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Maximum Norm Estimates
in the Finite Element Method
on Plane Polygonal Domains. Part 1

By A. H. Schatz and L. B. Wahlbin*

Abstract. The finite element method is considered when applied to a model Dirichlet
problem on a plane polygonal domain. Rate of convergence estimates in the maximum
norm, up to the boundary, are given locally. The rate of convergence may vary from
point to point and is shown to depend on the local smoothness of the solution and on
a possible pollution effect. In one of the applications given, a method is proposed for
calculating the first few coefficients (stress intensity factors) in an expansion of the solu-
tion in singular functions at a corner from the finite element solution. In a second appli-
cation the location of the maximum error is determined.

A rather general class of non-quasi-uniform meshes is allowed in our present in-
vestigations. In a subsequent paper, Part 2 of this work, we shall consider meshes that

are refined in a systematic fashion near a corner and derive sharper results for that case.

0. Introduction. Let Q2 be a bounded simply connected domain in the plane
with boundary 92 consisting of a finite number of straight line segments meeting at
vertices v].,j =1,...,M, of interior angles 0 < a; <: - <oy <2 (in a suitable
ordering). We shall consider the Dirichlet problem

—Au=f inQ,
u=0 on 9%,
where f is a given function, which for simplicity we assume to be smooth.

To solve the problem (0.1) numerically, let S* = $*(Q), 0 < h < 1, denote a
one-parameter family of finite dimensional subspaces of Jig (Q) N WL(Q). We have in
mind piecewise polynomials of a fixed degree on a sequence of partitions of Q. In our
considerations the partitions do not have to be quasi-uniform, not even locally (cf.
examples in Section 9).

Let u, € S" be the approximate solution of (0.1) defined by the relation

(0.1)

0.2 A(u,, ) = (f, x) for all x € S™.

Here A(v, w) = [ Vv * Vwdx, and (v, w) = [quw dx.

We wish to obtain local estimates up to the boundary in the maximum norm for
the error # — u,. Although our present assumptions allow meshes that are refined near
a corner, in the subsequent paper, Part 2, we shall investigate the error in more detail
in that case, and obtain sharper results. The general results derived in the present paper
will be essential in those investigations.
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Since the ability of a given subspace to approximate a given function depends in
part on the regularity of the function, let us first discuss the regularity of the solution
of (0.1). It is well known that even if f is smooth, ¥ may be “badly” behaved near the
corners. In fact, if we introduce polar coordinates (p, 6) at the vertex v; SO that the
interior of the wedge is given by 0 <8 < o and set B]- = 1r/oc]-, then near v; the solution

u behaves like
(0.3) u(p, 6) = k].pﬁf <1n%>mj sin(BiG) + smoother terms.

Here k]- is a constant, and m; = 0 unless ﬁl. =2,3,... . Globally one can then say
that for any € >0, u € H' *PM=(Q) or CPM~¢(Q). If welet Q,j=1,..., M,
denote the intersection of £ with a disc centered at the jth vertex and such that Q,-
contains no other vertex, and set Q, = Q\(Ujﬂilﬁj) then we have u € H' *Fi~ ‘()
or C%i~¢(Q),j=1,..., M, and u € C*(Q).

For many finite element spaces the following holds: Let r = 2 be an integer
(one may, e.g. take piecewise polynomials of degree r — 1). Then there exists a constant
Cand a x € $"(Q) such that

(0.4) e = Xl _ gy < CH™POE
and
min(r—1,87)—€
0.5) llu - X“H1(m <Ch M
In fact, x has the additional local properties that
(0.6) I =Xl oy < O™
©.7) It =Xy g SOOI =10,
j
and since u € C7 (L),
(0.8) e = xllz () < "

Let us remark that if B]. <r -1, as is always the case when % < ﬁi <l,i.e., o
is concave, then the estimates (0.6) and (0.7) essentially yield the same degree of
approximation in L,,(Q].) and H! (Q]-), respectively.

Before discussing our results, let us describe some other recent work on maximum
norm estimates which are relevant to our work here. For other references concerning
the finite element method on domains with corners, we refer, e.g. to Babuska [1],
Babuska and Aziz [2], Babuska and Rheinboldt [4], Babuska and Rosenzweig [5],
Eisenstat and Schultz [11], and Thatcher [36].

Maximum norm estimates for the finite element method on irregular but quasi-
uniform meshes have been discussed in Douglas, Dupont and Wheeler [10], Frehse and
Rannacher [12], Natterer [21], Nitsche [24], [25], Schatz and Wahlbin [31], and
Scott [32]. (In these papers, references to work concerning maximum norm estimates
on uniform meshes can be found.) In particular the papers [21], [12] and [24] give
global estimates for the error on a convex polygonal domain (i.e., B3, > 1) where the
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subspaces S” are piecewise linear functions defined on a quasi-uniform triangulation of
Q. Improving the estimates in [21] and [12], Nitsche shows that for any x € S”,
1
llu = uplly, oy <hln Ellu - xlle(n).

Since in this case § is convex, we may deduce from the counterpart of (0.4) in WL,
the global estimate

(0.9) bt = uylly, gy < CHMCEME,

One of the shortcomings of a global analysis of problems where the regularity of
the solution may vary in the domain is that it will in general yield a rate of convergence
commensurate with the worst behavior of the solution. Sharper results can often be
obtained by a local analysis. For example, if £ is a polygonal domain (not necessarily
convex) and S” is taken to be any one of a rather general class of finite elements de-
fined on a quasi-uniform partition of §2, then as a special case of the results of [31] we
have that for interior subdomains Q, CC Q}) CC Q and any x € sh,

1\,
(0_10) ”u - uhlle(no) < C[(ln Z) ”u - x”Leo(‘Q,O) + "lu - uhl"""ﬂb]'

Here r = 1if r = 2 and 7 = 0 if » > 3. The number p is an arbitrary positive integer
and ||| - |Il_ P2 denotes the norm dual to 1:(”(&'26). The error is thus divided into two
parts. The first depends on the local smoothness properties of u and the ability of the
subspace to approximate locally. From (0.8) we have

(0.11) e =Xl (ar) < CH"

The second term in (0.10) is the error in an arbitrary negative norm Sobolev space.
This term measures the effect on the local error of such things as the smoothness of
the solution outside of QB, the smoothness of the boundary, etc. and may be estimated
by using a duality argument. In Lemma 4.2 we shall show that for p > §,, — 1,

in(2(r—1),28p7)—¢
(0.12) et = eyl g < CR™NT MO,

Since 2(r — 1) = r we have from (0.10), (0.11) and (0.12) that
min(r,2BM)—e
(0.13) e = uylly gy <Ch :

We first notice that in many cases the estimate (0.13) is “better” than (0.9), even
in the convex case. Next we see that in comparison to (0.8) the estimate (0.13) may
not be optimal. For example, if % <, <1 (i.e., a concave maximal angle) then
2B,y <r and therefore |lu — uhlle(no) < Ch?PM~—€_ This is the well-known pollution
effect due to the corner of maximal angle—it has been observed in calculations.

As remarked before, the aim of this paper is to provide local estimates up to the
boundary for a polygonal domain (not necessarily convex) using a general class of sub-
spaces. We wish to emphasize here that once having such estimates we will then be
able to consider other questions which are of interest, namely: 1. the calculation of
the coefficients (stress intensity factors) in the expansion (0.3), and 2. the location of
the maximum error in .
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Let us now briefly describe our results. We shall refer the reader to the appropri-
ate place in the text for more precise statements.

In Theorem 4.1 we shall show that with Q]., j=1,...,M,and Q, as above,
in(r,8;,20x)— ,
(0'14) [fee = uh"Loo(‘Q,') < Chmm(r ﬁ’ fm) e, i=1,..., M
and
in(r280y)—
(0.15) e = ully cay) < cp™in(r28y)—¢

Except for the term 28,, occurring in the exponent, which corresponds to a
possible pollution effect due to the corner of maximal interior angle, these estimates
are analogous to (0.6), (0.8).

The results (0.14) and (0.15), and others to be given below, are derived as con-
sequences of the following two basic estimates, (0.16) and (0.17) below. Let D, C
D C Q be such that roughly speaking the distance d from D, to the part of the bound-
ary of D which D does not have in common with £ is greater or equal to Ch! % for
given § > 0. If the mesh is quasi-uniform, § may be taken equal zero. In Theorem 3.2
we show that if D does not contain any concave corners, then for any x € S”,

[lee — uh“Loc(Dl)

(0.16)
< Ch—e(“u - X"L D + h"V(u - X)"L D + d—l—pmu - uhlll_ D)'
(D) (D) p,

More generally if D, C D C Q are two domains with d = cnl-? (and D may contain
a concave corner), then for any x € S" we have, Theorem 3.1,

"u - uh”Lw(Dl) < Ch_e("u - X"L”(D) + d_lllu - X“L2(D)
(0.17)
+1v(u - X)"LZ(D) + d_l_plllu - uhlll_p,D)'

Remark 0.1. The results (0.16) and (0.17) are valid for u — u,, which satisfy (0.1)
and (0.2) locally on a domain D. Thus these results may be used to obtain local esti-
mates for the error, when for example: 1. Neumann or mixed boundary conditions are
imposed on the part of the boundary outside of D. 2. the boundary outside of D is
not necessarily polygonal.

