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Global Approximations to Solutions
of Initial Value Problems*

By Luis Kramarz

Abstract. A wide class of implicit one-step methods for the construction of global
approximations to solutions of initial value problems is studied. Approximations
more general than piecewise polynomials can be constructed to exploit certain char-
acteristics of the differential equation. Error bounds are given for the general class
of methods but emphasis is placed on methods based on Hermite interpolation, for
which higher rates of convergence are obtained for special choices of interpolation
points. Computational examples are presented.

1. Introduction. In recent years there has been an interest in the construction
of piecewise polynomial approximations to the solutions of ordinary differential equa-
tions, with the benefit of derivative approximations. We present here a wide class of
implicit one-step methods for the construction of more general global approximations
to the solution of a single initial value problem of order s. The methods are based on
families of linear operators, not necessarily projections, which satisfy certain conditions;
they include as special cases the collocation schemes of Hulme [10], [11], Russell and
Shampine [19], de Boor and Swartz [7], and several of the more general projection
methods of Wittenbrink [28], as applied to initial value problems. Several schemes
such as the Newton-Cotes block methods of Watts and Shampine [26] , some of whose
global aspects were investigated by Williams and de Hoog [27], are equivalent to collo-
cation; we point out here that so are the methods of Callender [5] and of Micula
[17]. Other methods also included are the natural spline block methods of Andria,
Byrne and Hill [2].

Our main theory on existence, convergence and error bounds for the approxi-
mate solutions is based mostly on the collectively compact operator theory of Ansel-
one and Moore [3]. We present several families of operators which can be used to
produce specific methods, and emphasize the methods based on Hermite interpolation,
for which we obtain higher rates of convergence along the lines of de Boor and
Swartz [7]. Numerical examples are given.

Many of the main results we obtained will carry over to systems of initial value
problems and boundary value problems since they can be set up as integral equations
having essentially the same properties as the integral equations considered here.
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36 LUIS KRAMARZ

2. The Problem and Its Approximation. Consider the initial value problem
@.1) YO = f(x, y(x), . . . M), 0<x<b m<s-1,
(2.2) yD0) =g, 0<i<s-1,

where f is a real-valued function continuous in D = [0, b] x R™*! with R = (-0,
o), We will assume that (2.1), (2.2) has a unique solution y € C°[0, b], which is the
case if, for example, f satisfies a uniform Lipschitz condition in D.

Let a;, 0 < k < m, be arbitrary constants and define the operator L: C*[0, b]
— CJ[0, b] by

Lu)(x) = u®(x) - ;V’_': aku(k)(x).
k=0

Equation (2.1) is equivalent to (Ly)(x) = w(x)H(x; y), where w and H are any two
functions satisfying

m
we)HGe: y) = o 9) = 3. ay®X),
k=0
and we use the notation g(x; y) = g(x, y(x), . . . , y™(x)). Let G(x, £) = v(x - ?),
0 <7 <x <b, where v is the solution of Lv = 0, v¥(0) = 0, 0 <i <s-2,v"1)(0)
= 1. Then the solution y of (2.1), (2.2) satisfies

23) y(x) =F(x) + f: G(x, yw(H(t; y)dt, 0<x <0,

where F(x) = Z} _ 0,0, (x) is the solution of Lu = 0 subject to (2.2). G and the
¢, can be easily constructed since L has constant coefficients.

Equation (2.3) is set in the Banach space C*~! [0, b], where C"[0, b] denotes
the space of all r-times continuously differentiable functions in [0, ], with norm

r
llgll, = su D(x)|.
el 0<x2b i;ohg )

The approximate methods will consist of replacing (2.3) by a perturbed equa-
tion, also set in C~1 [0, b], which in turn is equivalent to an algebraic system of
equations. Let {A,} be a sequence of partitions of [0, b]

(24) A, 0=x,,<x,, < <x,,=b

For convenience, we will write X, ;38 X;.

Let 14,1 = maxij —> 0 as n — oo, where ij =X; = X;_y-
is quasi-uniform if max|A, I/Ax]- < A for some constant A4.

Define C}; [0, b] as the set of all real-valued functions g on [0, b] such that
gEC(x;_y, x;), 1 <j<n,and such that g(i)(xjtl) and g(i)(x;) exist for 0 <i<r,
1 <j<n Also define for g € Czn[O, b]

We say that {A,}
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r

ligll,,,, = max sup 3 D)l

1<j<n Xj—1 <x<x]- i=0

The approximate solution y,, to the solution y of (2.3) is defined by

@25 3,0 =F,e) + [ 6x, ow(OP,(HC; X0 dt,  0<x <b,

where F, (x) = Z} _ o} ¢, (x), and of is an approximation to ;. The operators {P,}
are a family of linear operators satisfying

(2.6a) P,:C7[0,b] — an [0, b] for some nonnegative integer q independent of n;

(2.6b) I1Pglly , < Cligll, for all g € C7[0, b], where C is independent of n;
(2.6¢) WP,g — glly,, — 0 asn —> oo for each g € CY[0, b].

Even though the analysis will be carried out for Egs. (2.3) and (2.5), in practice
the solution y,, of (2.5) can be found in a step-by-step process since forj =1, 2,
-5 N,

Q7) y,(x)=F, ) + f:]__lG(x, OWOP,(HC; v )Odt, X,y <x <x;,

where F, (x) = Z}_ o 0, (x) is the solution of Lu = 0, u(i)(xi_l) = yf,i)(xi_l),
0<i<s-—1.
In operator notation we write (2.3) and (2.5) as

28) (-Ky=F,

(2.9) a-K,y,=F,,

where

(2.10) &u)x) = [ Glx, oweXTu)@)at,
@1y K, u)x) = [ Glx, Dw(P, Tu)p)at,

with (Tu)(x) = H(x; u).
We will assume that w € C[0, b] and that H € C*(N), where

]

N={(x 2q 2y, 2,):0<x <b, Iz, —y®x)| <&
k<m,§ >0}

(2.12)
0<

is a neighborhood of the exact solution y.

3. Preliminaries. In order to use a variation of a Kantorovich theorem which
appears in [3], we will need the following results.

LEMMA 3.1. Let K be the operator of (2.10) and suppose w € C[0, b] and
H € C*(N). Then K: C51[0, b] — C*"1[0, b] has first and second Fréchet deriva-
tives at y given by
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G.1) K 0 = f G, OWET' @YD) dt,
(32) K"0Wo)x) = [ 3 GG, IWOT" G wu)o)dt,
where

@ o = 3 BED 40y ana

i=0 Zi
(")) = 3 }"'*_’ %vmwwm.
i=0 k=0 i

Proof. The expressions for T'(y) and T"(y) are well known for T: C~1[0, b]
— C[0, b]. The expressions for K'(y) and K"(») follow from their definition.

