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A-Stability and Dominating Pairs *

By Arieh Iserles

Abstract. It is considered whether linear combinations of A-acceptable exponential ap-
proximations preserve the A-stability, when the coefficients of the linear combination
are selected in order to achieve exponential fitting. Various pairs of exponential ap-
proximations are discussed and the satisfactory pairs are characterized.

1. Introduction. The author’s paper [4] presents a new family of methods for
numerical solution of stiff ordinary differential systems, based on the following princi-

ple:
)

Let xf:f , be the numerical solution of the system

(1.1) x=1@x), x(,)=x,€EN

att, ., =t, + h,achieved by /,_ equal steps of the length A/l , by applying the trape-
zoidal rule. Let Z be a family of scalar differential equations whose solutions are
known in the closed form:

Z= {z; = g,(t, z;), z,(t,) = 1, 1 <k <M}

We assume that {x(l") }£=1 have been computed. Thus M = M(P) and a scheme

n+1
()
n+1’°

(1) ()

X,+; = F(x i Xnt1)s

n X

of at least the second order exist, causing the scheme to be fitted to the family Z (i.e.
the scheme solves with precision the equations of Z).

The purpose of this paper is to generalize the results of [4] in a certain direction.
We consider the solutions x'(11+)1 and x(2) of (1.1) obtained by any two numerical
schemes at 7,,, , and we combine them linearly, in order to gain one degree of expo-
nential fitting:

1.2) Xpp1 = oxD+ (1 - )x?,.

Assuming that the two considered numerical schemes are 4-stable, we are confronted

with a question whether the combined scheme (1.2) is A-stable. This paper is devoted
to the above-mentioned question. An attempt is made to get necessary and sufficient
conditions for A-stability and to analyze certain pairs of numerical schemes and their

stability.

2. The Stability and the Dominant Pairs. If two numerical schemes for solution
of stiff O.D.E.’s are given, we look upon their characteristic functions X, and Xp- The
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characteristic function x (), as defined in [5], is the solution at & = u/ X of the lin-
ear scalar equation x = Ax, x(0) = 1. Thus, for example, the characteristic function
of the trapezoidal rule is

x(W) =1 +%w/( - Y%u,

the [1, 1] Padé approximation to exp(u).

We are concerned in the sequel with numerical schemes for which the solution
at h = p/\ of the linear equation ¥ = \x, x(0) = x,,, is given by x(u)x,, when x is
the characteristic function. For these schemes the requirement of A-stability is,
trivially, equivalent to the condition

[x(M)I <1 forevery A, ReA<O0.

Considering the characteristic function x of the combined scheme (1.2), we see
that

2.1 x(w) = ax, () + (1 — a)x, (.

LemMma 1. If Xge» k = 1, 2, are analytical in the left half plane and A-acceptable
then the sufficient condition for A-acceptability of x is « € [0, 1]. If | xk(it)l =1
for every t ER, k = 1, 2 also, then this is the necessary condition too.

Proof. Clearly, this is a sufficient condition: for every z, Re z <0,

Ix@)| < alx,@) + (1 -a)Ix,@ <a+(l-a)=1,

provided 0 < a < 1.
X» k = 1, 2, are analytical, thus x, defined by (2.1),is analytical too. There-

fore, according to the maximum principle, the inequality | x(i#)| <1 V¢tE€R isa
necessary condition for 4-stability. Hence,
Ix@n)I? = &?1x, GO + (1 = 0)?1x, (1) + 2a(1 - Q)Re X, (iD)x, (@)
=1+ 2a(a~ 1)(1 — Re X, (it)x, (i)
and | x(@t)l < 1 implies
a(@— 1)(1 - Re x, (@)X, @) < 0.

But | X, (i7)|* = 1 implies Re x, (it)x, (it) < 1, thus

a(@—1)<O0, ergoa€ [0,1]. Q.E.D.
Definition. 1f x (u) and X, () are A-acceptable approximations to exp(u), we
shall define the pair {x,, Xz} as a dominant if for every u <0
2.2) min {x, (1), X,(W)} < e* < max{x, (1), x, (1)}

is valid.
LEMMA 2. If {xl, x2} is a dominant pair and x(u) = axl(u) +(1-a x2(u)
is fitted to any \ < 0, then X is A-acceptable.
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Proof. The inequality (2.2) implies (x; (1) — €“)(x, (0) — ") < 0. But x(N) =
exp(A), hence

Yo X, (N -et N - et _ 1 .
X, )= %0 (M) = €M) — () —eM) 1_x2(7\)—e"
X, (N - e

Thus, 0 < a < 1 and, according to Lemma 1, x is A-acceptable.