Let us further point out that the proof of (0.16) essentially consists of extending
the techniques of [31]. The proof of (0.17) follows by converting a local H' estimate,
cf. [27], to an L, estimate by means of an inverse relation of weak type (for unit size
domains) |Ixl| Lo S ChEIxll 1 for x € S", see Sections 7 and 8 for the technical de-
tails. We note that close to a concave corner the L, estimate derived via an H, esti-
mate will be sharp.

In certain situations one can say more about the rate of convergence than what
is given in (0.14) and (0.15). For example if §; < min(r, 28,,), then (0.15) predicts a
higher rate of convergence in the interior than close to the jth corner. In Theorem 5.1
we estimate precisely the rate of convergence at a point x in terms of its distance d to
the vertex. For instance, if the maximal interior angle is concave (8,, < 1) then for x
close to vy, we show, using (0.16) and (0.17), that with § > 0 arbitrarily small,
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M= M  for n1 -8 < d <d,,

(0.18) = u, )x)l <
O P for d <h'~°.

Let us consider two consequences of (0.18). In Section 5 we show that if §,, <
1 and the mesh is quasi-uniform of size 4 near the vertex v,,, then for any § > 0, the
maximum error in |u — u,| over the domain Q occurs at a point which is at most a
distance 7' ~® away from the vertex vy (provided k,, in (0.3) is not zero).

Our second application of (0.18) concerns the problem of calculating what is
sometimes called the stress intensity factor, i.e., the coefficient k,, in the expansion
(for By, < 1)

(0.19) u(p, 6) = kpp™M sin(,,0) + 0(p>*M)
at the Mth vertex, see (6.1). In order to approximate k,, we consider
kp(d, h) = u,(d, 6,)/d*M sin(B,,0,)

where 0 < 6, < a,, is fixed.
The question then arises as to how d should be chosen so that k,,(d, k) is the
best possible approximation to k,,. Now,

Iu(d’ 00) .,_ uh(d' 60)‘
1d°M sin(B,,0,,)!

Using (0.18), we make a choice that equalizes the error in the two terms above, namely
d=d, = n213. We prove in Theorem 6.1 that

lkpg = kpg(dy, B) < CRPPMIP=€ g <.

lKpg — kpg(d, B)I < +ca™,

We also show, in Theorem 6.2, that the quantity ky,(d,, h)p°M sin(B,,0) gives a
potentially better approximation to u than u,, does, for p < n?/3,

In Theorem 6.3 we use similar reasoning to exhibit how the next term in the ex-
pansion (0.19) (which is equal to lMpr sin(26,,0) if 37/2 < a,, < 2) can be found
approximately.

To conclude this introduction we give an outline of the rest of the paper. In
Section 1 we collect notation and regularity results concerning the problem (0.1) that
will be needed. Section 2 lists assumptions on the finite element spaces. In Section 3
we state precisely the two basic results (0.16) and (0.17). The proofs of these are
given in Sections 7 and 8. Section 4 is concerned with proving (0.14) and (0.15). In
Section 5 we give the proof of (0.18) and calculate the location of the maximal error.
In Section 6 the estimate (0.18) is applied in connection with the question of approxi-
mate calculation of stress intensity factors. Finally, in Section 9 we give examples of
finite element spaces.

1. Preliminaries. In this section we shall introduce notation and collect certain
regularity results for the problem (0.1).

In this paper C, € and € will denote positive constants, not necessarily the same
at each occurrence, but independent of . For simplicity in writing, we make the con-
vention that C may depend on € and €'.
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Throughout, Q will be the fixed polygonal domain occurring in (0.1), cf. Remark
0.1 in the Introduction. We first set some terminology relating to subsets of £2.
For D; C D C Q, define
disty(D,, D) = inf dist(x, aD\(92 N aD))
x€3D\(3D,;N3N)
and let D, ¥ D signify that D, C D with disty(D,, D) > 0.

For j a nonnegative integer and 1 < g < oo, W{;(D) will be the usual Sobolev
spaces with norms

<2|v|w,,w)> . 1<q<w,

k<j
holl ;=
wl (D) max v = OO,
where
< ¥ 1%l (D)> . 1<q<e,
lal=k
(vl =

Wa(D) max D%, _(p), q="c

ma

[n particular, for ¢ = 2 we shall write H/(D) for W{;(D) and use the notation [vll; , =
"v"wg(u)’ bl; p = |v|w§(D)‘
We shall need to extend the definition of the spaces H/(D) to nonintegral and
negative values of j.
For j positive and nonintegral, let j = J + o, where J is integral and 0 < ¢ < 1.
The norm in H/(D) is given by

Y2
il p = Wll gi¢py = (||v||J pt Ivl D)
where
Ivlj,D = < Z |D°‘v| >
lal=J
with

_ 2
o, = ([ e ot dxav) ™

For properties of these spaces on Lipschitz domains, cf., e.g. Grisvard [14], and
Netas [22, Chapter 2], [23] where further references may be found. As general refer-
ences we also note Lions and Magenes [20] and Slobodeckii [33].

We notice that for D, C D,,

(1.1) "v"i»Dl < "v"j'D2’ j=0,

and for D, and D, disjoint sets,
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2 .
(1.2) il 5, + W} p, <IIfp up,> 720

Forj> % and D C  we define

<. .
H'(D) = {v € H(D): v=0on aD N aQ}.
In particular then,

< Ei(R), closure of Cg(Q) for B<j<1,
HEQ) =1 . o
H(@Q)NHY(Q) forj>1.

We shall also use the notation
¥, ]
H/(D) = {v € H(D): v = 0 in a neighborhood of dD\(3D N 98)}.

<
Similarly, C*(D) and 8‘”(D) designate the subspaces of C*(D) of functions that vanish
on 3D N 9%, respectively in a neighborhood of dD\(dD N 3%).
For j a negative number, we set

"v"i,D = sup L___Ll), P

llll _;
9EC(D)NC™(D) »P
where (v, ¢) = [pvpdx. Similarly,
, 22
. = S N
|||v|||,,D ;)lp "‘p"—i,D
vEC™(D)
We have clearly
1.3) ll; p < lllll; p, 7 <O.

For j € Z~, the negative integers, the following two properties hold:
If D, C D,, then

(1.9 "v"ixDl < ||v||ixD2’ |||v|||,-,Dl < "IUIII/‘,DZ’ JEZ™.

For D, and D, disjoint sets,

2 2 2
"vlli»Dl + "v"f’Dz < "v"j,DIUDz’

(1.5)

|||vIII,?,Dl + IlleII,-":D2 <lIlli? ,up,» JE€Z".

For a proof of the last property, see [31, Lemma 1.1].

Let us also recall Sobolev’s inequality, which we shall use in the following form.
For D a Lipschitz domain,

2p
< —_

(1.6) "”"w;,(p) <aD plaq k)"”"w{;(u)’ a>57 k=D k>1.
In case p (or q) is equal to 2, then / (or k) may assume nonintegral values. This result
can be made to follow from Uspenskii [37] by use of a suitable extension operator,
Stein [34]. See also Netas [22].

Finally, we shall collect a few results concerning the problem (0.1),
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—Au=f inQ,
(0.1)
u=20 on 0%2.

Following Kellogg [17], [18] and other references given there we have:
Let -1 <s <y, — 1, By > %. For any € > O there exists a constant C =
C(e, s) independent of f such that

1.7 lellgyr_e.0 < CUflly -

In fact, except when certain exceptional angles are present, the result holds with € = 0.
If the right-hand side in (0.1) is sufficiently smooth we have the following results,
Kellogg [17].

Let s 2 0 be a number which does not belong to a certain set of exceptional
values, i.e. the set

{nﬁi—l,n=1,2,...;j=1,...,M}.

Then for f € H5(2) we have
I

(1.8) u = Z ciSi +w
i=1
where:
(i) we€H*2(Q) N A(Q) and with C independent of £,
(1.9) Wllgy2,0 <Qlfllg g,

(ii) the functions Si, the singular functions, are independent of f and each Sj
may be taken to vanish outside of a neighborhood of one of the vertices. In a neigh-
borhood of the jth vertex one has upon introducing polar coordinates (p, ), with
0<0< o; lying in the interior of the wedge,

(1.10) u@p,0)= 2 ¢ (NS e, 0) +w

0<mp;<s+1
where for any € > 0,
(1.11) D S, Xo, B)] < Co™Pi1%1¢,
In fact, unless mBj is an integer,
(1.12) S, m(0: 6) = PP sin(mp,6),

near the jth vertex. In the case that mﬁi is integral, logarithmic terms may enter.
(iii) the coefficients ¢; = c/(f) satisfy

(1.13) le;l <cllflly, -

2. The Finite Element Spaces. In this section we collect the assumptions on the
finite element spaces that will be used. Since we are concerned with the local behavior
of the finite element solution, our hypotheses will be local in nature. Along with local-
ly quasi-uniform meshes, certain non-quasi-uniform partitions will be allowed, cf. the
examples given in Section 9.
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Let S"(R2), 0 <& < 1, denote a one-parameter family of finite dimensional sub-
spaces of H'(92) N WL(Q). In particular, the functions in S"(£2) vanish on 3S2. For
D C Q we define S"(D) by restriction, and also set

g'h(D) = {x € S"(D): x vanishes in a neighborhood of dD\(d2 N dD)}.

We assume that there exists a constant k,, such that the assumptions A.1—-A.4
below are satisfied.