LEMMA 3.2. Let K,, be defined by (2.11), where w € C[0, b], P, satisfies
(2.6a)—(2.6¢), and H € C"“(N) Then K,,: C*7'[0, b] — C*"1(0, b] has first and
second Fréchet derivatives at y given by

(33) K0 = [ G, WP, T ou)r) dt,
(34) Kp0W0)x) = [ 1Glx, OWieN, T" o)),

with T'(y), T"(») as in Lemma 3.1.

Proof. One can show [15] that T'(y) and T"(y) are unchanged when T is con-
sidered as an operator from C*7! [0, b] into C9[0, b]. The results follow from (2.6b)
and the definition of the derivatives.

The following lemmas are required to show that ||((K'(y) — K_ wOK, )l
0 as n — oo, which is a basic requirement in the next section. To simplify the no-
tation, we let ¢, (x) = 0H(x; y)/dz,, 0 < k <m, and we will use C as a generic con-
stant throughout. The next result is found in [8, pp. 344—345].

LEMMA 3.3. A4 subset A of C*~'[0, b] has compact closure if and only if A is
bounded and for every € > 0 there exists § > 0 such that for all u, v € [0, b] with
vl <8 and all g € A, it is true that [g~D(u) - g5 D) < .

LEMMA 34. If w, ¢, € C[0, b] then the operator K'() of (3.1) is a compact
linear operator from C5~'[0, b] into C°~1[0, b].

Proof. Let B ={z € C51|0, b]: llzlly_, <1}. If g € K'(»)B then for some
zZEB,

s—1 m
lglly_, = IK'Q)ell;_, < op ; Z_: f ’a G(x 96, 1) w(t)ck(t)' dt,

so K'(y)B is bounded. Now let € >0, u, v € [0, b]. Then with an application of
the Mean Value Theorem, there is some & between u and v such that
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g7 ~ gD = IK'0))C V@) - K'0)2) D)
| M @ — OWOT' ) de - [ w wt)(T'()2)() dt

< Clu —vl,

where C is independent of u, v and g. The hypotheses of Lemma 3.3 are immediate;
and therefore, K'(y) is compact.

LEMMA 3.5. Let {P,} be a sequence of linear operators satisfying (2.6a)—(2.6c),
and let w € C[0, b],H € CI*1(N), with 0 < q <s—m — 1. Then the sequence of
operators {K,(y)} given in (3.3) satisfies

(i) K,0): c7'[0,5] — 1[0, b];

(i) 1K, (0)g — K'0glly_, — 0asn —> o for any g € C*71|0, b];
(i) {K,(»)}is collectively compact, i.e., B* = K, (v)B, where B is the
unit ball in CS~1 [0, b], has compact closure.

Proof. Property (i) is clear. Let g € B*. Then g = K, (»)z for some n and
some z € B. Hence

I, = UK, 0l = sup Z [T D e, T 00

<IPT'0)elo,, sup 2 f
=0

Y00 ldt T, <

where C is independent of n and g. The last two inequalities follow from (2.6b), 0 <
g<s-m-1landlzll,_, <1. Nowlete>0,u,ve [0, b]. Then, much as in the
proof of Lemma 3.4,

70w - gD < Clu ~ vl 1P, T'Gxelly , < Cle = Wl IT' Ozl < Che = vl

where C is independent of u, v and g. By Lemma 3.3, B* has compact closure. To
complete the proof, let # € C5~1[0, b]. Then

IK, 0k = K'G)hll_, < CIP,T'(v)h — T'Whllg

where C is independent of n. Since T'(y)h € C9[0, b], (ii) follows from (2.6¢).

The next theorem is a collection of several results of Anselone [3, Theorem 1.6,
Corollary 1.9], on which we will base the main results of this section.

THEOREM 3.1. Let X be a Banach space and K: X — X be a compact linear
operator such that (I — K)™! exists. Let {K,,} be a sequence of linear operators satis-
Jying

O K,: X —X,

(i) 1IK,g — Kgll — 0 as n — o for each gEX;
(iii) {K,}is collectively compact.
Then
1) K, = K)K, Il — 0 and (K, — K)KI| — 0 as n —> oo,
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2) there exists N > 0 such that for all n > N, the operators (I — K,,)_l exist
and are uniformly bounded.

LEMMA 3.6. Assume all the hypotheses of Lemma 34. Then (I — K'(y))™!
exists and is a bounded operator from C5~1[0; b] onto CS~1|0, b].

Proof. Since K'(y) is compact, by the Fredholm alternative (/ — K'(y))~! exists
if and only if (I — K'(?))C°"1[0, b] = C*~1[0, ], in which case ( — K'())"" is
bounded. Let v € CS1[0, b]. We will show (I — K'(y))u = v has a solution. Let z
be the solution of the initial value problem Lz = wT'(y)z + wT'(y)v, zD0)=0,0<
i <s-—1. Then z satisfies z = K'(y)z + K'(y)v and u = z + v satisfies (I — K'(y))u
=v.

4. Existence and Convergence of the Approximate Solutions.
THEOREM 4.1 [3, Theorem 6.5]. Let S be an operator on a Banach space X,
z € X and Rx = (I — S)x — z, where I is the identity operator. Let M and (I — M)}
be bounded linear operators on X, and x, € X. Suppose S'(xo) is compact and
I =M <B, IIRx Il <d, II(M-S@xy)Rx,ll <d,

I = S'GxeNS I < d) < ‘13 IIS°(@) = SO < vllu — vl
on B(xy, r) = {u: llu — x4l <r},

M — S'(x))S' @) — S <d,llu —vll on Bx,, r),
. B2(d + dg) (y +dy)

(l _Bdl)z

d +d,w*
<l Mdrdwm
2 1-pd,

where w*(h) = (1 — (1 — 2h)'/?)/h for 0 < h < 1/2, and w*(0) = 1.

Then there exists a unique x* € B(x, r,) such that Rx* = 0. The Newton
iterates x; are defined in B(x, r,) and converge to x*.

The hext theorem is the most important of this section and is a consequence of
Theorem 4.1.

THEOREM 4.2. Consider Egs. (2.8) and (2.9) and let {P,} satisfy (2.6a)—(2.6c¢).
Also let w € C[0, b] and H € C3+%(N), where q is an integer such that 0 < q <s
—m — 1. Suppose (2.1), (2.2) has a unique solution y. Finally, let

max {la} —a,l}—0 asn— oo
1<k<s

Then there is some N > O such that for all n > N there exists r, such that Eq.
(2.9) has a unique solution y,, € By, r,) ={z € C*'[0,b]: llz = yll,_, <r,}. The
Newton iterates Vn,i are defined in B(y, r,,) for n > N and converge to y,. In addi-
tion there is a constant C independent of n such that

v =yplls—y <AF-F, + Ky -Kyl,_,

<C él(o‘ﬁ ~ 0 )0 + P, H( ;) — H(: ;J’)llo,n]-

s—1
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Proof. By Lemma 3.6 (I — K'(y))"! exists and is a bounded linear operator on
Cs710,b]. Let I — K'()) Il <B. Also, by Lemmas 3.4 and 3.5, K'(¥) and
{K,,(»)} satisfy the hypothesis of Theorem 3.1, hence [(K'(y) — K, 0K, 0)l;—; —
Oasn—> . Let R, u=(—K,)u—F,. Then there is a constant C independent of

n such that
lany"s_l = "F_Fn + Ky _Kny”s_l

<C[

and (K'() - K,,0)R,ll,_; <CIR,yll,_,. The last inequality is a consequence of
the pointwise convergence of K,,(») to K'(¥) and the Banach-Steinhaus theorem. For
u, v € B(y, 8) let w, = v + t(u — v); & is as in (2.12). Then by the Mean Value
Theorem we have