This argument fails when x, (A) = x,(). But then x, (3) = x,(}) = exp(}),
because {)(1 s x2} is a dominant pair, and x is fitted to A with every real a. We
select & € [0, 1] and again, x is A-acceptable. Q.E.D.

The last lemma gives a practical tool for the stability analysis. Nevertheless, the
dominancy conception is sometimes, as is shown in the sequel, too demanding. Hence,
it seems nothing but natural to slacken the definition:

Definition. 1f x, (u) and x,(u) are A-acceptable approximations to exp(u), we
shall define the pair { X x2} as a \y-dominant pair, A, < 0, if for every u <A,

min {x, (k), X, (W)} < e* <max{x, (W), X, (1)}
is valid.
LemmA 2*. If {Xx;, X} is @ N\y-dominant pair and x(u) = ax, () +
(1 — a)x,(w) is fitted to any A <\, then x is A-acceptable.
Proof. Identical to the proof of Lemma 2.
In the following chapters three families of possible dominant or A,-dominant
pairs are analyzed:
(a) the pairs of Padé approximations to the exponential,
Pm m  (m+n-—k)m!

= , P = z
(23) Rom =9 — mm = L o ¥ m) kN — K

Qn,m = Pm,n(—z);
(b) the pairs of the modified Padé approximants, possessing single degree of ex-
ponential fitting [2], [6],

k

Pn,m(z) + an’m_l(z) .
Qn,m(z) + #Qn,m—l(z)"

R (@) =

(c) the pairs of “extrapolants™, i.e. results obtained with the same characteristic
function but with different step lengths, being the natural generalization of the schemes
considered in [4].

3. The Padé Approximations. The objective of this section is to analyze the
dominancy property of the pairs {Rnl’m » an’m2}, when R"k:mk’ k=1,2, are
Padé approximations, defined as in (2.3).

We apply certain properties of the Padé approximation, all easily derived from
the explicit formulae. Most of these properties are widely known (see, for example,
[1] and [3]).

Hence, we define
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Yy m(@) = Py, ,(2) —e*Q, ().
By [3]

n

(3.1) Vpm(@ = Z—%Tn Yam-1@ + Vo1 m@-

Thus, acting upon (2.3) and (3.1), we prove that
d m
Z‘pn,m(z) = n + m n,m_l(z)'

LEMMA 3. ¥, ((2) >0 is valid for every z < 0 and Y, , is monotonously de-
scending in the above-mentioned interval.
Proof. By a direct differentiation:

byo@)=1-e Y (<DF,
’ k=0 k!

hence
, ez ez _ ez
Un,o@) = (=11 2 ===~ ==l <O

provided z < 0.
Thus, ¥, , is monotonously descending in (— e, 0]. But ¥, 0(0) = 0; there-
fore,

¥n 0@ >0 Vz<0. QED.

THEOREM 4. For every n, m > 0 and z <0 it is valid that (—1)"y,, ,.(z) >0,
and wn,m is monotone.

Proof. By induction on m:

We proved the validity of the theorem for ll/n,o. Moreover, we bear in mind
that

Vim@ =~V 1 @),
Thus, according to the induction assumption, (—1)™ tl/;,’ m(2) < 0implying immediately
the theorem. Q.E.D.

Theorem 4 can serve to derive various results on Padé approximations. For
example, it is effortlessly shown that if m is even, R, ,, has no real negative zero; and
if m is odd, Rn’m has exactly one such zero. Nevertheless, such results are outside the
scope of this paper.

Bearing in mind the result of [1], namely that Rn+k’n, k=0,1, 2, are A-ac-
ceptable, and applying Theorem 4, we readily see that

THEOREM 5. The pairs {R, 1y n. Ry m} for 0 <k, 1 <2,are dominant if
and only if n + m is odd.

Moreover, if the Ehle conjecture [1] is valid, namely if R,, kn K=0,1,2,



A-STABILITY AND DOMINATING PAIRS 23

are the only A-acceptable Padé approximations, then Theorem 5 characterizes completely
the dominant pairs which are composed of such approximations.

