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Computational Experiments and Techniques
for the Penalty Method With Extrapolation

By J. Thomas King and Steven M. Serbin

Abstract. In this note we present results of a computational investigation of the extrap-
olated penalty method for approximate solution of elliptic boundary value problems.
We investigate the effects of extrapolation and present an iterative technique for solving
the extra linear algebraic systems necessary to perform the process. We indicate how
convergence of the iterative procedure may be accelerated when boundary weights are
appropriately selected. We consider the Euclidean relative error in the iterative proce-
dure and the effect of conditioning. We develop a bound for the difference between an
extrapolate obtained assuming exact solution of all linear systems and the corresponding
quantity computed by a terminated iterative procedure.

1. Introduction. Several recent papers have expounded the use of an extrapola-
tion procedure to improve the performance of an underlying variational technique so
as to produce quasioptimal error behavior. One of the authors [10] originally applied
the idea to the penalty method approximate solution of elliptic boundary value prob-
lems and also treated elliptic interface problems [11]. The authors [12] used a simi-
lar technique to obtain improved estimates of boundary flux in elliptic problems. A
common feature of these extrapolation procedures is that in order to accomplish the
technique, it is required to solve several systems of linear equations of the form

(1.1) 4 + yB)x = F + +G,

where 7 is a real, positive parameter which varies from one system to the next, while
A and B are symmetric N x N matrices and F and G are N x 1 column vectors which
remain fixed for all systems.

An important question which must be addressed is whether or not the expense of
solving additional systems (1.1) can warrant the improvements gained in performing
the extrapolation technique. In this paper we contend that by employing a simple it-
erative procedure, after one system has been solved by a direct technique, the solution
of subsequent systems with appropriately chosen parameters is asymptotically virtually
costless. Moreover, the numerical results we present for a model problem show that
the use of the iterative method costs us nothing in the accuracy we obtain when com-
pared to direct solution of each system followed by extrapolation; in doing so, we also
exhibit heretofore unpublished computational results which correspond to error esti-
mates in [10].

In Section 2, we briefly describe the penalty method with extrapolation for a
simple model problem and present some error estimates which have motivated our
study. We describe a model problem and exhibit several sets of experimental results
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obtained via direct solution of each required system, comparing these with theoretical
estimates.

In Section 3, we consider some alternatives for the solution of additional systems
and then fix on a particularly simple iterative scheme and a method of accelerating its
convergence; proofs of convergence and estimation of rate are furnished. We estimate
the relative error of the iterative scheme in the Euclidean norm. We discuss the work
involved per iteration and compare it to a standard direct approach.

Finally, in Section 4, we present supporting numerical evidence for our iterative
scheme via comparison with direct solution and discuss a concurrent implementation
of the iterative solutions with the extrapolation procedure, with relevant error esti-
mates.

2. The Penalty Method with Extrapolation; Computational Study. The penalty
method of Aubin [1] and BabuSka [2] is a finite-element technique for the approxi-
mate solution of elliptic boundary value problems. Since the aim here is to discuss the
computational aspect of the problem and not the general theory, we restrict our atten-
tion to the model problem
2.1 Au=f inQ, u=g onadf,
where A is the Laplace operator, £ is some bounded open subset of R? with boundary
9% (it is often assumed that 9S2 € C™ for theoretical investigations, but we shall deal
computationally with only a piecewise smooth boundary.)

Following King [10], we denote the L, inner products on £ and 9£2, respectively,
by

(u, v) =fnuvdx and (u,v) = J, , uvds

and let H°(2) (s > 0) be the usual Sobolev space of order s on § with norm ||+l (cf.
[13]).

The penalty method approximate solution to (2.1) is an element of a certain
finite-dimensional subspace V;, C H 1(Q) which satisfies approximability assumptions
discussed by King [10] and others. For example, ¥} may be tensor products of
spline functions of order » — 1 constructed on a mesh of width 4 imposed on . An
important consideration is that the elements of ¥, need not satisfy the boundary con-
ditions of the problem.

The approximation is obtained by selecting v = v(y) € ¥}, such that
(2:2) D, ¢) + Yh ™%, $) =~ (f, ¢) + Y%, ¢ forall ¢ € V.

Here D(¢, +) denotes the Dirichlet integral, 0 > 1, and 7 is a positive constant.

If {q&i}f;1 is a basis for V7, then v = El.li]x].qu is determined by requiring that
(22) hold for ¢ = ¢;,i=1,...,N:

N N
D<Z xj¢]', ¢,> +yh™° Z xf¢i’ ?;
J=1 j=1

N
(2.3) = Z {D(¢]-, ¢,) + 7h—o(¢ja ¢’,')]' X;
=1

==L o)+ % ¢), i=1,...,N
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Define matrices 4 = [a;;], B = [b;;], and column vectors F = [f;], G = [¢g;] by

aif = D(¢: ¢i): bl] = h—a<¢]‘, ¢i>’
(2.4)
fi=-0 )., &=h g 4.

Then (2.3) can be written
2.5) (4 +vB)x =F + +G.

A + B is symmetric and positive definite (thus nonsingular) for any y > 0.

The impetus for the introduction of an extrapolation procedure comes from the
asymptotic error estimate [10]:

If u € H°(Q), 2 <5 <7, and k < [s — 2], then there exist functions w, ..., w,
(independent of A and ) so that

(2.6)

k r
u—vy) -3 ('h%Yw;
=1

< Oy 2RP|ul,,
1

where C is independent of y and A, and u = min{s — 1, kK + 1}.
Thus if 0 = 1, s =7, and e(y) = u — v(y), then in H'()

k
— — j /
@.7) o) = 2 O Wy + 06 RETY,
]=
foy,...,7 41 are distinct values of the parameter vy, we may determine con-

stants a,("), 1 <i<k+ 1, from the Vandermonde system

k+1 k+1 .