K., () = Ky@)l,—y <l —vll,_, sup KW,
0<1<1

s
Z (O{I'c - ak)‘Pk
k=1

s—1

+ 1P, H(-; y) - H(-;y)no,,,] :

But if lluyll,_, < 1, oy ll,_, < 1, then KW )uyvylly—y < CUB, T "W utyv,lly <
CIT"(wpu,v,ll, < C, where C is independent of ¢, u,, v,, and n, since w, € B(y, 8)
and the partial derivatives of H are uniformly bounded in the region N. Thus,
IK;, ) — K,;ll,_, < C,llu—vll,_, for all u, v € B(y, ), with C, independent of n.
We also have that I(K'() — K, ()X, (u) — K, 0)ll,_; < C,llu —vll,_, forallu, veE
B(y, 8), with C, independent of n. Now choose N large enough that for n > N

d, = IK'G) - KyONKL 0,y < EIE ,

= P UK = K ODRY sy + IRyl 1€y + Cy)
i (1 - pd,)?

<%,

and
_BIIK'G) — K,ONRYlly—y + IRl 1w*(h,) _ 5
"= (1 -Bd,) <9

By Theorem 4.1 we conclude that for n > N, the equation (I — K,)y,-F,=0
has a unique solution y,, € B(y, r,) and the Newton iterates converge to ¥,. The
error bounds are derived from |y — Yullg—y <r, <CIR,Yll;_,, where C is indepen-
dent of n.

COROLLARY 4.1. Assume all the hypotheses of Theorem 4.2 and let o} in (2.5)
be chosen so that F, is the solution of Lu = 0, u®(0) = &, 0<i<s-—1, where

@.1) € = max {pOO)-g'}—0 asn—
0<i<s—1

Then there is a constant C independent of n such that
I = yulls—y < e, +IP,HC;y) = HC; )Ny ,)-
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In particular, if w = 1, then

v = yulls_y < Cle, +IIP,Ly = Lyll, ).

Proof. By construction, F — F, is the solution of Lu = 0, ud(0) = y(0) -
g, 0<i<s—1. Hence max,{lo, — of|} < Ce,, where C is independent of n. The
results now follow from the theorem and since Ly = H(-;y) if w = 1.

COROLLARY 4.2. Assume all the hypotheses of Corollary 4.1. Then
W, —Yllg—y —>0asn—> .

Proof. The result is obvious from Corollary 4.1 and (2.6¢).

If Eq. (2.1) is linear, we can simplify the theory and weaken some of the hypoth-
eses leading to Corollary 4.1 [15].

5. Construction of Sequences of Operators P,. Before we can discuss the trans-
formation of Eq. (2.7) into an equivalent system of algebraic equations, we will intro-
duce families of operators P, which will give rise to specific methods. It is possible to
construct operators P, satisfying (2.6a)—(2.6c) starting with an operator Q defined on
C?[0, 1]. Define the norm ||-|| by

IGIl = sup IG(5)i
0<t<1

and let w(G, h) = sup{IG(u) — G()|: lu — v| < h} be the modulus of continuity of a
function G defined on [0, 1].

LeEMMA 5.1. Suppose Q is an operator defined on C9[0, 1] satisfying

() (QO)®) = ZL M\ (Gp,(t), 0 <t <1,s, a positive integer, where {p,.}':,l isa
basis for a subspace X, of C[0, 1], and {Ri}f,l is a set of real bounded linear function-
als defined on C?[0, 1], independent over X ;

(ii) there are constants C, o such that for all G € C9[0, 1],

QG = Gll < Cw(GD, w).
Ifg € CI[0, b], let

X —X

(5.1) (P,0)x) = (QGf)< Ax;_

1

), Xy <x<xl-,l<]'<n,

with G(t) = glx;_, + tAx;), and let (P,g)(x;), 0 <j < n, be the average of the left-
and right-hand limits. Then {P,} satisfies (2.6a)—(2.6c).

Proof. The conclusion follows in a straightforward manner from the definition
of P,,. For example,

sup  I(P,g— ™) = sup I(QG; — GO < Cw(G(D, @)
0<t<1

xj_1<x<x;j
< C(Mx) (g @, abx)) < CwE@, ala, ),

where C is independent of n. Hence (2.6¢c) is a result of the continuity of g’ and
since [A,| —> 0 as n —> oo,
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Example 5.1. Hermite Interpolation. Consider a partition D, of [0, 1] given by

(5.2) Dy:0<y, <7, < - -<7,<1, p>2

Let r; be a nonnegative integer, 1 <i< p, and let ¢ = max r;. For G € C9[0, 1] de-
fine Q, G to be the polynomial of degree < p — 1 such that

Q,0P() =GOy, 1<k<p,0<i<r,
1 k k k

where p = p + 2P_,r;. We can write

Tk
©Q,60)( = f > GO, 0<t<1,
k=1i=0

where [, ; is a polynomial of degree <p -1and lfc‘,’,l('yu) =8,;0,us 1 <Su<p,0<
v <r,. Here §;, is the Kronecker delta. An explicit expression for /; ; is found in
[22]. If we let

(5.3) Y =%yt  1<i<p, 1<j<n

’

then

6 0= Y @O, <"——’f’—‘—’-> X, <x<x,
g k=1i=0 ! TR\ Ax; | - d

We have been unable to find in the literature error bounds of the form (ii) of
Lemma 5.1 for general Hermite interpolation. Most bounds given assume that G €
cP [0, 1]; Birkhoff, Schultz and Varga [4] give error bounds for the case p = 2, but
they require G to be absolutely continuous. We will derive our error bounds based
on the following results of Jackson [14, pp. 15-17].

THEOREM 5.1. If G € C[0, 1], then for each N = 1,2,3, ..., there exists a
polynomial p, of degree < N such that |G — pyll < Cw(G, 1/N), where C is inde-
pendent of N and G. If G € C°[0, 1] for some v > 1, then for each N > v — 1 there
exists a polynomial py; of degree <N such that |G — pyll < CIGM|/NY, where C is
independent of N and G.

LemmA 5.2. If G € C9[0, 1], then

(Q,6 - OPNI < CAGD, 1/ —q - 1), 0<i<gq,

where C is independent of G. If G € C@*¥)[0, 1] for some u such that 1 <u <p
—q— 1, then

2,6 -6V <aice+wy, o0<i<q,
where C is independent of G.