A.1. There exists an integer » > 2 and a constant C, such that the following
holds: <

Let D, § D with disty(D,, D) > koh. Then for each v € H'(D) N W.,(D) there
exists a x € S"(D) such that

2.1) llv - X"Loo(Dl) + Allv = Xl < Clhrlvl

wly) Wi (D)

Furthermore, if v EIf)I’l (D,), then x € ?"(D).

Our next assumption was introduced in [28] and is sometimes referred to as a
“superapproximation” condition.

A.2. There exist constants C, and [, [, integer, such that the following holds:

Let D, 3 D, ¥ D with disty(D,, D,) > koh, and let w € 3"(Dl). Then for
X € S"(D) there exists an n € §*(D) such that

2.2 llwx —nll; p < Cyhllwll Ixlly p.,-
(2.2) 1o = CHl g ) Wb,

We shall need a weak form of inverse properties.

A.3. There exists a number v = 1 such that the following holds:

(i) There exists a constant Cy such that if D, J D with disty(D,, D) = koyh,
then for x € S*(D),

(2.3) Xl o) < C3h“72/"||x||Lq( py for2<gq<e.

(i) Let p be a nonnegative integer. There exists a constant C, = C,(p) such
that if D, §( D with disty(D,, D) > kyh, then for x € S"(D),

24) IXlly,p, < Cah™ @Dl .

Lastly, we shall make the assumption that if the intersection of a disc of radius
d with Q is transformed via a similarity transformation to a domain of unit size, then
the transformed finite element space satisfies A.1, A.2 and a slightly modified form of
A.3 with & replaced by h/d.

Let D, be the intersection with  of a disc of radius d centered at x, € Q. The
linear transformation y = (x — x,)/d takes D, into D and Sh(Dd) into a new function
space S(D).

A4. Givenany § >0,if 1 >d > h'~?%, then S(ﬁ) satisfies A.1 and A.2 with &
replaced by #/d, and satisfies A.3 with % replaced by #/d and vy replaced by v, =
1 + (y — 1)/5. The rest of the constants remain the same.

We remark that in our examples, A.1 and A.2 will be satisfied if d > koh, and
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if furthermore the mesh is quasi-uniform, then A.3 will be true with y =1 for d =
koh.

In our subsequent work we shall frequently need certain consequences of the
approximation hypothesis A.1. The first result, Lemma 2.1 below, concerns approxi-
mation in L, based norms, and approximation of functions with low regularity. In
many examples, a natural interpolant could be utilized to show these results directly,
but in general one has to smooth the function before applying the interpolant, cf.
Hilbert [15] and also Clement [9], Strang [35]. In our case we also want to smooth
so as to preserve the vanishing of the functions on 92. A suitable smoothing operator
was given in Nitsche [26]. For completeness we shall exhibit its form near a corner.
Here the corner is normalized so that the sides are along the negative x and y axes for
the concave case, or positive x and y axes for the convex case. By use of a linear trans-
formation, it suffices to treat these two cases. With k( - ) and n( - ) having suitable
properties, see [26], we set

1

Su(x, y) = f;fc(r)[_f;x(s)v(x +rh, y + sh)ds — n<;—)>fox(s)v(x + rh, sh) ds]dr
-n (;—i)ﬂ)x(r) [f;fc(s)v(rh, y + sh)ds - n(%)f;fc(s)v(rh, sh) ds] dr.

Using this smoothing operator and A.1 one may prove the following result.

LEMMA 2.1. There exists a constant C such that the following hglds:

Let D| 3 D with disty(D,, D) > (ko + 1)h. Then for each v € HY(D) N wW~(D)
there exists a function x € S"(D) such that

(2.5) o =Xlo,p, + 2l =xl; p < CHloll, p
and

— — < r .
(2.6) o =Xlp 0,y + Ao =y oy ) < I, )

<
Furthermore, for each v € H (D) N H*(D) there exists a function x € S*(D)
such that

2.7 llv = X”O,Dl + hllv - XIII,Dl < C7t2||v||2,D.

The corresponding results hold after a homothety by 1/d, cf. A.4, with h replaced by
h/d for d = h'~?%; the constants occurring remain the same.

Finally, we shall need a global approximation result in Sobolev spaces with non-
integral smoothness parameters. The proof will be given in Appendix 2.

LEMMA 2.2. Assume that A.1 holds, and let s be a real number, 1 < s <.
There exists a constant C such that the following holds.

Forany v € Jig (Q) N H5(KY) there exists a function x € S*(Q) such that

(2.8) v = xlly o < Ch~llg g
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3. Two Basic Results. In this section we state our two main theorems. The
investigations in Sections 4—6 will be based on those theorems, the proofs of which
will be given later in Sections 7 and 8, respectively.

In our first result we extend, under our present more general hypotheses, the
interior H' estimates of [27], and give estimates up to the boundary. The resulting
bound includes the case when the domains are small. On unit size domains, the H’
estimate is converted into an estimate in the maximum norm using the following simple
device: Given € > 0, let q be such that € = 2y/q. Then by A.3 and Sobolev’s inequal-
ity with D, 3 D,

NIz o,y < Ch Xl _(py < CH€IiXly p  for x € 5".

This result will be particularly useful later on in discussing the error in the neigh-
borhood of a concave corner. Let us remark that if the mesh is quasi-uniform then the
factor A~ € may be replaced by In/A.

THEOREM 3.1. Assume that A.1, A.2, A.3 and A.4 hold. Let p be a nonnegative
integer, and 0 < 8§ < 1,0 < e < 1. There exist constants C = C(p, 8, €) and h, =
hy(p, 8) > 0 such that the following holds: <

Let D, ¥ D with disty(D,, D) = d > h'~°, and let u € H'(D) and u,, € S"(D)
be such that

@3.1) AW —u,, 9) =0 forally e?"(o).
Then for h < h, we have for any x € S"(D),

bt = ylly oy < Ol = Xl (py + @™ i = Xlo

(3.2
) +lu—-x, p +d‘1"’||lu—uhlll_p,p}-

We remark that in the proof of this result we do not use the hypothesis A.1 in
itself; only the consequence (2.7) of Lemma 2.1 is employed.

Our second result is a generalization of the interior maximum norm estimates of
[31], given there for quasi-uniform meshes.

THEOREM 3.2. Assume that A.1, A.2, A3 and A.4 hold. Let p be a nonnegative
integer, and 0 < § < 1,0 <e < 1. There exist constants C = C(p, §, €) and h, =
h,(p, 6, €) > 0 such that the following holds.

Let D, ¥ D with disty(D,, D) = d > h'~?, and assume that D contains no con-

cave vertex of Q. Let u € H'(D) N WL(D) and u,, € S*(D) satisfy

(3.3) Aw~u,, 9)=0 foraly e?"(p).
Then for h < h, we have for any x € S"(D),

llee — uh"Lm(Dl)

(3.4)
< Ch~¢(hlu — x|

—1— _
Loy =Xl oy +d7 Pl = uyll_p, p).
Let us again remark that in the proof of this theorem, A.1 is used only via its

consequence (2.7) of Lemma 2.1.
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4. The Dirichlet Problem on a Polygonal Domain. Let 2 be the polygonal do-
nain in (0.1) with interior angles 0 < ; < - - < a,, < 2w, and set B; = n/aj. Let
Q JQ,j=1, M, be fixed domains which contain only the jth corner, and set

= (UL

Letu € H 1 (Q) be the solution of (0.1) where for simplicity we assume that f €
C”(£2), and let u, € S"(£2) be the finite element solution given by (0.2). In the above
notation we have the following result concerning local rate of convergence in the maxi-
mum norm.

THEOREM 4.1. Assume that A.1, A.2, A3 and A.4 hold. Let € > 0 be given.
There exists a constant C = C(f, €) such that for h sufficiently small,

n(r, 28 0s)—
(4.1) I _uh"Lm(Qo) <Chmm(r M) e,
wnd
4.2) I = uplly gy < "I forj=1, M
Proof. Let Q. Q) with Q| containing no corner, and Q;,j =1, ..., M, con-
j J 0 J

taining only the jth vertex. We shall use the following two lemmas. The first concerns
local approximation of solutions of (0.1).

LEMMA 4.1. Assume that A.1 holds.

(i) There exists a function x € S"(Q) such that

— r
(4.3) llee = xIILm(Qr y T hlu xlw1 @y <Aann.

(i) Letj>1 be such that §; > 1 (convex corner). Given € > 0 there exists a
function x € S"(Ql) such that

n, min(r,8;)—€’
(4.4) e = Xllp,qpp + Al =Xl @) S Af e)h 7

(iii) Let j = 1 be such that B <1 (concave corner). Given € > 0 there exists a
function x € S"()) such that
@.5) e = Xl _cap + 4 = Xl 01 < O DT

Our next lemma may be of some independent interest.
LEMMA 4.2. Assume that A.1 holds. (Only (2.8) of Lemma 2.2 will be used in
the proof.) Given € > 0 we have

min(2(r—1),28p7)—2¢’

(46)  Mu-uylly_g, o0 <CL N ML By >,
and

28pr—2€ '
4.7 ”u_uh”l—ﬁM—e',Q <Cf e Bm € B<By<l-e.