4. The Exponentially-Fitted Approximations. Ehle in [2] defined a family of
exponential approximations, possessing single degree of exponential fitting. These ap-
proximations can be defined as

Pn’m(z) + an’m_l(z)
Qpm@ + 10y 1)’

R

and if u= “n,m(¢) = d’n,m((b)/d’n,m—l(‘p)’
R 0=

Ehle in [2] and Ngrsett in [6] proved that if ¢ < 0, then RS,‘,), and RS,},),_ , are
A-acceptable. Moreover, by applying Theorem 4, we see that for every ¢ < 0, u(¢) >
0. The objective of this section is to prove that the pairs {Rf,h)k,n, Rﬁl,’ m 1> when
0 <k, I<1, are dominant if and only if n + m is odd (if not stated otherwise, we
assume that all the approximations are fitted at the same point).

The fundamental result, which enables the proof of the above-mentioned asser-
tion, is that p, ,,(¢) is monotone for ¢ < 0. This is proved by a two-stage induction:

LEMMA 6., (@) is @ monotonously descending function.

Proof.

14+ %o — (1 — ho)e?
1—(1—-¢)e?

By 1(9) = -
and by direct differentiation
(1 = (1 —9)e®Vuy (#) = %1 — ) — ¢?e?].
Let us assume #'1,1(4’) =0. Thus (1 — e?)? = ¢%e? and provided $ <0, 1 —
e® = —¢e”®. Hence, (e”? — e~ %?) = %¢; and if v = %9,
4.1) v = sinh v.

The unique real solution of the transcendental equation (4.1) is widely known
to be v = 0. Therefore, #'1,1(¢) # 0 for ¢ <0. But u; ,(0) =0, u; 4(¢) > 0 for
¢ <0 and p, ,(¢) continuous in (= °, 0] ; thus u, , is monotonously descending.
Q.E.D.

LEMMA 7. The identity

Bn_1,1 (VY
4.2) Va0, 1 (V) +— i T A Va_1,0 <%> 0

is valid for every A\ < 0.
Proof. We define
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pN =¥ oMk, 1 (N,

IERIGAY
) = x’wﬁ-l,om<——‘;—> .

Using in the sequel the identity

r . m
wn,m -

wtmYmmor M1,

from the last chapter, as well as the easily derived identities

=( 1)n+le)\K w = ( l)n—e
0 - n!’ tn,0 n 1,0

and the identity

n
ll/n,m = wn,m—l + (n + m) (n + m—l) )\'I/n—l,m—l

from [3], we obtain:

p(x)=(—1)"“e*?,—'; (wno+ : T M 10) —,,+ s
and
a0 =\ {(—1)"e*(%§f7(wn_l,o + M) —,174/3_1,0%
V10 (w,,_l,o + xw,,_z,o);
hence

PO) + 5 409 = = ey Mo 1.0(n1.0 ~ Yn2.0)

)\n+1
+ (—1)"“‘37\ (r,__l__l_)T(wn—l,O - 11l’n—z,o)

1
+m(‘l’n—1,o - ‘l’n,o)(’l’n_ho + ‘l’n,o)

n+1 A N 1 1
T G T\ Yo T T Y-

It can easily be shown that

I _ 1 _ 1 (_l)n n_\
n d’n,o n+1 ‘pn—l,o_ n(n+—1—) lpn—l,o “n- n!)\ €

implying

)
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)\2"
7] + 4(7\) = _,l—_'_ﬁm A)‘n"’n 1,0 ~ e (n—D'(n + 1)

( + 1)| A)‘"(wn 1,0 +‘pn,0)

+ (-1y*! aa N7

AN +
(n+ ! eN'Y,_10te 'n!)’

2n 2A ! n _
n'(n + 1! iy ¥ n+ 1)1 Ner(p 0 - Yn_1,0)=0
Q.E.D.

The apparent conclusion of Eq. (4.2) is:

LEmMMA 8. For every n > 1and A< 0 the function p, ;(\) descends mono-
tonously.