Proof. Suppose q > 1 and that r,, = q. Define an operator Qo on C[O, 1] as
follows: if z € C[0, 11, let (Qyz)(t) = (Q,S(z; £))@)(t), where

SG; 1) =f7’k (’(q—__“%' du)dy, 0<t<I.
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One verifies from this definition that for any G € C9]0, 1],
(5.5) Q(G?) = (0,6)D,

and also that Q,v = v for any polynomial v of degree < P —q — 1. Hence,
©Q,G - D) = v(t) - GD(r) - Q,Sw - G@; 1))@ However, there is a con-
stant C independent of G and v such that [(Q,S@v — G'?; )N@D|| < Cllv - G@|.
Therefore, (Q,G — G)D|| < Cllv — G| for any polynomial v of degree <p —q —
1. This inequality and Theorem 5.1 imply the conclusion of the lemma for i = q.
For 0 <i < gq — 1, the conclusions follow from

0,6 -0 = [ 0,6 - ) Dwau

Finally, if ¢ = 0, we have [IQ,G — G|l = v — G + @, (v — G)Il < Cllv — G|l for any
polynomial of degree <p — 1, where C is independent of G and v. The rest of the
proof is again an application of Theorem 5.1.

It will be useful to have error bounds as in Lemma 5.2 but for derivatives high-
er than q. .

LEmMMA 53. If GE CP [0, 1], then

~

IQ,G -V <aG®), o<i<p -1,

where C is independent of G.

Proof. By Rolle’s theorem, (QlG)(i) is a Hermite interpolant of degree p-i-
10of G in [0,1],0<i<p - 1. Since GP € CP [0, 1], then by the standard
error bound for Hermite interpolation [12, p. 256] we have the result of the lemma.

LEMMA 54. Let {P,} be the sequence of operators obtained from Q,. Then
there is a constant C independent of n such that

(i) forall g € C7[0, b],

sup (P8 — ©)x) < A(Ax))T(gD, Ax;/(p — q - 1));
Xj_q <x <x]-

(ii) forallg€ CI*t™[0,b], where 1l <u<p -q-1,

sup  I(Pg -9V <Cax)Tt T sup  UOtx), 0<i<g;
xl-_l<x<xi xi_1<x<xl-

(iii) forall g € c? [0, b],

sup I - P <CaxP~  sup gP)), 0<i<p -1.
xi_1<x<xi xi_l<x<xi

Proof. The proof follows from definition (5.1) and Lemmas 5.2 and 5.3. The
above error bounds will be combined with Corollary 4.1 to obtain bounds for y —y,,.

Example 5.2. Natural Spline Interpolation. Let {v,; }§ be a uniform partition of
[0, 1], where v; = i/[p, 0 <i<p, p = 1. If lis an integer such that 1 <I/<p + 1,
let S,,_, be the set of natural splines of degree 2/ — 1 having the knots vy;,i.e.,v €
S, ifve C?7210, 1], if v is a polynomial of degree < 2/ — 1 in each subinterval
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(V> Vi 1)» and for 1> 1,if v®)(y) = 0,1 <k <2 -2,i =0, p. Define Q,:
cl0o,1] —S,,_, by

Q00 =3 GoT®), o0<:<l,
i=0

where T; €S,, | and T(y)) = 8;;. As described in [20], Q,G is well defined; it is
also a g-spline type II interpolate of G studied in [21], but the error bounds given
there are not in the form we require.

LEMMA 5.5. Suppose 1 <I<p +1. Thenif GEC|0, 1],

12,G - Gll < Cu(G, 1/( - 1)),

where C is independent of G. If also G € C*[0, 1] for some u such that 1 <u <1
— 1, then [1Q,G - G|l < CIIG™)||, where C is independent of G. Moreover, ifGe
C'(0, 11, then

1,6 - OPI <GP, o<i<i-1.

Proof. 1t is clear that Q,v = v for every polynomial v of degree <I/-— 1. Hence,
1Q,G — Gll = 11Q,(G — v) — (G —v)Il <CIG —vl!, for some C independent of G. The
first two inequalities of the lemma follow from Theorem 5.1. We obtain the final
inequality adapting some ideas of [1]. Let x € [0, 1];then in / — 1 consecutive sub-
intervals containing x there is some £, such that (Q,G - G)P(¢\) =0,0<i<iI-1,
by Rolle’s theorem. Hence,

2,6 - O V)| =

J s @:6 - 600 ar | < [f 12,6 - O] ‘dr] %,

and in general,
[[(2) G -6V < fl ) 2 Y .
2 N < |J,(Q,G-6D®]2ar|”, o<i<i-1.
But by the first integral relation for g-splines (see for example [21, Theorem 16]),

10,6 - &Pl < [fol[G"’(t)] ? dt]y’ <I6®I, o0<i<i-1.

It is straightforward to construct error bounds such as those of Lemma 5.4 for
the operators P, derived from Q,.

Example 5.3. Local Spline Approximating Operators. As an example where
the operator Q is not necessarily a projection, we will use a subclass of the explicit
spline operators of Lyche and Schumaker [16, Example 3.4]. Let D;:0=19,<7,
< +<'y, =1 be a partition of [0, 1], and & be an integer, k > 1. Let S be the
set of smooth polynomial splines of degree k — 1 with simple knots at ;. Extend
Dy to a nondecreasing sequence {v,2* ¥~ with v, <1,,,. Fix an integer /, 1 <1
<k,and foreachi=1-%,...,p—1,1let {z‘iu}f‘=l be distinct numbers in [0, 1]
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N [7; ¥+ x]- The operator Q5: C[0, 1] — S, is defined by

- 1
(Q3G)(t) = le Z aiuG[til" tt m]N k(t) 0<t< 1,

i=1-k u=1

where Glagy, 4y, . . ., a,] denotes the rth order divided difference of G. Here N, k(x)

=(7,+k-7,)Gk( ,x)[*r,,-..,‘mk],l k<i<p-1,with G (t;x) = (t - )’i !
=1 and

2, :Z: <(—1) symy(t1s - -+ s Ly 8YMy 1 (Yig 1o - o> Vigne ‘)/<u - v>>

2<u<]
where sym,(x,, . . ., x,) is defined implicitly by

r r+1
[Me+x)=3 sym_,  (x, ... ,x, v
i=1 v=1

The error bounds that we need are readily obtained from [16, Theorem 5.3].

LEMMA 5.6. Suppose 1 <1< k. If G € C[0, 1], then there are constants C, a
independent of G such that 1|Q,G — G|l < Cw(G, @). If G € C*[0, 1] for some u
such that 1 <u <1, then |(Q;G - )V < AIGM|,0<i<k-1.

Bounds such as those of Lemma 5.4 can be easily obtained for the operators P,
derived from Q.

Example 54. Moments. Let Q, be an operator defined on C[0, 1] given by
(Q,60)®) = Z;L M\ (G)p(£), 0 <t <1, where

1,
NG) = fo £G(dt, 0<i<s,,
and p; is a polynomial of degree <s, with A(p)) = §;;. Since Q,v = v for all poly-

nomials v of degree <s,, we can use Theorem 5.1 as before to obtain results such as
those of Lemmas 5.2, 5.3 and 5.4.