Assuming for the moment that Lemmas 4.1 and 4.2 hold, we shall complete the
proof of Theorem 4.1. Let us first treat the case of a concave angle o, ie., < ﬁ <.
By Theorem 3.1, with d = 1, we have

e = uplly, (o ) o (e = Xy, =(2)) + flu - X”l’g}. +llu = uylly o)
The desired result follows from (4.5) and (4.7).
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For the case of o; convex, ie., B]. > 1, we use Theorem 3.2 to obtain for any
integer p,

"u - uh”Lm(Qj)

<O lu =X, @y I @+l =l 00)

The first two terms on the right are now taken care of by (4.4). For the last term, we
may replace it by llu —u,ll_, q (see (1.4)), and if p > B,, — 1 we can utilize Lemma
5.2 to conclude the proof.

The proof for the case of Q, is similar and follows using Theorem 3.2, (4.3) and
Lemma 4.2.

This proves Theorem 4.1.

It remains to prove the two lemmas above.

Proof of Lemma 4.1. We shall give the details for (4.5); the other cases are simi-
lar. Note that (4.5) demands simultaneous approximation in H* and L.,. The proof
is based on using the approximation results (2.5), (2.6) of Lemma 2.1, and the detailed
information concerning the behavior of u that is contained in (1.8)—(1.13). First, by
(1.8) we may write u = s + w near the corner, where w € H! Q) N WL(Q). By Lem-
ma 2.1, w can be approximated in the desired way.

For the singular part s, we proceed as follows. Let w € C"(Q]'.) be such that
wx) =0 if dist(v,-, x)<(ky+ Dh, w=11if dist(v;, x) > 2(ky + 1)h. Furthermore
assume that

D%lly,_ < ch=el,

We now approximate ws as in (2.5), (2.6), and using (1.11) and (1.13) we easily deduce
the estimates sought. The proof is completed by noting (again using (1.11) and (1.13))
that

Bi—¢
llews — sIILm(Q}) + |lws — slll’ﬂ} <Ch7l .

This proves Lemma 4.1.
We remark that it suffices to have fin H"~11€(Q) for the above argument.
Proof of Lemma 4.2. Let us first treat the case §,, > 1. We have
e = a4 WD)
u—uylly 5, g = sup —-
M—€ 0EC® () “‘p“BM_l_,_e Ky)
For fixed o, let ¥ be the solution of —AYy = ¢ in Q, ¢ = 0 on Q. Then
(w—up,0) = Al —uy, V) = Al — up, ¥ — X)
for any x € S"(2). Thus,
(u - Uy, ) < llu - uhlll,gllw - X"l,g’
and using Lemma 2.2 we may choose X such that

min(r—1,8,—¢€")
=Xy ST g g,

From the a priori estimate (1.7) we have
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IIW"] +BM—€"‘Q' < C"‘P"gM_ 1+€',9

and hence

< Chmin(r— 1 ,BM—e')"

e _uhml—BM—e',Q u _uhnlig-

Similarly
e =yl o C inf fu—xl, o <O WMD),
xes (@)
and we obtain the desired result in the case of Bpr > 1.

In order to treat the case % < f,, < 1 we shall need the following lemma:
LeEMMA 43. Let 0 <j<%. There exists a constant C such that

(4.8) blg <C sup oGEL
eeC®(Q) it e

From this we have that
u~uy, )
lt = uylly g, et <C  sup W—ll_—h__
wECm(ﬂ) So BM—1+€ ,\Q,

and the proof of Lemma 4.2 then proceeds word for word as in the previous case.
It remains to prove Lemma 4.3.
Proof. We first note that after extension of v by zero,

(4.9) lvll; o < IIvII].’ R2

Using the equivalent norm N].(v) = + 1EPY10E)I? d&)” on H/(R?) in terms of the
Fourier transform (cf. Slobodeckii [33], Ne&as [22]) we find that

(4.10) Wl ,<C sp 0¥
IR ) il .52
VECH(R*) -iR

We shall next establish that for ¢ € Cg (R?),
(4.11) Wil_; o < C||\l/||_i

R2
Combining this with (4.10) and (4.9) gives the result that

loll; o <C  sup 0, ¥)

vecsny M e

which clearly implies the desired estimate (4.8).
It remains to verify (4.11). By definition we have

W_, @ = sup (o),

wil o
weC”(Q);w=0 0n 20 Il o

From Netas [23] we know that extending w by zero from the Lipschitz domain £ to
R? is a continuous operation from H/(2) to H/(R?) for 0 <j < 1%, i.e.,

IIWIII,’Rz < Awlly -
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Thus,

W0 <C  sup ) <y

L 52
weC”(2);w=0 on 38 "w"j,R2 R
This proves (4.11) and completes the proof of the lemma.

5. Location of the Maximal Error in the Dirichlet Problem. In this section we
shall consider meshes that have an element of “size 4’ near the vertex of a concave
maximal angle. We prove then that the maximal error in # — u, occurs within an
O(h! —€) distance from that vertex.

If for some j, ﬁl- < min(r, 28,,) then Theorem 4.1 predicts a higher rate of con-
vergence in §2, than in ;. This suggests that in this instance the rate of convergence
is an increasing function of the distance to the vertex. We shall prove that such is the

case in a special but important situation. Other examples can be treated similarly.
Let

Q= x:d2<lx-yl<d} NQ

where d < d,, and Q}?do contains no other vertex of Q.
THEOREM 5.1. Assume that A.1, A.2, A.3 and A.4 hold. Furthermore, let

(5.1) B, <26y <r.

Given 0 < e < 1 and 0 < § < 1 there exists a constant C such that for h sufficiently
small,

o B L R < g < dy>

u—u <
G2 | h”Lw(Q;j) ;Chﬁf"e for d < n*Pm=FPIAy—5

Note that the hypotheses in (5.1) are always fulfilled if j = M and 8,;, < 1. In
this case we have

Ch*PM= ™M for 1 -8 <d < d,,

- <
(5.3) [lee u""Lm(nﬁp

CH*M™¢ ford <h'-®.

Proof Let ?Zf = Q;’/ 2y ﬂ;’ U QI-M. From Theorem 3.2 we have that for
d>hn'"?,

lle — uyll

< Ch=(nlu - ~a. +llu— ~
Lw(fz?) Ch (hlu XIWL(Q?) [l X”LN(Q?)
—1-[8p1]
+d Mu —u ~d)
e =ayll_y ) )

where [B,,] designates the integer part of 8,,. By Lemma 2.1 and (1.8)—(1.13) we
may assume that

—r—e/2

Rlu=x 1 ~a + llu—xl < cn'di

WL L.

To complete the proof we use the following lemma.
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LEMMA 5.1.  Under the above hypotheses, we have for any € > 0,

(5.4) a” M Yy — oy 3 < ca~Pmp*Pu=<?,

Assuming Lemma 5.1, we have from the above

e =yl oa) < CHd i+ cd MR for h10 <d <,
=(2;

Hence using (5.1),

e —uyll g <CdPMRPMTE for 178 <d <d,.

From Theorem 4.1, |lu — u, |l

(5.2).

L_@d) < ChPi—€ and we obtain the desired estimate
Lahi |

It remains to prove Lemma 5.1.
Proof of Lemma 5.1. We have

u—uy,, )

(5.5) Moo =ull_y oy a0 = 9P g -
M we%”(nl [Bpr1,2

For fixed ¢, let —Ay = ¢ in Q, ¥ = 0 on 2. Then for any x € Sh(Q),
(u—uy, 0) =A@ —u,, Y — ).

Thus, by use of Lemma 2.2 (cf. the proof of Lemma 4.2),

I =, D) < Cll =y lly oY =Xl g
(5.6) o
< cn*Pm2e Wil 44, e, for any € >0.

From (1.7) we also have
(5'7) llw"l“‘BM—e',ﬂ < C"*P"BM_I_G'/LQ.

We now separate the cases 8, > 1 and 8, < 1. When f, > 1 we have by
Sobolev’s inequality (1.6), with €' small,

5.8 llollg, _q_¢ < Clvll
(5.8) 14 By—1-€/2,2 = WLBM](Q)

where ¢ = 2/(2 + [By,] — Bp)- Note now that the support properties of ¢ give

1+[B8pr1-8
59 llll <d MITEM) 0| ~d-
(59) WEIBM](Q) h (61,8

Thus, by (5.5)—(5.9) we obtain for §,, > 1,

2 —2¢' -
~d<Ch Bpr—2e€ d1+[5M] By

Mee =y, I

and the desired estimate (5.4) follows in this case if €' is taken small enough.
For the situation when 8, < 1, i.e. [8),] = 0, proceed as above up to the point
(5.7). Write then

w
Wollgy—1-e2,0 < sup &, :
wel™(Q) w"l—BM+e'/2,S'Z
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Here,
< ~ ~
(v, w) llw"o,n;’"w"o,nf
and by use of Sobolev’s inequality (1.6),

1—- 1—
Wl g < Ca' 0wl oy, < €2 MWl gy

0,8 H
The desired result follows in this case too.

This completes the proof of Lemma 5.1.

We shall now discuss the location of the maximal error. For simplicity, we shall
restrict ourselves to the case of a concave maximal angle which is strictly larger than
the other angles.