Proof. In Lemma 6 this result was proved for n = 1. Assuming by induction
that u, , () is descending for A <0 and bearing in mind that p,, , ;(A) >0 and
that K(X\) = 1/ is negative and descending in this interval, we see that p, _, ;(2)/A
ascends monotonously in (— o, 0]. But, according to Eq. (4.2),

, 1 )"l’n—l,o()‘) 2/l 1,1 (N '
Hn, 1N =~ ;
‘pn '0()\) x
hence u,',,l()\) <0 for every A <0. Thus, p,, ,(N) descends monotonously in (=, 0]
for every n > 1. Q.E.D.
Now we are able to generalize this result for the entire Padé tableau:

LemmA 9. If u, ., _1(X) is a one-to-one function, then Ky, m (N) is one-to-one.
Proof. We look upon

UL = Yy N + bty mR) ¥, m -1 (V-
Obviously, llff,l,),, is continuous for A < 0. Moreover,
YL =0 =R (N =

Thus, ¥),(0) = ¥£') (Xy) = 0. Hence, y{!) possesses one extremum point in
[Ag, O], at least. We show that there is exactly one such point:

R CNERANCV I o W AN o

m

=m‘pn m_l(x)-'-“nm(xo)n_'_m 1 'l’nm 2(A)
and 1115,12,, (M) = 0 implies
‘l’n m—l(>‘) +m L m= 1
- ; ”‘n,m()‘o)

n,m—2()‘) “n+m-— 1

or
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n+m m-—1
“nm—l()‘)—n+m_1 x m ”n,m()‘o)'

According to the assumption, u,, ..., is one-to-one. Thus, for a certain numer-

ical value

n+m m-—1
= =
=it m—1 " m Hn,m(Ro) = 0

there exists a unique A € (= %, 0] such that u, ,, ;(X) = a. Therefore, the equa-
tion wf,f,),:()\) = 0 has a unique negative solution. Hence, \lzfilr)n (A) cuts the negative
ray in exactly one point, namely in A,.

Let us assume that y, ,,, () is not one-to-one in (— 0, 0]. Then A, A, <O
exist, \; # \,, such that p, ,,(X;) = i, p,(A;)- Thus

‘pn m(xl)
__nmr 17 A
Tom O om0

or

"pn,m()‘l) + "n,m()‘z)'l'n,m-—l(kl) =0

Hence ¢§'), (X)) = 0, when y§!) is fitted to N,. But the meaning of fitting is that
$i () = 0. Thus, $§') = 0 has two negative solutions, which is evidently a con-

tradlctlon.

Therefore, [T is one-to-one. Q.E.D.

Conclusion A. My m is descending monotonously for every A <0

Proof. Clearly, My, m is one-to-one, a conjunction of the Lemmata 8 and 9. But
Hp,m is continuous, , ,,(0) = 0 and p,, ,,(A) > 0 for A < 0. Therefore, u, ,, de-
scends monotonously. Q.E.D.

Conclusion B. 4:5,{,),,(7\) has exactly two zeros in (— o, 0]: at the origin and in
A, <O.

Proof. Repetition of the reasoning which is applied in Lemma 9. Q.E.D.

Apparently, the very definition of R(l) implies that for A < 0

Vi) ~ m = (-

(n +m)! + )' (n +m)!
Thus, for X < A, we have Y§!) (N)(—1)™ >0 and for Ay <A <0, Y{1) (M) (- 1™
<o.
Reformulating this result, we prove
THEOREM 10. If R{!) is exponentially fitted to N\, <0, then in [7,, O]
(—D™RER() €M) <0
and in (—°, Ny],

(-D™RIL (N —eM >0,

for every n, m = 1.
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An immediate conclusion of this theorem is the following lemma:

LeMMA 11, The pair {R(Y, ., RQ), .}, when 0 <k, 1< 1, is dominant if
and only if n + m is odd.

This lemma is valid because, according to [2], Rf,ﬂ_)k’n, 0<k I<1,is A-stable
for every n > 1. If we assume that the Ehle conjecture is valid, namely that {R, kono
0<k<2,0<n} is the set of all 4-stable Padé approximations, then Lemma 11
characterizes completely all the dominant pairs which are composed of the approxima-
tions R(!) .

5. The “Extrapolation” Pairs. We wish to solve the differential system
x=f@ %), x(,)=x,

twice in the interval [z,, ¢, , ], by applying an A-stable scheme with the character-
istic function X, : once with one step of the length 7, ; — ¢, and once with two steps
of the length %(¢, , ; — ¢,). According to Section 2, the discussion of the A-stability
of a linear combination of the “extrapolants” is reduced into the exploration of the
domination property of the pair of appropriate exponential approximations.