6. Numerical Solution of the Approximate Problem. The Newton iterates for
the solution of Eq. (2.9) are of the form

(6'1) yn,r+1(x) = Fn(x) + f:G(x! t)w(t)Pn(Hn,r(‘;yn,r+1))(t)dt’ O < X < b’

where H, (x;¥, ,+1) =Ty, ~T'0p V0, ~Vp 41 V&), 7=0,1,2,... . For
each fixed r, the solution of (6.1) can be found step-by-step, solving at each step

Vnre1¥) = Fy (x) + fii_lG(x, t)w(t)Pn(Hn,r(';yn,H1))(t)dt’

(6.2)
X

where Fy, ; is the solution of Lu = 0, u(’)(xj D= yn ,H(x D), 0<i<s-1.
In practlce however, we iterate with Eq. (6.2) until we obtaln y, to a desired
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accuracy in each subinterval before proceeding to the next. An extrapolation of y,
to the next subinterval can be taken as initial estimate Vn,o0-
If P, is defined by (5.1), then Eq. (6.2) implies that Vn r+1 has the form

(6.3) Vo, rp 1) = Fp (x) + Z b,]d,](x) xi_y <x<xj,

where

X x
(64) d,.,.(x)=ij G(x, r)w(z)p,< Ax] ) dt, 0<i<s,,1<j<n.

Notice that Fy, ; is known explicitly in [x;—;, x;] and that d;;(x) can also be found
explicitly if w =1 and p; is a piecewise polynomlal which is usually the case. Operat-
ing with L on both sides of (6.2) and (6.3), subtracting the resulting equations and
assuming that w has at most a countable number of zeros in [0, b] we find that the
b’ satisfy the linear system

(6.5) by = NH, (x_y + OBy, 001, 0<i<s,.

Conversely, each solution of (6.5) determines a solution of (6.2) through (6.3).
One can write (6.5) in the form

(6.6) wa = 0<i<s,,

where z;, = O(IA,[F~™), since 3*G(x, £)/dx* has a zero of multiplicity s — 1 — k at
x = t; hence (6.6) has a unique solution for » sufficiently large which could be ob-
tained by iteration.
If the functionals \; are derivative evaluations at points in [0, 1] (up to the s —
— 1th derivative), there is an alternate approach to the solution of (6.3). From
(6.3) and (6.5) we have

51
yn'r+1(x) = F;’](x) + Z )\i(Hn’r(xj—l + (')ij;yn’r+1))dij(x)’
i=0
6.7)

0<z‘<s1.

If the value yn »+1(Yx;) appears on the right-hand side of (6.7), one differentiates
both sides of (6.7) v times and evaluates at Viej> obtaining a system of linear equations
for these values; the size of this system is no bigger than that of (6.5) if P, is as in
Example 5.1 and m = 0.

Without referring to Newton’s method we see from (2.7) that y, is of the form

(6.8) Yu%) = F, [x) + Zb,, S0, Xy <x<x;.
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Then an argument like that leading to (6.5) gives the nonlinear system
by = NHx;_, +()Ax;5y,)), 0<i<s,.

If w=1 and P, is obtained from a projection Q, then (2.7) and (5.1) imply
Ly )xj_y +tAx;) = Q(H(x;_, + ()Ax;; ,)X2), 0 <t < 1. Operating with Q on
both sides of this equation (interpreting the left-hand side as defined in all of [0, 1]
by its limiting values) we obtain after some simplification

69)  NOx_; +(Ax)) = NG, + OAx;3p,),  0<i<s,.

Equation (6.9) refers directly to the original differential equation. If P, is as in
Example 5.1, then (6.9) becomes

(6.10) Y ) = (Gr )P0, 1<k<p0<v<r,1<j<n

If in addition each a; = 0, then y, € C*71[0, b] is a polynomial of degree <p + s
—1in [xi_ 1 x]-] whose coefficients can be found from (6.10) and the continuity re-
quirements.

7. An Application of the Theory. The next theorem illustrates how one can
combine Corollary 4.1 and bounds such as those of Lemma 5.4 to obtain useful re-
sults about specific methods.

THEOREM 7.1. Consider the initial value problem (2.1), (2.2) and suppose it has
a solution y. Let q be an integer satisfying 0 <q <s —m — 1, and {A,} a sequence
of partitions of [0, b] given by (2.4) with |A,| — 0. Also, let {P,} be the sequence
of linear operators of Example 5.1. Suppose w € C[0, b] and H € CI*2(N), with N
as in (2.12). In addition, let €, <Cla, "1, where €, is defined in (4.1) and C and
m, are independent of n, and let of in (2.5) be chosen as in Corollary 4.1. Then
there is some N > O such that for all n > N there exists r, <& such that Eq. (2.9)
has a unique solution y, € B(y, r) ={z€C10,b]: Iz = Yllg_, <r,}; the Newton
iterates y,, ; are defined in B(@y,r,) for n = N and converge to Yn: there is a constant
C independent of n such that for n > N,

@) sup I -y )Pl < cia, MY g<i<s -1,
0sx<p

If in addition H(-; y) € CI**[0, b] for some u satisfying 3 <u <p - q, then

12 5 0 -r)OmI< cia, ™M g i -1,

In particular, ifu =p —q, w € C; ~1[0, 1] and {4, } is quasi-uniform, then

(7.3) max sup (6% _yn)(s+i)(x)' < ClAnImin(m 1P )—i, 0<i< ; 1

1<j<n x]-_l <x<xj

Proof. All results except (7.3) are a consequence of Corollary 4.1 and Lemma
5.4. To obtain (7.3), apply L to both sides of (2.3) and (2.5), subtract the resulting
equations and differentiate i times. Write the equation as
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0 = y,) D) = [WH; ) — PHC yDID(x) + [WP,H(; ¥) — H(; y )] Px)
(7.4)

m

+ 3 a0 -y )% 0x), x_;, <x<x,0<i<p-1.

We have that

min(E’,ml))

(7.5) sup  IH(;p,) = HC; »)™)1 = 0(1a, ] , 0<u<gq

x]-__l<x<xi

To see this, define R, (g)(x) = g(x; y,) — &(x; y) for any function g € Ci*(N). By
the Mean Value Theorem and (7.2) it follows that for i = 0,

(7.6) swp_ IR, (@) P60)l = 0ga, ™",
x]-_l <x <x].

Now

(R,(®)(x) =R, ( >(x)+ZR< >(x)y<'“>(x)+ z (x V) 0n = V().

Hence again by the Mean Value Theorem, (7.2) and by (7.6) with i = 0, we obtain
(7.6) for i = 1. In general, differentiating R, (g) up to g times and using a uniform
bound on all the partial derivatives up to order g + 1 of g in N we obtain (7.6) for
0<i<gq,sincem +q <s—1. Hence (7.5) is satisfied.

By Lemma 5.4 the first term in the right-hand side of (7.4) is O(lA,, Ip —#). By
(7.5) and (5.4), the second term is O(I4,, lmm(p my)- ') Combining these results with
(7.2), we obtain (7.3).