In a neighborhood of the vertex v,, let

u(p, 6) = kM sin(By60) + - - -
with k,, # 0. We assume that there exists a constant C > 0 such that for # sufficient-
ly small,
(5.10) U< inf u-xl_ g
xesh (@)
This would, e.g. be the case in our examples of Section 9 if elements of size & occurred
at the vertex v,,. For, the problem of then showing (5.10) is easily reduced to the

one dimensional problem of approximating k&x*M, k > 0, on (0, /), by polynomials 7
of a certain degree t = 1. We have

8 fmy P -
W™ = 7ll,  o,my = KM =70z (0,1

where y = x/h, T(y) = k= 1h—tM n(hy). Since with P, the polynomials on (0, 1) of
degree ¢,

. By _~
%&t Ily Tr(y)"Lm(o’l) > 4 > 0 (ﬁM < 1),

we obtain
inf |lkx"M — > cki™M
n 7Ir”L (o h) = Ckh .
Tr -] i

This proves (5.10).

THEOREM 5.2. Let A.1, A2, A3, A4 and (5.10) hold. Assume that ), < 1
and Bpy < Bpr_ ;. Let X be such that llu = upll, () = (u = u,)(x)| and let 0 <& <
(Bar—1 — Byg) be given. Then for h sufficiently small,

(5.11) X = vyl <H'E,

Proof. Let € > 0 be sufficiently small. Then from Theorem 4.1 we have that
outside of Q,,,

ll = uplly (o\0,) < ™y 1528 —€ < Mt
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From (5.3) of Theorem 5.1 we see that for d > h' =5,

' = 28arg—€ AR -+ 5. 1A
o —ail g < cntH G < ottt

Thus for [x — vy, > h' 8,
I — u, )x) < CHPMFeI4
and since by assumption
I = u,)(X) > CH°M,
we obtain the estimate (5.11). This proves the theorem.

6. Calculation of Coefficients in Singular Expansions (Stress Intensity Factors).
Let us consider the case when the maximal angle a,, is concave. Letting p = |x — vy,
and 0 denote the angular variable, we have from (1.10)—(1.12) that

u(p, 0) = ko™ sin(B,,0) + S(x) + w(x)

in a neighborhood of v,,. Here IS(x)| < Cp?PM and if fis smooth enough, w(x) is a
twice continuously differentiable function that vanishes on 2. Since, therefore, its
directional derivative at the corner vanishes in two linearly independent directions, we
see that [w(x)| < Cp?. Hence,

(6:1)  up, 0) = kyyp"M sin(By0) + 0(0>*M) as p — 0, for % < By < 1.

The quantity k,, is sometimes called a stress intensity factor, and its calculation
is of interest. Several ways for approximating k,, using the information obtained in a
finite element solution have been suggested, cf. the surveys by Gallagher [13] and
Pian [30]. One simple method starts with the observation that with 0 < 6, < a,,
fixed,

, 0
—_-__ui.p__o)—+0(pﬁM) asp-—>0.
pBM sin(By,0,)
Thus,
u,(d, 0,)
6.2) kp(d, 1) = ———"—
M sin(By,0 )

appears as a natural candidate for an approximate stress intensity factor.

The problem then presents itself as to how d should be chosen. Motivated by
our local analysis we offer one possibility below and give an asymptotic error estimate
for this choice.

THEOREM 6.1. Assume that A.1, A2, A.3 and A.4 hold, and that % < f,, < 1.

LN

Let k’,{,, be- given by (6.2 wiirr

(6.3) d=p2l3
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Then, given € > 0 there exists a constant C such that for h sufficiently small,
(6.4) lkyy — Kl < cn*PMI3¢,
Proof. By (5.3) of Theorem 5.1 and by (6.1),
lu(d, 6,) — u,(d, 6,)| N cd*Pm

Ik, — Kpy(d, B)| <
e M sin(B,,0,) M

<SO*PM M 4 Py,

This immediately gives the desired result.

A similar analysis is easily carried out for a,, convex, /2 < a, < x. In this case
the term of O(p%#M) in (6.1) is replaced by O(p?), and one applies a slightly varied
form of Theorem 5.1. The details are left to the reader.

The information contained in the quantity kﬁ, can be used to improve (as far as
error estimates are concerned) the approximation to u near the maximal corner.

THEOREM 6.2. Assume that A.1, A.2, A.3 and A.4 hold, and that % < 8, < 1.
Then with kﬁ, given by (6.2), (6.3), given € > 0 there exists a constant C such that

(6.5) lu(p, 0) — K% p°M sin(B,,0) < CH**MPP~PM  for p < 213,

Note that the rate of convergence in (6.5) is higher, for p < A%/3, than that
predicted by Theorem 5.1, viz. Ch2PM—€p=fM p > p1-8,
Proof. From (6.1) and (6.4) we obtain

lu(o, 8) — KoM sin(8,,0)] < I(kyy — K%)p™M sin(B,,0)] + Cp”*M
< C(thls—epﬁM + pzﬁM)

which immediately implies the estimate (6.5).

Let us finally consider the approximation of higher order terms in the asymptotic
expansion for 4 around the maximal corner. For simplicity, we consider the case
2 € ayy £ 2m We inave idrer, of. 6.5

(6.6) u(p, 0) = kpp™ sin(By0) + Lyp” M sin(28,,0) + O(0>*M).
For 6, fixed such that sin(28,,6,) # 0 and K4, given by (6.2), (6.3), we set

u,(d, 0,) — Kid™ sin(By,0,)
d**M sin(28,,6,,)

6.7) Iy(d, h) =

as a candidate for an approximation of /,,.
THEOREM 6.3. Assume that A.1, A.2, A.3 and A.4 hold, and that ' < B,, < 2/3.
Let 1}y be given by (6.7) with

(6.8) d =hl/3.

Then, given € > 0 there exists a constant C such that
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(6.9) lps — ) < CHPMI37€,
Proof. By (6.6), (6.7) we obtain

u(d, 6,) —u,(d, 0,)

M
d*PM sin(28,,0,)

’

N '(kM ~ K )dM sin(B,,0,,) v o

llps — (@, B)I < -
Mo d**M sin(28,,0,)

and thus from (5.3) of Theorem 5.1 and from (6.4),

lpg = Lk, d)l < C(RPM™ g™ 4 p?PM3=<4=Pm 4 Py,

The theorem obtains.

A similar analysis can be carried through for 37/2 > ayy > m; the order term in
(6.6) is replaced by O(p?). Again we leave the details to the reader.

In a manner similar to that of Theorem 6.2, the first two terms in (6.6), with
kar» 1y replaced by their approximations, can be used as an approximation for u which
is potentially better than u, is for p < h'/3. The details are once again left to the
reader.

7. Proof of Theorem 3.1. Local H' estimates for interior domains were proven
in Nitsche and Schatz [27, Lemma 5.1] for quasi-uniform meshes. The proof of our
present generalization of that result will follow closely the presentation in [27], but
for completeness we shall give some of the details in the case of domains abutting on
the boundary.

LEMMA 7.1.  Assume that A.1, A2 and A3 hold. Let p be a nonnegative integer
and D, J DY Q. There exist constants C and h, > 0, depending on p and dist <),(D,, D)
such that for 0<< h < h, the following holds:

Let u € H'(D) and u,, € S"(D) satisfy

(7.1 A(u—u,, 9) =0 forall ¢ G.&(D).
Then for any x € S"(D),
(7.2) lle = wuplly p < Cllu = xlly p + e~ upll_,, p)-

In order to prove our local results here and in Section 8 we shall make use of the
following auxiliary mixed boundary value problem. Let D be Q intersected with a disc,
and assume that cither the disc is centered at a vertex and no other vertex is contained
in D, or that the disc is centered on 982 with no vertex meeting D.

Let 'y = D N 9882 and Ty, = OD\I';,. The problem is then to find v such that
with g given,

—Av=g inD,

(1.3) v=20 onTp,
ov/on =0 on T'y.

<
In a weak formulation we seck v € H'(D) such that
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A, w)=(g w) forallwe 1<11(D).
Using the results of Oganesyan and Rukhovets [29] we have the following a priori
estimates.
Let D, 3 D and supp g C D,, and let D' C D.
If D' does not contain the corner or part of 'y, then for any nonnegative integer
k there exists a constant C = C(D’, k) such that

(7.4) "v"k+2,D' < C"g"k,Dl'

If D' contains no part of Iy and if the interior angle at the corner is less than m,
then there exists a constant C = C(D") such that

' < .
(7.5) "0”2,[) C"g"L2(D1)

Proof of Lemma 7.1. By (1.5) it is enough to show the result for D, and D the
intersections with & of two concentric discs of radius R and 2R, respectively, with
center in £ and such that either

(i) the center is on 982, or

(ii) the whole disc of radius 2R is contained in Q.

We shall give the details in case (i) only.
We first prove that for v, € S"(D) such that

(7.6) AQ,,9) =0 forall g e?"(z)),
we have
(7.7) Wally,p, < Qllvgll_,p-

Let w € C™(D) be such that w =1 on D, and w = 0 in a neighborhood of I'y;. Then
since D intersects 32 where the functions in S”(D) vanish,

ol p | < llwvylli p < CA(wvy, wvy,)
= CA(vy,, w?v,) + Cvah {(Aw)wv, + 2Vw * V(wvy,)} dx.
By (7.6) and A.2 we have for a suitable 7 E?‘h(D),

A, w*v,) = AV, W, — 1) < Ch"Uh”%’D
and thus,

llow, I}, p < Chllog I} p + Clivyllo, p\p llwwylly -
Hence it follows that
2
(7.8) ||vh||§,Dl < Chlv, I} p + Cllvyllg,p\p -

Next let D, and D, D, i D;, be the intersection of & with concentric discs
such that either
(i)' the center of the discs is on 92, and D, does not contain any corner of £2, or
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(i)’ D, is a whole disc interior to 2.
We shall only consider the case (i)’ and show that for k¥ a nonnegative integer,

(7.9 "Ivh“l—k,D2 < Chllvhlll,pa + C‘llvhlll_k_l’pa-

For this, let w € C™(D;) with w =1 on D,, and w = 0 near aD;\(0D; N 982). We
have

(wvy,, ¥)

(v, Il = su ———,
Wl-kDy = 3P el p,

PECT (D))

For fixed ¢, let Y solve the auxiliary mixed problem (7.3) over D, assuming after a
change of D if necessary that Dy § D. Note that by (7.4),

(7.10) "‘I/"k+2,p3 < C“"p“k,Dz'
We have now
(wvy,, 9) = A(wyy,, ¥) = Ay, w¥) + Ju,(Aw)Y + 2Vw - VY) dx.