Naturally, one is tempted to define x2(?\) = xf(?\/Z) and to explore the domina-
tion of { X1s Xy }. This approach is, generally speaking, erroneous. If X, = Rf,l,)n and
is fitted to A, then x, () = (Rs,f,)n()\/Z))2 is fitted to 27, and if we combine linearly
X, and Xy> the exponential fitting to A is lost. Obviously, the proper procedure for
the “extrapolation” when x, (}) = Rf,f,)n(?\, H(Ap)), is to select

X, (N = RS (N2, u(Ng/2)).

Here we define this situation more rigorously:

Definition. When x is an exponential approximation, we define the set NV, with
the following properties as the nucleus of x:

(8 N, C(—,0] =R,

(®) A€ N, implies x(A) = exp(N),

(© A€RO) - N, implies x(A) # exp(N).

LEMMA 12. If x is rational and analytical in C~) = {z € C: Re 2 <0} and is
not identically zero, then Nx is finite.

Proof. 1f N, contains an infinity of points, then it has an accumulation point in
R or at —oo,

If this point is finite, then the zeros of the analytical function x(A) — exp(A)
have an accumulation point inside the analyticity region C(=). Thus this function is
identically zero in CC), X(A) = exp(A), which contradicts the rational character of x.

If the accumulation point of N, is —~and x = P/Q, P and Q polynomials, then,
obviously, there exists a sequence {t, };_,, lim,_, . t, = —°, such that P(t;) =
Q(tk)et" . Hence

lim P(t,) = lim Q(t;)e’* = 0.
k>0 k—>o
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Since P is polynomial, limtk_,“, P(t,) = 0 implies P(X) = 0, causing x(z) = 0 in C(),
which is a contradiction.
Thus, Nx is finite. Q.E.D.
Definition. We look upon the rational exponential approximation x =
XA, 80,85, .. ,sq), whens=(s,,s,,..., sq) € E?. If the following requirements:
(a) there exists a © C EY so that if s € Q, then x( , s) is A-stable;

(b) the number of elements of . (- .8) (which is finite, according to Lemma 12)
is invariant for every s € Q:

Ny(.s) E(==,017 Vseq;

(c) for every p-tuple  in (— oo, 0] P there exists an s = s(a) € 2, so that

Nygp) =@
hold, then the approximation y is regular.

The approximations R, ., and Rgl,)” are regular according to the results of the
previous sections:

For R nm it holds:

N={0}, Q=g.
For R(!) it holds:

N=1{0,7}, Q=1[0,%), s =u,).

Naturally, when we average x(A) = ax, (M) + (1 = &) x,(A) we do not want to
lose degrees of exponential fitting. Thus, we demand that le = Nxz' Only in this

case N, = N, CN, isvalid. Thus, when we construct the “extrapolation” pairs, if
1 2

X, (W) = x; (A, s(V)) and x, is regular, we define X (N = (x, (N2, s(N/2)))?. Ob-
viously, in this case, N, X, =N= N

LeMMA 13. Assuming thatN— {7\1, Ay, kp}, NN 22 7\p and
X, X, are defined in the same manner as in the previous paragraph, then:

(@) for A < )\p, X,(N) > exp(Q) implies that no \, exists so that {xl s x,_,} isa
A\y-dominant pair;

(b) for A < Aps X; Q) < exp (R) implies that a \, exists so that x5 X,} isa
A\g-dominant pair.

Proof. >\p is the minimal element of the nucleus NV of both X, and Xp- Thus,
either x, (A) > exp(2) for every X € (—oo, 7\p) or x,(N) <exp(A) for every A in this
open interval.

(@ x,(N) > exp(}) for every A€ (=, N,). Let us denote ')\{1 \n) =
X1\, s(¥N)). Hence x,(\) = xl()\/2) N,, = N and thus either x, (A) > exp(A) for
every A € (—o°, A_) or x,(A) < exp(A).

But x,(N) = xf()\/Z) > 0 and X, is rational. Thus, it is impossible that 0 <
X,(A) <exp(R) for every X € (— oo, A). Hence
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e < min{x; (M), x,(M}

for A < kp and no A, < O exists so that {xl R Xz} is Ay-dominant.