If Eq. (2.1) is linear, a theorem such as Theorem 7.1 can be obtained [15] if
H(x;y) € C9[0, b] only. If f(x;y) =r(x) + E;c”=0bk(x)y(k)(x), then we write in-
stead of (2.3),

yx) = )f o) + [ G, D dt
7.7 k=1

+ {766, ow, e, (5 )d, 0 <x <b.

where H, (x;y) = 0ck(x)y(")(x) and w, (x)c, (x) = b, (x) —a;,0 <k <m. The
approximate equatlon is now

7= 3 o) + [ 65 0O a
=1

(7.8)
+ [ Glx, twy (OB, (H, 5y )0 dl, 0 <x <b.
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If n is sufficiently large, we find that (7.8) has a unique solution; and that if w €
C[0, b] and r, ¢, € C]0, b], then

sup 1y = y,)Px)l
0<x<bh

(7.9) < Cle, + 18,19 D, A, /(0 —q - 1) + WHD, A,/ —q - 1)),

0<i<s-1.

If in addition 7, H,(; ) € C9*%(0, b] for some u such that 1 <u <p - g, then
(7.2) is satisfied, and so is (7.3) ifu =p —gq, w, € CP71[0, b] and {4,,} is quasi-
uniform.

8. Higher Rates. When the operators of Example 5.1 are used as in the preced-
ing section, it is possible to improve the rates of convergence for the lower derivatives,
especially at the partition points, if we can choose the points v, € [0, 1] so that

(8.1) N rp] t-v) Tu@)dt =0
k=1

for every polynomial of degree < r, where r is some integer satisfying r <p — 1. To
obtain the higher rates we rely on a basic idea of de Boor and Swartz [7], modified
to account for w and the fact that y, is not necessarily a piecewise polynomial.

LEMMA 8.1. Assume all the hypotheses of Theorem 7.1, but let gt = y(0),
0 <i<s-1. In addition, suppose H€E€ C"2(N) and w € C™3[0, b], where m, =
max{p, p +r+1+m=-s) my=max{0,p +r+1+m-s}and r is some non-
negative integer. Then for all n sufficiently large, the equation (I — K ,',(y))Rn y=F,+
K,y - K,',(y)y has a unique solution R,y, where K w F, are as in the proof of Theo-
rem 7.1. Also,

n

, 1a,1\? ~
(8.2) sup Iy — R,»)D)l < C<A7> , O0<i<p+r+1+m,
ﬁ71<x<xj j

where C is independent of n and
#3) 0, - YD) = R,y - D) + 0018, *P), 0<x<b 0<i<s-1.

Proof. By Lemmas 3.4, 3.5, 3.6 and Theorem 3.1, (/ —K,(»))"! exists and is
uniformly bounded for 7 sufficiently large. By Theorem 7.1, Eq. (2.9) has a unique
solution y,, € B(y, r,,) for n sufficiently large. We can write Yn=F, +K,y, =F,
+ K,y + K, ), —») + E(»,), where by a form of the second Mean Value Theo-
rem there is a constant C independent of » such that
(84) IE@G sy <Qly, —yIZ,.

Hence,y, = (I - K,(0)"'(F, + K,y — K,,(»)y + E(y,,)) and so

(8.5) Yn =Y =Ry -y +I-K,0)E},).
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By (7.2) and (8.4), Eq. (8.5) implies
(8.6) 10w = 3) = Ryy = Wlls_y < Ay = ,lI2, < CIA, 2P .
Rewriting (8.5) and taking the ith derivative, we have by (2.6b) and (8.6) that
O~ NP = Ry =)@ < CIT'ONG, —¥) = Ry =), + IEG ),

<CIA,PP: 0<x<bh 0<i<s-1.
Therefore, (8.3) is satisfied. Now by (7.2) and (8.3),
(8.7 swp IR,y - »)P@) = 0(18,P), 0<i<s-1.
xj__1<x<

Ifp +r+1+m-s<0, then (8.7) implies (8.2). So suppose p +r+ 1 +m—s
= 0. R,y satisfies

(88) LRY)x) =wx)P,[Ty - T'0)y -RNIE), x_, <x<x;
Subtracting Ly = wTy from (8.8), we obtain

0 = R0 = Ty = P, T9)] D) + WP, (T’ ~ Ry D)

(8.9) + kgoak(v - R,y)**i)(x),

) <x<x,0<i<p+r+l+m-s

fo<i<p -1, then by Lemma 5.4 and (8.7), the ﬁrst term in the right-hand side
of (8.9) is O(l4, P ), and the second term is o(l4, P [(Ax; )). Therefore,

P IR,y =) Dx)1 = 0(1a, P (ax)))
(8.10) Fim1=*<¥

= 0018,P [(Ax PP, 0<i<p

Ifp <i<p +r+1+m-s, then by (8.7), (8.10) and since (P,g)) =0
for any g € C9[0, b], Eq. (8.9) implies

sup_ 10 = Ry HO()] = 0(1a, P [(ax,P),
(8.11) xj_1<x<xi

5<i<5+r+1+m—s.

The result (8.2) is a consequence of (8.7), (8.10) and (8.11).

The next theorem, with @, = 0 and w = 1, contains the results, specialized to
(2.1), (2.2), of [7, Theorem 4.1], and also those of [28, Theorem 5] whenever 0 <
gss—-—m-1.
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THEOREM 8.1. Assume all the hypotheses of Theorem 7.1 and suppose the 7,
satisfy Eq. (8.1) for some r <p — 1. Suppose in addition that g = y©¥(0), 0 <i <
s - l,andthatHGC""‘(N),wECms[O,b],wherem4 =p +r+2admg =
max{p +r+1+m—sr+ 1) Then the approximations y, of Theorem 1.1 also
satisfy forn = N,

max [(7 - y)PE)<CAP L, 0<i<s-1,
0Sj< /

and

(@) < D +mm(r+ 1 ,s—t) ; -
oJax |y ~yp)V)I < CIA, | 0<i<s-I,

where C is independent of n.

Proof. Let N in Theorem 7.1 be sufficiently large so that the conclusions of
Lemma 8.1 are valid for n > N. Also let E(x, t) = u(x), 0 <t <x, where u,(x) is
the solution of (L — wT'(¥) = 0, v () = 0,0 <i<s-2,v¢ () = 1. Then
since (y — Rny)(')(O) 0,0<i<s-—1, we have

O = Ry)x) = [ BGx, (L —~ wI' ) = Ryy)(O)dt

= [ BG, owiew,(Dd,  0<x<b,
with
) = s (L= WO = R)®)
(8.12)
= [Ty - P,Ty - T'0)¥ — R,) + P,(T'() — R,y (),

_y <x< Xj. The last equality follows from (8.8) and Ly = wTy. Hence if E/(x, ©)
= 3'E(x, t)/axt,

(8.13) (v —R»)D(x) = f :E,.(x, O, (t)dt, 0<x<b,0<i<s-1.