Writing A(,,, w¥) = A(V,, w¥ — X) for a suitable x we get upon using (2.7) of Lem-
ma 2.1 and (7.10),

(wvp,; @) < Qloglly p HllYllz p, + Mopll_x— 1,0, 1¥llc+2,0,

< Qo lly i, + Mol 1,0 Al p -

Thus (7.9) obtains.
Iterating (7.8) and (7.9) over suitable domains inserted between the original D,
and D, we obtain with D, ¥ D' ¥ D,

1
Wylly,p, < CHY®* Dl iy pr + Clloyll_ 5, p-

In view of A.3, the result (7.7) follows.
We can now show (7.2). Let D, and D be as in case (i) and D, § D' 3 D. Let
w € C=(D) be such that w =1 on D', w = 0 in a neighborhood of dD\(3D N 9L2).
Let % = wu and let Pu € S"(D) be the solution of
A(Pi -7 ¢)=0 for all p € S"(D).
Clearly then,
bz~ Pil, , < Cllaly .

Next note that A(Pu — u,, ¢) = 0 for ¢ E?"‘(D') so that by (7.7),
WP =yl < OWBE = wylI_p, pr < Ut = Pl py + Cllia = upll_p,

<Clully p + Clllee — u,,l||_p,D-
Thus,
e =l < Cally p + Clhe = wyll_p,
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and (7.2) follows upon writing u —u;, = (u — x) + (x — u,)-

This completes the proof of the lemma.

As in [31, Lemma 3.2] we have the following result in the case when the domains
D, and D are allowed to vary and become small with A.

LEMMA 7.2. Assume that A.1, A.2, A3 and A.4 hold. Let p be a nonnegative
integer and 0 < & < 1. There exist constants C = C(p, 8) and h, = h,(p, §) > 0 such
that the following holds. <

Let D, 9 D with disty(D,, D) =d > h'~°, and let u € H"(D) and u;, € S*(D)
be such that

(7.11) Awu—~u,,9) =0 foraly E?"'(D).
Then for h < h, we have for any x € S"(D),

a7 = uylly p, + = uyly p
(7.12)

<O Mu=xlgp +lu—xly p +d TPl —uyll_, p)-

Since h/d < h® < h, for h sufficiently small the lemma follows from Lemma 7.1
by a scaling argument using the hypothesis A.4; see [31, Lemma 3.2] for details.

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Let |lu — uhlle(Dl) = |(u — uy)xy)l for x, € Dl. Let
D, and Dy be the intersections of D with discs of radius d/4 and d/2 centered at x,,.
Then for any x € S*(D),

—_ < —_ -— .
I(u uh)(xo)| [lze X"Lm(p,l) + [Ix uhIILon(D2)
Using A.3 we have for ¢ such that y2/q = e,
lIx = uplly_(p,) < chCllx — uhIILq(D3)-
Applying Sobolev’s inequality to D, we obtain
2 —1y, —
I = wylly, () < Cd 190X —uply,p, +d7 X = uylly p,)
<(lu=xly,p, + d= Ml = Xllo,p, + lu —uyly p,
+d Yu - uh"O,D3)'

An application of Lemma 7.2 completes the proof.

8. Proof of Theorem 3.2. We shall prove the following generalization of the
estimates of [31].

LEMMA 8.1. Assume that A.1, A.2, A.3 and A.4 hold. Let p be a nonnegative
integer, and € > 0. Furthermore let D 1 D where D does not contain any concave
corner of Q. There exist constants C and hy > 0 depending on p, €, and distg)(Dl, D)
such that for h<< hy the following holds.

Let u € H'(D) N WL(D) and u,, € S"(D) satisfy
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(8.1) A —-u,,9)=0 foraly E?"'(D).
Then for any x € S"(D),

(8.2) M —uplly (p,y < Ch™*(hlu - x| +llu =Xl _py + M —uyll_, p)-

W 5(D)

Theorem 3.2 follows from Lemma 8.1 by use of a scaling argument, cf. [31] for
details.

In the proof of Lemma 8.1 we shall need two simple auxiliary results. The first
concerns the mixed problem (7.3) when the right-hand side has small support.

LEMMA 8.2. For any € > 0 there exists a constant C = C(D, €) such that the
following holds. Let g be supported in a domain D, C D, with diam D, =d. Then

1—€
(8.3) i, p < Cd IIgIILz(Dl)-
Proof. We have

o2 p < CAQ, v) = (g, v)

and using Holder’s inequality with 1/g + 1/¢' = 1 and q large,
I(g, v)I < C“g"Lq'(Dl)"v"Lq(D)
2—aVa'

< cd?-1la ||g||L2(Dl)||v|qu(D)-

By Sobolev’s inequality, for g < oo,

bl (py < Cla. Db,

and the result follows since ¢’ can be taken arbitrarily close to 1.

We shall also require the following result concerning harmonic functions.

LEmMA 83. Let D, 3 D, with disty(D,, D,) = d, diam D, <d, diam D, <
3d, and such that D, contains no concave corner of Q. There exists a constant C such
that the following holds:

For v harmonic on D, and vanishing on 9D, N 382,

(8.4) ol p, < Ca—wlly p,-

Proof. By a covering argument it suffices to prove (8.4) in two cases.

() D, and D, are concentric discs of radius 2d and d, respectively with D,
interior to 2.

(i) D, and D, are the intersections with & of two concentric discs of radius
2d and d, respectively, and with center on 92 such that either (a) D, contains no
vertex of §, or (b) the center is at a vertex of convex interior angle.

In case (i) we note that w = 9v/0x; is also harmonic. Thus let us show that for
a harmonic function w,

(8.5) IIVW||0,Dl < Cd_lHWHO,Dz-

Let w be a C* cut-off function such that w =1 on D,, supp w CC D,, and
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(8.6) ID%ell, < ca~lel,
We have [|Vwlly p, < llwvwll3, and

lowll2 = [(@Tw) - (@Tw) = [Tw - (V(@?w)) = 2fwTw - (Tew,

The first term on the right is zero, so that

llwvwli? < 2llwvwll,Ca™iwlly p ,
Thus,

lewvwll, < Cd~! Iwllo,p,

and (8.5) follows.

For c#e (ii), let us treat the situation when the discs are centered at a convex
angle. Letting w be a C cut-off function which is = 1 on D,, vanishes in a neighbor-
hood of aD,\(aD, N 9L2), and satisfies (8.6), we have upon using the a priori estimate

(7.5),

loll . < ClAG)l, b,
<@~ ! "U"1 ,D,\D, + d_2"v"0,D2\Dl)'

Since diam(D,\D,) < d and v vanishes on 3(D,\D,) N 8L, we have by Poincaré’s
inequality that

Wllg,p,\0, < CalVollo p\p -

The desired inequality (8.4) obtains.

This completes the proof of Lemma 8.3.

We can now prove Lemma 8.1.

Proof. We shall assume that D, and D are the intersections of Q with concentric
discs such that either

(i) (a) the discs are centered at a convex corner of £ and contain no other corner
or

(i) (b) the discs are centered on a straight line segment of a2 and contain no
corner, or

(ii) the discs are interior to 2.
We shall give the details of the proof in the case (i) (a). This reasoning immediately
carries over to the case (i) (b). In the situation of (ii), one first perturbs the bilinear
form A4 into Z(v, w) = A(v, w) + (v, w) which is then coercive over H'. The pro-
cedure in (i) applies if 4 is replaced by 4 in (8.1). To conclude the argument one
then proceeds as in [31, Appendix 1].

We shall first reduce the proof to finding estimates for a locally defined problem.
Let D, 3 D, 31 D; J D be intersections of  with discs centered at the convex corner.
Let w € C™(D) with w =1 on D,, w = 0 outside D;. Set % = wu and let Zh es"(D
be the solution of
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(8.7) A -1, ) =0 for all p € S"(D).

Note that since D intersects dS2, there is a umque uh satisfying (8.7).
We shall derive the following estimate for u- uh
LEMMA 84. Under the conditions of Lemma 8.1,

(8.8) =yl (p,y < CH™ (il ,y Wl (p)-

wl(D)
Assuming the validity of Lemma 8.4 for the moment, let us complete the proof
of Lemma 8.1. We have

(8.9) [fee — uh"L w@) S "u uh“L w (D] )+ "uh uh"L w (D7)’

Note now that A(u, — u,, p) = 0 for ¢ in 3"(02). Let D, ¥ D} J D,. Using A.3,
Sobolev’s inequality (1.6), (7.2) with 4 = 0, and Lemma 8.4 with € replaced by €/2,
we obtain for g = 4v/e,

i, — uplly (o) < Ch= <22, ~wl o)
< Ch=uy, —u,ll; o < Ch=¢/2||u, — |l
h rll1,D h h"—p,D,
< cnel - Ul o,y + llu =yl p)

- ~ ~ — 2 _
S ChmElul 1 0+ Nl py) + CH <Pl = wy I, .