(®) x, (N <exp(}) for every A € (=<, A ). Two cases are possible:

Either x, () > exp(}) for every A<A, (and then x, (M) < exp(N) < xz()\) for
)\ )\ implying that {x, x2} is A -dommant), or there exists a § < )\ so that xl()\)

— exp()\) for every A < % £. (‘/ﬁ)\ is the smallest element of N~ . The case x;(N)

> exp()\) for A <4\, has been previously discussed. Thus X1(>‘) < exp() for %2 A,.
If no E exists, then there are arbitrarily small points A for which Ix NI < exp(N).
But xl is rational and does not vanish identically, because xl()\ /2) = exp()\ 12)
which contradicts the le(7\)| < exp(A) for arbitrarily small points \.) x1(7\) <
—exp() for A € (—oe, % £] implies that x, () = xf(x/z) > exp(}) for every X €
(—o°, £]. Therefore, x, (A) < exp(A) < x,(A) for A< £ and {x;, x, } is a £-domi-
nant pair. Q.E.D.

Conclusion. In the case x,(N) = R, ,,(N), x,(D) = R2 nm(N2), R, A-accept-
able and in the case X, (A) = R (A, 1(A)), X,(N) = R( 1) ) (N2, u(No/2))?, R,
A-acceptable, a A* exists so that {)(1 > X, } is A*-dominant 1f and only if m is odd.

The following lemma indicates that if N = {0} and the pair of “extrapolants”
is Ay-dominant, it cannot be dominant.

Lemma 14. IfN = {0} and x,(N) = xf()\/Z), then the pair {X,, X,} is not
dominant.

Proof. Let us assume that the order of exponential approximation of x, is n.
Obviously, this is also the order of approximation of ¥, . If x is defined as x = ax, +
a- @)X, , then x is fitted to A, if and only if

a=a(Xg) = ("0 = X, (A, (Ag) = X, (o).
But

U 1
XN =3 N+

———a\*tL L o\"tD),  1=1,2,
Skt @ "

and ¢, # 1. Thus, applying repetitiously the I’Hopital rule, we immediately calculate
that

1 —a,
a(0) = 11m a(>\) =
a4, "4
Simple calculation verifies that if
n
LIV 1 n+1 n+2
X, (N = ;0 2 A ( T a\ + O(\" 1?),

then
n

2 k
X, (M2) = kZO L ooy + Y

and x,(N) = x2(A/2) implies @, = (@, — 1)/2" + 1 and

al()\/2)n+l + 0()\}1 +2)
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1—a, (@, - 12"
0) = = .
O e, T 1e - D
But a;, # 1, thus &(0) = —1/(2" —1) <O0. If we assume that {X,, x,} is a dominant
pair, then according to Lemma 2, a(\) € [0, 1] for every A < 0, which evidently

contradicts the negativity of a(0). Therefore, {xl » X, } cannot be a dominant pair.
Q.E.D.

TABLE 1
Ao for Ny-dominancy of “extrapolated” pairs of the first
N-dominant Padé approximants R,

(n, m) Ao

an —4.7988
2,1 —6.9803
3,1 —9.1318
3,3) —10.0729
4, 3) —12.0756
5,3) —14.2483
G, 5) —12.2739

TABLE 2

\, for \,-dominancy of “extrapolated” pairs of exponentially
fitted Padé approximation R(ll} , fitted at A,

No 1(No) u(%Ng) A
-5 .090498 043431 —49713
-1.0 .196106 .090498 -5.1557
2.0 455697 .196106 -5.5612
3.0 779754 317698 —6.0169
4.0 1.161296 455679 " —6.5237
-5.0 1.587773 609920 —7.0820
~10.0 4.002271 1.587773 —-10.6213

Lemmata 13 and 14 apparently show that the approach of “extrapolated” pairs
is inferjor to the approach considered in the previous sections from the stability angle.
Nevertheless, this approach is considerably simpler for programming. Moreover, if one
applies the error-control technique of halving the step when the estimated error is
large, then the approach of “extrapolated” pairs is more natural.
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6. The Asymptotic Effect of the Averaging. The numerical distinction between
stiff and nonstiff systems of O.D.E.’s at various stages of computation is extremely
expensive and not at all practical. Hence, we are interested in good performance of
the averaging (1.2) for both stiff and nonstiff systems. The following lemma shows
that the averaging has a plausible effect also for nonstiff systems:

LeEmMmA 15. If X, and X, are exponential approximations of orders n, and n,,
respectively, and

X®) = a()x, @ + (1 = a)x, (1), ) = (60 - VOG0 - x, (V).

then when \ tends to zero:
(@) n, =n, implies that the order of x is ny + 1.
(b) n, # n, implies that the order of X is max {n,, n,}.
Proof. Obviously

n

k +1
X (W) = 3w/t + aun™ " (ny + D!+ O
I1=0

"k k=12

Thus:
(a) If n, = n, then, by the same reasoning as in Lemma 14,

a(0) = (2, — Dl(a, — a,).

