

[P,(x,), hPL(x,), K2PL(x, )2}, . . ., KPS, ) m!] T

Using this representation, Gear (1971, p. 217) suggested that the predictor-corrector
algorithm may be expressed as follows

(3.1) an+1 =Aan +IW,

where @, ; is the vector of scaled derivatives of P, ,(x) at x, ,, and @, is the vec-
tor of scaled derivatives of P (x) at x,. A is the Pascal triangle, / is the vector of
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scaled derivatives of C at x,,, , and w is a scalar.

In using (3.1) to represent the second-derivative method, we find that / is not a
constant vector. For example, the vector / corresponding to the 3rd order second-
derivative method discussed in the last section is

45218 50T

This however can be represented by two vectors, viz.

24,017 11
[’1’0’ 3] and [650’2’ ]’

and therefore, we can express the second-derivative methods as follows
(32) Opyy = Aa, + g+ uz)w,

where g and z are (constant) vectors of scaled derivatives of polynomials p and g in
(25)atx, .

When using the representation (3.2), w and ¥ must be computed by an iterative
method. Since the simple iterations do not converge when solving stiff equations,
usually the Newton method is used as discussed by Liniger and Willoughby (1970)
and Enright (1974). The Newton method in notation (3.2) works as follows: (We
assume that a single differential equation is being solved. Later in this section we
shall generalize the results to include a system of equations.)

We require that a,  , satisfy the differential equation at x,, , ;. Therefore,

(3.3) b, +wg, —hfix,,,by +gw+ uzgw) =0

where b = Aa,, and b, b, are the first and second elements of b and similarly g,
g, and z,. To compute w, we define the following iterations (w” and u” being ap-
proximations to w and u).

[by +w'g, —hf(x, 41, by + W'gy + Wwi'zg)]

. & —hgg offoy — hzour affoy
This requires an estimate of «” so that the second-derivative condition of (2.2) is also
satisfied. We proceed as follows. Leta,,,;andy,,q ;,i=0,1,..., be the suc-

cessive approximations to @, ., and y,, ,, respectively, such that y,, , ; is the first
element of @, ; ; and

-(3.4) wtl =’ —

Grr10 =48, a4 ;=8,00 . H@EF “iZ)Ai’ i=12,....
We have (assuming z; = 0 and g, = 0)*
Ag, = hf(xn+l’yn+l,i—l) - hf(xn+l’yn+l,x’—-2)'
Therefore,

*In the general case, z) and g, may be nonzero, but this results in the corrector iterations
becoming more complex.
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of
(3.5) Agy = h'a; Gns1,-1 ~Vnt1,i-2)

Also, we want (assuming df/dy constant for iterations)

i K of
Au'zy = ‘2"'5}7 [f(xn+l’yn+l,i-l)_f(xn+l’yn+l,i—2)]

or
(3.6) Ai“izz = h?z <%>2(yn+l,i—l “Vpt1,i-2)
Comparing (3.5) and (3.6) and assuming g, = 1 and z, = %, we have
3.7) -

oy’

Now we can rewrite (3.4) as

W't —w"y=—b, + w'g, —hf(x, 4, by + Wy +Wu'zy) and

3.8
( ) af h2 af 2
W=1I-hg, > Z, »)/
Therefore, at the rth iteration we apply two corrections, one (W't — w")g and an-
other W' t! —w")u**t1z. 4"*! s determined by satisfying the second-derivative

condition.
We note that the iterations defined by (3.8) are also applicable when (1.1) is a
system of differential equations.

4. Concluding Remarks. Using the notation (1.2), Enright (1974a, b) uses the
following strategies in the subroutine SDBASIC. To estimate the error, a one-step two
half-steps error estimate is used. This requires that three steps must be taken for ad-
vancing the solution from x, to x,, , and two matrices W in (3.8) corresponding to
step-size 2 and //2 must be retained. Also, the order changing strategy is that starting
with a third order method, the order is increased if the step-size has been constant for
k + 1 steps. It seems no new step-size is computed when changing order, and this
strategy continues until the order is equal to the maximum order.

Using the Nordsieck representation presented in this paper, error estimation,
step-size and order changing techniques similar to those used in DIFSUB of Gear
(1971, Chapter 9) may be used, and these should prove to be more efficient.

Also, just as the polynomial representation (2.1) has facilitated search for new
(usual) multistep methods, for example, refer to Wallace and Gupta (1973) and Gupta
(1976), the polynomial representation (2.5) should facilitate search for new and pos-
sibly better second-derivative multistep methods. In addition, should there be a need
for computing variable-step coefficients of the second-derivative methods, the represen-
tation (3.2) provides us with a simple algorithm. For example, consider the 4th order
method of Enright (1974a) using unequal step-sizes. The approximating polynomial
P, , ,(x) used in deriving it is such that
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Pn+l(xn)=yn’ P/,:+l(xn-l)=f-l’ Pr':+l(xn)=fn’

Pr'z+l(xn+1) =fp41 and P;:,+l(xn+l) =fr,z+l'

These conditions imply that p(¢) and q(¢) in notation (2.5) be such that
p'0)=1, q'(0) =0,
p"(0) =0, q"(0) = 1,
p(-1) =0, q-1) =0,
p'1=0, qdC1=0,
P't,.)=0, 4, )=0,

where £, = (x,_; ~X,41)/(X 4+ —X,)- We can now compute p(¢) and q(?).

Note Added in Proof. Recently the author has learned of the work of R. D.
Skeel and A. K. Wong, Blended Linear Multistep Methods, Report UITUCDGS-R-76-
800, Department of Computer Science, University of Illinois, 1976.
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