Using this and Lemma 8.4 again in (8.9), we arrive at

It = wplly o,y < CH<Culul 1+ Wl oy + it =yl ).

The inequality (8.2) follows upon writing u —u, = (u — x) + (x — u,) for any x €
S*(D).

It remains to prove Lemma 8.4.

Clearly, it suffices to show that

(8.10) il 0y < CH™“lal y o+ Wy _(py):

Let lluyll,_(p,y = lup(xo)l for xo € Dy, and let A, and A, be the intersections with
D of discs of radius p = #'~% and 2p, respectively, centered at x,. Here § = ¢/3. By
A.3 and Sobolev’s inequality we obtain for g = 2v/8,

8 -5/ 1 ~
o)l < Wyl g, < O (1l + 2471, ).

Thus,
(8.11)  Ju,(xp)l <Ch_5||u||1,A1 T lu = wylly A+ T"“h"o,Al'

Now,

(8.12) lly, x, < Collil )= CHF2Ual
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From Lemma 7.2 with p = 0 and x = 0 we have
i =yl a, < C(llyp, + Sl p, + 5 llo,n, )

and using this and (8.12) in (8.11),

~ 28 0~ 8~ Ch—% ~ Ch—% ~
|uh(x0)| < Ch “u"WL(D) + Ch |u|1,A2 + —p""u"o,/\2 + _p"uhllo’A2
SOy o+ OOl ) + O iyl -

The problem of showing (8.10), and hence Lemma 8.4, is now reduced to verify-
ing that

(8.13) R CATRINES Ch—f(hninwi S
We have N

I lly o. = sup M)-—.
(8.14) 2 wec;“(Az)""’"O’Az

<
For each fixed o, let v € H'(D) solve the problem
<
(8.15) AW, v) = (Y, 9) for all y € H'(D).
Letting v, € S"(D) be such that A(x, v — v,,) = 0 for all x € S"(D) we obtain then

(8.16)  (u,, ¢) = A, v) = A(uy, v,) = A% v,) = A v, —v) + (% ¥).
Note next that

(8.17) I, 9)l < Collull, w¥llo A, = Cn' ~®|jul, w9l A,
Also,
(8.18) lA(u, v — vyl < CIIuIIW Lo, o vhllw}(%)-

Using (8.14) through (8.18) we see that (8.13) would follow if

- < 2—e€
(8]9) "U Uh"w}(DZ) < Ch "‘P"(),AZ.
For simplicity in notation, let the radii of the discs whose intersection with Q
form D, and D be 1/8 and 1, respectively, and set

=27 <k -x|<27YND,  j=-1,...,J+2,
QU=Q_VQ_ ., V---UQ,) =123,

where

J= [ln2 Tsﬁ] + 1 ([a] denotes the integral part of a).
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Let also
Q= {x:x—xl <277} nD.
Then
J
=0yt oy =P Uiy * 2 iy
(8.20)

I
< C(h“sllv “vll g, + X 270 - vh"l,sz,.>-
=3

We first consider the domain §;. Here we use (8.3) of Lemma 8.2 which says that

lolly p < Co' ~Plglly a, < C'~*°ligllo a -

Thus,

(8.21) o = v,lly,p < Qlly p < CH2Plglly 4,

Next apply (7.12) of Lemma 7.2 to the domains ,9f Q!. It follows that
j P

J J
=Y 277w - < I - - + v - :
1 j§32 llv vh"],ﬂj ];3(2 llv Xlll,n} + v X”o,n].l llv vh"O,le)
Using the approximation result (2.7) of Lemma 2.1, we obtain
o 1
(8.22) I<C ; 2 ’h||v||2 o2 + Cln }—lllv —Vyllo,p’

j=3 oy
where D' is the intersection with  of a disc of radius 1/4. Since v is harmonic outside
of A,, we have from (8.4), as D contains no concave corner, that

<Y
(8.23) "0”2’91? < C2 llv”l,n]?"
A simple duality argument employing the a priori estimate (7.5), and (2.7) of Lemma
2.1 establishes that

o = wplly, pr < Chllvlly p-
Using this and (8.23) in (8.22), we find
1
I<Chiln ;7"””1,D-

By another application of (8.3) we obtain that for In(1/#) < h~?%,

I<Cn*~ligllg -
Inserting this and (8.21) into (8.20), we have proven that

o =v,ll 1 <O Cligllg 5, < CH2lidlg 5 -

1

1(D3)

This is the desired estimate (8.19), which completes the proof of Lemma 8.4.
The verification of Lemma 8.1 is now complete.
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9. Examples of Finite Element Spaces. We shall give examples of finite element
spaces that satisfy our assumptions A.1—-A.4.

The spaces described in our first example are well known and we shall be brief.

Example 1. Quasi-Uniform Meshes. Consider a triangular or quadrilateral quasi-
uniform partition of Q. As function spaces S”(£2) we may use the Lagrange or Hermite
elements, see Ciarlet and Raviart [8], the elements of Bramble and Zldmal [6], the
tensor products of one dimensional piecewise polynomials, and others.

For the well-known techniques involved in verifying our assumptions, cf. [8] or
Ciarlet [7]. In connection with A.2 (where now y = 1), see also Nitsche and Schatz
[27].

Our next example is a simple one on a non-quasi-uniform mesh.

Example 2. Piecewise Bilinear Functions on a Non-Quasi-Uniform Mesh. Let
0% consist of axis parallel line segments, and consider a sequence of partitions of £
into axis parallel rectangles 7, ;, 7 =1,...,I(h). Letl, , ;andl, , ; denote the
lengths of the sides of Tp,i» and assume that with K, K, > 0 and vy, = 1 constants,

max max(l] n l)) <K,h,
9.1) t =12

m:n mm (I] n l)) K,n"1.
Let S"(2) consist of the continuous functions on § which vanish on 32, and which
on each rectangle 7, ; reduce to a bilinear function ay + a;x + a,y + azxy.

If T denotes any rectangle of sidelengths /,, I, with L = max(/,, /,) bounded,

< 1 say, then Jamet [16] has shown that with X equal to the interpolant of v at the
corners,

< CL?
ay S P2 o

where C is independent of /; or I,. From this we obtain A.1 with r = 2 and the part
of A.4 that pertains to A.l.

In Appendix 1 we shall show that for x a bilinear function on T, w in C3(T)
and with n denoting the interpolant of wy,

o =Xl ¢y + Ll =Xl 0

92) llwx = ll; 7 < CLllwll xlly -

w(T)
From this we deduce that A.2 and the corresponding part of A.4 are true, with /, = 3.

To verify A.3 (we consider here only the second part) we show in Appendix 1
that with I = min(l,, 1,),

(9.3) lxtly 7 < @Dl 7

where again C is independent of I, and /,. Using (9.1) and (1.5), the inequality (2.4)
of A.3 follows with v = v,. For the corresponding part of A.4, note that it follows
from (9.1) that on a rectangle that is transformed via a stretching by a factor 1/d,
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Since for d = hl_s,
n't (h 14+(y,—1)/8
—>(Z
d =~ d)

we see that A.4 holds.

Example 3. Piecewise Linear Functions on a Non-Quasi-Uniform Triangulation.
Assume that  is partitioned into triangles Th,is i=1,...,Ih). Let 0,,’,. be the
maximum interior angle of Th,is and assume that with 00 < m independent of 4,

m?x 0,,’,‘ <40,

Furthermore, let Pni = diam Th,is and let Op,i = max {diameter of discs inscribed in
'rhy,-}. Assume that with K, K, > 0 and v, > 1 constants,

max p, ; < K h,
1

9.9 ' y
mino, ; = K,h 1
1

Let S"(Q) consist of the continuous functions on £ which vanish on 32, and on each
triangle 7, ; reduce to a linear function @, + a;x + a,y.
To verify our assumptions in this case, let 7 be an arbitrary triangle, and let

0 <0,, p, 0 < 1 have the obvious meanings. For x the interpolant of v we have,
Jamet [16],

o =Xl _(y + olv=xl < C(0,)p* vl

wl () w21y
Thus A.1 with » = 2 and the corresponding part of A.4 follow.
To verify A.2 we quote the following result from Babuska-Aziz [3]. Forv €

H?*(T) and 7 the interpolant,
9.5) o =all; 7 < C@)ellvll, 7

Letting x be a linear function and 7 the interpolant of wy where w € C*(T), we obtain
from (9.5) since second derivatives of a linear function vanish,

lleox = 7l 7 < COplN 5 IIxl, -

wZ(T)
This proves A.2 and the corresponding part of A.4.

The inverse assumption A.3 is taken care of in a manner similar to that of Exam-
ple 2, using (9.4).

In Part 2 of this series we shall give a more detailed analysis of the finite element
method when the mesh is refined near a vertex. The results obtained in Theorems 3.1
and 3.2 are valid for a large class of meshes which are associated with refinements, and
will be of importance in the derivation of results in Part 2. As our last example we
shall describe certain mesh refinements which satisfy our hypotheses A.1-A.4.