(b) If ny < n,, then X, — exp(u) has at the origin a zero of a greater order
than x, — X, , implying that a(0) = 0.

(c) If ny > n,, then both the numerator x, — e* and the denominator x, —
X, tend at the origin to x,(0) = 1, thus (0) = 1.

Therefore, if n, # n, and X tends to zero, then the order of x is max {n,, ny}
=n, and x = Xy On the other hand, if n, = n,, then when X\ approaches zero,

" a, —1 a, — 1
_ Ly 1 2 ) ny+1
X(W) =73 “/I'+(nl+1)! “o, —a, T2\ e, = )| H

=0
n,+1
oy = X uli+ o™y,
=0

and the order is increased. Q.E.D.

Lemma 15 hints about an asymptotic connection between the averaging (1.2) and
the conventional polynomial extrapolation. The paper [4] gives more specific results
on this subject, concerning the scheme

n-1 n—1
6.1) X(W) = 3 oW + < -2 ak> Xn (1),
k=1 k=1

when x, (1) = ((k + p/2)/(k - u/2))F is the characteristic function of the trapezoidal
rule which is applied with k substeps. It is shown in [4] that the scheme (6.1) can be
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exponentially fitted to A;, 1 <k <N — 1. The following result is proved in [4] and
is given here without proof:
LemMa 16. If F(A,, N,, . . ., \y_,) is the space of all the n-tuples (o, ay,
coosay), ay =1+ EN= Loy, which fits the scheme (6.1) to A, 1 <k <N — 1,and
Fo= Aiﬂo;lirgKN—lO\l’ Ao s Ay, ifa® =@, a0, ..., aP)
are the coefficients of the Ith order odd-power Romberg extrapolation [5] of the
trapezoidal rule, then,

Fy=Sp{aV,a® . -1y

7. Conclusions and Suggestions for Further Research. Translating the results of
this paper from the nomenclature of the dominating pairs into the language of A-sta-
bility, we can conclude that:

(a) The scheme (1.2) for X, = R"l’ml’ X, = Rn2,m2 orx, = RStll),ml’ X, =

RS,IZ), m,, can be exponentially fitted with preservation of A-acceptability if m, + m,
isodd. If x, = R"l’"l’ X, =Rn2,n2 (and, thus lR"l’"l(it)l = |Rn2,n2(it)| =1 for
every ¢ € (—oo, «0)), then x is A-acceptable if and only if n, + n, is odd.

(b) The scheme (1.2) for x, and X, which are “extrapolants” cannot be A4-accept-
ably fitted to every A < 0. In certain cases a A, < O exists so that it can be A-accept-
ably fitted to every A < A,.

(c) Even if the differential system is nonstiff, we benefit from the averaging,
which behaves asymptotically as extrapolation.

This paper does not exhaust, by any means, the subject of A-stability in its con-
nection to the averaged schemes of type (1.2). There are several “natural” suggestions
for further research:

(1) Domination tests for other pairs of exponential approximations. The first
candidate for such tests is the doubly-fitted approximation considered by Ehle and
Picel [3] and by Ngrsett [6]: -

(1 —Hy “2)Pn,n + “IPn,n—l + “2Pn,n—2
a-u - 42)Q, , t #@pp_y t M2 n—2

R(I12) =

which is A-acceptable when fitted to two arbitrary negative arguments.

(2) Consideration of averages of more than two exponential approximations and
their A-acceptability. This subject seems to be extremely complicated and even in the
simple case considered in [4] no remarkable results have been achieved.

(3) Closer observation of the asymptotic behavior of the averaging, when the
fitting argument tends to zero. It is interesting whether the behavior of the trapezoidal
rule, as exhibited in Lemma 16, is characteristic to this scheme or represents more
general phenomena.
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