Let x be arbitrary in [0, b] and suppose x € [x x,) for some v, and define

v-1°

X

1
(8.14) F=] «p Eix OWew,(dr,  1<1<v.

Foreachl/=1,2,...,v, we can assume that v, € C‘;“’+l [x,_l, x,] using the
limiting values. of v, in (8.12). Hence, from (8.12) and the definition of P, we see
that

V(1) =0, 1<k<p,0<u<r,1<I<v.
Therefore, we can write

¥t A 1+r
F’=fx, lhx(f)kgl(t—vk,) ka, 1<I<v,
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where

N TN EC Pf,

147y 1+r,

h,(2) = Ex, Ow(t), [711’ oY s Yps -5 Vs t]'

The last expression involving v,, is the 5 th divided difference of v, on ¢ and on the
points v, with multiplicities 1 + r,. If we write for ¢ € [x,_,, x,],

r (t-—x,_ )u

he() = 3 hEOx,,) —— =
u=0 :

(t _xl_l)r+l

+hUt () P T

x_, <§,<x,
then

+1
1+ry @t —x_,)

RCHDEYar,  1<I<w.
r+ 1 x ?

*1 p
(8.15) Fl = fxl—l kI—=Il(t - ’)’k,)
But

u!

h§cr+ 1)(1‘) = ril <r: 1> (Ei(x, -)w)('+l_u)(t)vfz;-'-u)(zu,t) (17 + u)! ’

u=0

x,<tz,, <x.

Hence, for some C independent of x and n,

r+1  ~
sup  RTV@BISC  sup 3 @ +(p)).
xl_1<t<xl xl__1<t<xl u=0

Now from (8.12) it follows by (8.2), (8.7) and Lemma 5.4 that for some C inde-
pendent of I,

. 1A, \P ~
(8.16) sup  pP@®I<C , 0<i<p+r+1,0<I<v.
x;_y <t<x, Ax,

This bound and (8.15) imply that for some C independent of »n and x,

(8.17) IF)| < CIA, P (Ax,Y+2,  0<I<uw.

Write (8.13) as
. v—1 x D 1+
(8.18) 0 - Rp)D(x) = > F, +fxv_lhx(t) [1C¢ = 14p) " at.
=1 ‘ k=1

If x =x,_,, then (8.17) and (8.18) imply
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(8.19) 0 - R)P(x,_) = 0(A,FP Y, 0<i<s-—1.

Ifx, , <x <x,, then since Ei(x, ¢) has an (s — 1 — i)th-fold zero at x = ¢, (8.16),
(8.18) and the definition of A, (¢) imply

@ = R)P() = 004, P+ + o(1a, P+
(8.20) .
= O(la, P tmintr+ sy g <igs -1,

The conclusions of the theorem are now obtained from (8.3), (8.19) and (8.20), since
r+1<p.

Suppose r,, = 0,1 <k <p. Then (8.1) is satisfied by the Gaussian points if
r =p — 1, by the Radau points if » = p — 2, and by the Lobatto points if »r = p — 3.
Turdn [25] showed that if all r, are equal to some fixed even positive integer, then
(8.1) is satisfied for r = p — 1 by the zeros of a certain polynomial; Stroud and Stan-
cu [24] tabulated some of these “multiple Gaussian points.” Stancu and Stroud
[23] showed that one can fix n, of the p points 7,, assign them arbitrary multipli-
cities, and find the remaining p — n, points of multiplicity one to satisfy (8.1) for
r=p —n,; — 1; they also tabulated some such points for several choices of the fixed
points. Wittenbrink [28] has investigated methods which use these points, with the
restriction that only the endpoints can have multiplicities larger than one. Our theory
allows a more general choice of points and multiplicities, but the highest chosen mul-
tiplicity must not exceed s — 1 — m.

9. Extensions of Methods Considered in the Literature. The idea of construct-
ing global approximations more general than piecewise polynomials can be useful if
the differential equation exhibits characteristics which can be exploited. For example,
we could let

of

= 0, y(0), . .., ym
a, ay(k)( ¥(0) , ¥4m(0)),

for those k for which 3f/3y*) does not vary much in [0, b]. Our theory assumes
that w and the a; are constant throughout the numerical process. However, we can
change them after y, has been found in an interval [0, @] and consider a new problem
in [a, b] with the initial values given by y,. The asymptotic error rate is the same
throughout [0, 4], as can be seen in Corollary 4.1.

Ixaru [13] approximates the coefficients and inhomogeneous term of second
order linear differential equations by step functions, then solves the resulting equation
exactly; the method is of low order but it is explicit. Pruess [18] obtained methods
of arbitrarily high order by replacing the coefficients and inhomogeneous term of an
nth order equation by piecewise polynomials, then using Taylor series techniques to
solve the resulting problem. Cooper [6] used a weight function but did not consider
the global approximations.

For the remainder of this section we will assume that ¢, = 0,0 <k <m, w=
1 and g} = y®(0), 0 <i<s-—1,and discuss how particular choices of P, reduce
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our methods to methods already considered by several authors to deal with (2.1),
2.2).

If P, is the operator of Example 5.1 and r, =0, 1 <k <p, then we obtain
the method of collocation with piecewise polynomials [7], [10], [11], [19], [28].
If in addition vy, = (k — 1)/(p — 1), 1 <k <p, then we obtain for s = 1 the Newton-
Cotes block implicit discrete methods of Watts and Shampine [26], some of whose
global aspects were investigated by Callender [5] and Williams and de Hoog [27]; for
s = 2, we have the spline methods of Micula [17]. All of these methods are equiva-
lent to collocation with piecewise polynomials; notice that if p is odd, Eq. (8.1) holds
for r = 0 so that higher rates are obtained.

Wittenbrink [28] has considered v, = 0, Tp = l,r, = oo Tp
=0 for 2 <i<p - 1. We have considered arbitrary choices of v, and 7, as long as

arbitrary, but 7,

max 7, <§ —m — 1, and have obtained higher rates along the lines of [7], even if
some @, # 0 or w ¥ 1. Moreover, the theory presented here can also be applied if
v, =0, Tp = 1,0 <rp —-r < 1,rp arbitrary, and 0 <7, <rp for2<i<p-1;
these conditions give rise to some A-stable methods for the numerical solution of
first order problems. Details appear in [15] and will be presented elsewhere.

If P, is derived from the operators Q, of Example 5.2 with I = p, one has the
natural spline block implicit methods of Andria, Byrne and Hill [2] for first order
problems; global approximations were not considered in [2].

Several of the projections of [28] satisfy Lemma 5.1, but we emphasize the
fact that the operators Q of Section 5 are not necessarily projections.

Finally, we point out that some of the techniques presented here can be used to
obtain error estimates for derivatives higher than s — 1. Some such results are pre-
sented in Theorem 7.1.