Example 4. A Special Class of Locally Quasi-Uniform Meshes. Let Qi’ i=1,
..., M, be the intersection of £ with a disc of radius Ri centered at the jth corner

vertex v, and such that ‘Qi contains no other corner. Set £, = Q\(Uil‘ilfl’-).
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Assume that the partition is quasi-uniform over Q, with the diameter of any
element being equivalent to . Let

Q= 27" R, <k -yl <27¥*R} N Q,

=L MEk=1,...,k,

and

Qi,kj+1 =k bkk-yl< 2_kfR’.} N Q.

On each Q].’ & let the partition involved be quasi-uniform with the diameter of the
elements involved being comparable to h; > where with v, > 1 constant,

WSk, <h j=1,....,Mk=1,...,k+1

Consider on these kinds of meshes, e.g. the finite element spaces listed in Example
1. One may verify the assumptions A.1—A.4 essentially as in the quasi-uniform case.
In A.3, v may be taken as v, .

Appendix 1. Verification of Assumptions A.2 and A.3 in Example 2 of Section
9. Let T be a rectangle with corners P, = (0, 0), P, = (I, 0), P, = (I;, l,) and
P; = (0, 1,). Here it is only assumed that /; and I, are bounded, say by unity. Put
L = max(l,, l,) and I = min(l,, 1,).

We shall first verify the assumption A.2 and its counterpart in A.4. To accom-
plish this, we need to investigate in some detail the interpolant into S* of a function
v. Given v, letv; =v(P),i=0, 1,2, 3. Define n on T by

= (XM Z-1)-y, X(X_
nmnf-) () i)
x Yy X y
+u, - (F- 1),
21112 3<ll >I2

It is well known, see, e.g. Ciarlet and Raviart [8] (or by the considerations given
below) that with C a universal constant,

"v - n"O,T < CL2IU|2’T.

Taking v to be of the special form wy with x a bilinear function we obtain

- 2 . 2 0
lox = allo,r < CL2lel 2 ol 7+ CL2sl, | 5k [,

Since
5037 Jo.p <"
(A.L1) laxay o S CE X 7
we have
(A.1.2) llwx = llg, 7 < CLllwll_ > lIxXlly 7

W (T)
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Consider next a(v — n)/ax. We find that

a_n__y_( oy YA AYARE )

ax I, Jy 5e6 1 as i (12 1) Jy e 0).

Thus, dn/ox is constant in x and given as 1/] , times the one dimensional linear inter-
polant in y of the function

1
f») =I01 g—:(s, ) ds.

We write
M, ) - 22, 5)
_fong oL w
(A13) = gax(x, » ,lf(y)§+g Hl e n-Le y)%

=1,(x, y) + L,(x, ).

For I, fix x, square and integrate with respect to y. From well-known properties
of linear interpolation we obtain

11 3
f II,Ge, )I? dy < P-lzf I(ay) . a;Z(s y) ds dy, i=1,2.

Integrating then with respect to x we arrive at

ENZRY, .
(A.1.4) ”’1"0’T<C’5u5<$)”uo,T’ i=1,2.

Consider next I,(x, y). Fory fixed, I,( -, y) is the error in a mean value
approximation for ov( -, y)/ox. Thus,

U1
f o 12, PI? dx < CP? f -a?(x y)' dx
so that
(A1) il < | 54|,

From (A.1.3), (A.1.4) and (A.1.5) we conclude that

0 .
a1 fra-of  <c(lx@),, 3, ,) =2
( ) “ax(" v)"o, < A%l /) Pllo,r T tlaxllo, ¢ !

Again taking v to be wy with x bilinear we have, with j = 2, that

]
”ax (wx n)"o,r < Cll ,(T)( "axay X"O,T + L”XIII,T)‘

By use of (A.1.1) we deduce that

)
— — <
"ax (wx n)"o’T < CLllwIIwi (T)IIxIII,T.
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Combining this with its counterpart for d(wx — n)/dy and with (A.1.2), we have

wY — <
leox = ll, 7 < CLIall3 1 Il -

Thus, we have verified A.2 and its counterpart in A.4.
Let us remark that by taking j = 1 in (A.1.6) we see that the interpolant would
work in Lemma 2.1.
We now consider the inverse assumption A.3(ii); the proof of A.3(i) involves simi-
lar ideas and is simpler. Let T be a general rectangle as before. The map
1 ~ 1

x=l—lx, y=g

maps T to the unit square T Letting ; be the transformed function we have

o7 B,
T Zay 0.7/

2 _ ~a _, 1]|9
(AL7) 2 7 = 1,12<||x||0,T + E'&cq N

To be specific, we shall treat the term

~ U 2
10 =7~ 2 ?(" .
1 0,T

By the equivalence of norms on finite dimensional spaces,

(A.1.8) <c 12 —IX2 , 5
Now,
~ ~2
X2, 7 = sup x 9)

] P ~ o~
pe ™ () Z( > IID"wllﬁ,;>
j=0\lal=j
_ (1112)_2(3‘: ‘P)z
= sup

p
oy G Z( X G0 1)
]

=0\lal=j

2
< (lllz)_l S;.)lp %ML_.
pec=(ry 3 Plell 7

j=0
(,1,)! 2 1,1,)~ 06 9)
= _17%7— sup (0 ¢) (212,), sup T ¢]|§p i
¢e?°°(r) Z 120- ”)|th2 ¢e%“(r) pT

=0

)"
el

By (A.1.8) it follows that
1) < 2@+ Dy, 1.,
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and combining this with similar estimates for the other terms in (A.1.7),
lixlly, 7 < €=+, .

Thus we have derived the estimate (9.3). The conclusion of the argument is
given at the end of Example 2.

Appendix 2. Proof of Lemma 2.2. Assume that for any v € H1(Q) N H'(R),
there exists a function x € $*(Q) such that

(A.2.1) o = xll; o < CH~lvll,, g -

By Lemma 2.1 (and a simple density argument) this is a consequence of A.1.
To prove Lemma 2.2, we need to construct, for any v € Jig Q) NH®Q), 1<
s <r, a function x € S*(Q) such that

(A2.2) v = xll; o < CH*~wllg -

Here the constant C should depend only on s.
We shall prove the following: There exists a constant C such that given v €
A'(Q) N H5(Q) and 0 < h < 1, there exists v, € () N H'(Q) satisfying

(A.2.3) o = vyll; o < CHvlly g
and
(A.2.4) oy ll, o < CH*~"llvllg, .-

Then (A.2.2) would follow upon writing
v—x=@-v)+ @ —x

with llv; = xll; o < Ch"lllv1 I, o cf. (A.2.1). We shall now give the construction of
the function v, .

First let v be extended to a function v on R?, where the extension is done con-
tinuously in H® norms, see Stein [34]. By use of a suitable smoothing operator S =
S(h) we have

(A.2.5) IS0 =Vl o SCHETMR 5 1<s<nr,
and
(A.2.6) ISvll, o2 < Chs"llvlls’ g2 L1Ss<r

In terms of the Fourier transform F one may take
FOX®, 18 <1/,
0, 1&l > 1/h.

F(So)(®) =

Since ||F||S r2 =00+ £12)*| Fo(£)I2 d£)* one easily obtains (A.2.5) and (A.2.6).
Let now

(A2.7) w=5vl3q.
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Introduce the following norm for functions defined on 0%2, k > %,

(A.2.8) lek—%,aﬂ = "f”k,ﬂ

inf
reH¥(Q)if=won 3Q

Assume for the moment that for any w as in (A.2.7) we can find an f, € H"(Q) with
fo = w on 9L such that with C a constant independent of w,

(A.2.9) Wollg,o < CWlg_y, 50 fork=1andr

We now put v, = Sv - fo- Note that then v, vanishes on 8. Let us show how
(A.2.3) and (A.2.4) obtain. We have

(A.2.10) o= vyl 0 <IIv=S¥l,,q + 15l g
Now by (A.2.9), (A.2.8) and since v = 0 on 382,
Ifolly 0 < ClWly, 50 = CISV = Bly, 5 < QUISY = Bll; g
From this and (A.2.10), using (A.2.5),
o= v,lly @ < CUSY =il o <CH Ml L, <Ol g

This proves (A.2.3).
Next, to prove (A.2.4),

(A2.11) Wy ll, o < ISV, o + Ifpll,q-
Now by (A.2.9) and (A.2.8),

Ifoll, @ < CWl,_y, 50 = CIS;I,_y,,m < C"S?;"r,ﬂ‘
Hence, by (A.2.6) and (A.2.11),

Iyl o < CUSD,, o < CHIBN, 5 < OBl .

Thus (A.2.4) obtains.

It remains to show that the extension of functions defined on 02 can be done
so as to satisfy (A.2.9). The extension can be done locally, and we shall consider a
neighborhood of a corner. Assume first that the corner is convex. By use of an affine
mapping we may assume that the interior angle is less than n/(r — 1). A suitably local-
ized harmonic function f, with boundary values equal to w will then satisfy (A.2.9),
see Kondrat'ev [19, Theorem 5.1]. (The result is written down in [19] for k > 2,
but is very simple to deduce also for k = 1.) The affine mapping does not disturb the
relation (A.2.9)

For a concave angle, we consider first the exterior wedge, which is then convex,
and extend w as above. Thereafter extend the function so obtained to R? to complete
the proof.
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