10. Sample Calculations. In the following tables we present results which
illustrate the rates of convergence and the improvement caused by choosing some a,
# 0 orw = 1. All calculations were carried out on a CDC 6400 in single precision
(which is approximately fourteen decimal digits). The column next to each column
of errors represents the computed orders of convergence

log(E, (h,)/E,(h,))
log(hy /hy)

based on successive mesh sizes 4, and h,. E, is a discrete or continuous error norm,

as defined in each example. All the methods are based on the operators of Example
5.1, and we used the alternate approach described in Section 6. The functions F, ;
and d;; in (6.7) and their derivatives were found explicitly in terms of the a; and
evaluated at the v, in advance (as required) to produce the linear system for the un-
knowns yf,"z + 1(7ki)' If Ax; is constant, the matrix of the system is the same from
step to step.

Example 10.1. To illustrate the use of a weight function consider

Y'(x) =vayx), 0<x<1,y0)=1.
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The approximations y, are obtained using P, with p = 2,v, =0, v, =1,
r,=0,r, =0.
If w(x) =\/§, we obtain a new method. The results are shown in Table 1, where

If w = 1, this amounts to collocation with piecewise quadratics.

ED = sup Iy —»,)Px), i=0,1,and 5.22(-2) stands for 522 x 1072,
0<x<1

Not only is Ef,") smaller for the new method, but also the new method converges fast-
er.

TABLE 1
Use of a weight function

Collocation New Method
(1) (1)

ax; E, E, E E,
1/2 | 5.22(-2) 1.51(-1) 3.79(-2) 8.04(-2)
1/4 2.59(-2) 1.01 1.19(-1) 0.34 9.26(-3) 2.03 2.46(-2) 1.71
1/8 1.18(-2) 1.13 8.62(-2) 0.47 2.30(-3) 2.01 6.95(-3) 1.82
1/16 | 4.80(-3) 1.30 6.16(-2) 0.48 5.72(-4) 2.01 1.86(-3) 1.90
1/32 |1.86(-3) 1.37 4.37(-2) 0.50 1.43(-4) 2.00 4.82(-4) 1.95
Example 10.2. Consider

V) =(5+xpk), 0<x<4,y0)=1.

We have used P, withp = 3,7, =0,v, =05,v3=1,r, =r, =r3 =0. Ifa; =0
and w = 1, the method is collocation with piecewise cubics. We have also taken w =
1 and @, = —4 for the interval [0, 2], and w = 1 and a, = —2 for the interval [2, 4].
Tables 2 and 3 show the results obtained. Notice that the rates of convergence are
about the same. The errors here are defined by

ED = max (v -y,)Pa),  i=0,1,2,3.
1<j<n

TABLE 2
Collocation with piecewise cubics

ax; E_ Ex(;l) Er(12) Er(13)
1/4 1.46(-3) 6.96(-3) 2.06(0) 3.97(1)
1/8 8.56(-5) 4.09 4.07(-%) 4.10 7.13(-1) 1.53 3.06(1) 0.38
1/16 | 5.47(-6) 3.97 2.63(-5) 3.95 2.12(-1) 1.75 1.92(1) 0.67
1/32 | 3.41(-7) 4.00 1.64(-6) 4.00 5.78(-2) 1.87 1.08(1) 0.83
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TABLE 3
Collocation with modified functions

ax, E, Er(ll ) Er(l2 ) Er(f)

1/4 2.86(-4) 1.36(-3) 4.66(-1) 7.98(0)
1/8 1.72(-5) 4.06 8.37(-5) 4.02 1.80(-1) 1.37 7.35(0) 0.12
1/16 | 1.12(-6) 3.94 5.41(-6) 3.95 5.64(-2) 1.67 5.00(0) 0.56

1/32 | 7.01(-8) 4.00 3.38(-7) 4.00 1.58(-2) 1.84 2.92(0) 0.78

For this choice of v, and r,, Eq. (8.1) is satisfied for r = 0, hence the higher
rates for E,. The higher rates for Ef,l) are, for example, because of

O =)@ = Py(5 + OWp)ay) = (5 + xp(x) = (5 + 2), —¥)x)).
Example 10.3. It is known [9] that a differential equation of the form
y'(x) = -k (1 + p)wx), a<x,
where k is a positive constant and [ p(x)dx < o has solutions of the form
y(x) = ¢, cos(kx) + c,sin(kx) + o(1)

for large x. Hence we expect particularly favorable results if we choose w =1, a, =
-k2, a, = 0. As an illustration, we approximated the solution of Bessel’s equation

¥'(x) = (—100 — 1/4x)y(x), 1<x<6,
with initial values chosen so that the solution is y(x) = \/;JO(IOx). Table 4 shows
errors at several values of x for Ax; = 0.02. Here Eff) =|y- y,,)(i)(x_)l, i=0,1,2.

TABLE 4
Comparison of collocation methods

Piecewise Cubics Modified Functions

x E, Er(ll ) Er(f ) E, Er(ll ) Er(l2 )

2 | 3.8(-7) | 1.1(-5) | 8.1(-2) | 4.7(-10) | 1.9(-8) | %.7(-5)
4 | 2.9(-6) | 6.2(-6) | 1.9(-2) | 2.6(<9) | 4.1(-9) | 6.1(-7)
6 |2.2(-6) | 4.0(=5) | 7.2(=2) | 1.5(-9) | 2.5(-8) | 5.1(-6)

We have taken p = 2, v, = (1 —(1/3)!/?)/2, v, = 1 — v, (Gaussian points), 7, =r,
=0, and k = 10. Also shown are the results for ¥ = 0 (collocation with piecewise
cubics).

Example 10.4. Our last example is the nonlinear problem

Y'(x) = 200(x))*(@x*y(x) - 1), 0<x<1,»0)=1,y'(0) =0.
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We have taken ¢, = a, = 0, w = 1, and the operators P, of Example 5.1 with p = 2,

71 =0,7, =1,r, =0,r, = 1. The results are shown in Table 5, where

ED = mx Iy, -»P@)|, i=0,1,2,
08x<1

ED = max  sup |pn-y)Dx), i=3,4.
1<I<nxl-_l<x<xj

TABLE 5
A piecewise polynomial approximation

4
ax, E, gt £(2) (%) 5"

1/4 7.08(-3) 1.17(-2) 3.03(-2) 7.39(-1) 1.25(1)

1/8 |8.08(=4) 3.13|1.44(-3) 3.02| 4.57(-3) 2.73 |2.47(-1) 1.58|7.64(0) O.71
1/16 |9.71(-5) 3.06 | 1.78(-4) 3.02{5.88(-4) 2.96 |6.49(-2) 1.93| 4.14(0) 0.88
1/32 [1.19(-5) 3.01|2.22(-5) 3.00| 7.34(-5) 3.00 |1.63(-2) 1.99{2.09(0) 0.99
1/64 |1.48(-6) 3.0L{2.77(-6) 3.00|9.21(-6) 2.99 [4.08(-3) 2.00|1.04(0) 1.01

1/128 |1.84(-7) 3.0l | 3.46(-7) 3.00|1.15(-6) 3.00 [1.02(-3) 2.00]|5.23(-1) 0.99
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