(2.8) a®=1, Y =0 1<j<k
i=1 i=1

define

k+1
uﬁ,") = “;;k)(’)‘p s Mer) T X agk)v('yi),

i=1

and it follows from (2.6) that in H1(Q)

u- u(hk) = 0(hk+l).

Thus, for fixed 4, we determine a collection of solutions v(v,), - - ., V(Y4 1)
and the kth extrapolate, u,(,k), is an appropriately chosen linear combination of the
U('Yj)-

From a practical point of view, in the determination of ugl ) we require that the
term 'y"lhwl be the dominant term in the error expansion (2.7). This requires that
v be sufficiently large. However, we must not choose vy too large as the term
0(v*21**1) would then dominate the error and the extrapolation process would
yield no improvement in accuracy. Clearly an appropriate choice of v depends on the
value of h.

We note that for typical choices of ¥ we have r < 5, and thus we could only
expect improvement in accuracy in the extrapolates uf,"), k<r—-2<3.
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TaBLE I: (¢ = 1) Extrapolation via direct solution
A. No Extrapolation

Y .8 16 32 64

hy eo(hj) P30 eo(hj) pjo‘ eo(hj) P50 eo(hj) P30
1/4 .801E-1 .409E-1 .206E-1 .104E-1
1/6 .541E-1 .97 .274E-1 .99 J138E-1 .99 .693E-1 1.00
1/8 .408E-1 .98 .206E-1 .99 .104E-1 .98 .520E-2 1.00
1/10] .328E-1 .98 .165E-1 .99 .831E-2 1.00 .416E-2 1.00
B. One Extrapolation C. Two Extrapolations

178, v,=16 1232, v,=64 ¥778+7,=16,v53=32 |v1=16,v,732,1,764

hj e](hj) P31 e](hj) o5 ez(hj) P52 ez(hj) P52
1/4 | .239E-2 .190E-3 .161E-3 .318E-4
1/6 | .116E-2 1.78 .900E-4 1.84 .714E-4 2.00 .130E-4 2.21
1/8 | .695E-3 1.78 .527E-4 1.86 .402E-4 2.00 .723E-5 2.04
1/10| .464E-3 1.81 .348E-4 1.86 .257E-4 2.00 .461E-5 2.01

TABLE II: (0 = 1) Extrapolation via direct solution

A. No Extrapolation

Y 10 100 1000
h. e~(h:) .

J 0''j JO eo(hj) DJO eo(hJ) OJO
1/4 .646E-1 .666E-2 .668E-3
1/6 .435E-1 .97 .444E-2 1.00 .445E-3 1.00
1/8 .328E-1 .98 .333E-2 1.00 .334E-3 1.00
1/10 .263E-1 .99 .267E-2 .1.00 .267E-3 1.00
B. One Extrapolation C. Two Extrapolations

Y = 10 Y, = 100 Yy = 10, Y, = 100, i 1000

1/4 .347€-3 .136E-4
1/6 .166E-3  1.81 .289E-5 3.82
1/8 .983-4 1.83 .960E-6 3.83
1/10 .652-4 . 1.84 .416E-6 3.75
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TasLE III: (0 = 5/4) Extrapolation via direct solution
Two Extrapolations: Y = 50, Yy = 100, 3 = 200

115

hy ey(hy) j2
1/4 .136E-4

1/6 .291E-5 3.8
1/8 .981E-6 3.78
1/10 .435E-6 3.63

TABLE IV: (0 = 1) Large parameters

A. No Extrapolation
Y 1.0E + 5 1.0E + 7 1.0E + 8 1.0E + 10 1.0E + 12
h, eglh;) eolh;) eglh;) eglhy) eolh;)
174 | .150E-4 .136E-4 .136E-4 .156E-4 .518E-3
1/6 | .527E-5 .286E-5 .286E-5 .800E-5 .431E-3
1/8 | .346E-5 .931E-6 .933E-6 .803E-5 .414E-3
B. Extrapolation - L2 Error Behavior
Extrapolation y]=].0E+8 y2=9.0E+7 y3=8.0E+7 y4=7.0E+7
Level
0 .136E-4 .136E-4 .136E-4 .136E-4
1 .136E-4 .136E-4 .136E-4
=1
h=z 2 136E-4  .136E-4
3 .143E-4
0 .286E-5 .286E-5 .286E-5 .286E-5
. 1 .286E-5 .286E-5 .286E-5
h=k
6 2 .300E-5 .300E-5
3 .549E-5
0 .934E-6 .934E-6 .934E-6 .934E-6
: 1 .936E-6 .941E-6 .937E-6
h=x
8 2 2565 L111E-5
3 .800E-5
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In [10] the first author considers the case = 2/~1v with v fixed. Then we
may give explicit formulae for the extrapolates

20(1,) —v(vy)
2-1 ’
zju}({—l)('Yz: AR} 7}+1) - ug,j—l)(')’p AR} 'Y])

Uy, 1,) =
.9)
u}({)('yl: ceey 7,‘.'.1) =

7 -1
The following L, error estimates may be obtained from Corollary 3.1 of [10]:
(2.10 le — SNy < Cyp¥+iull,,,, O0<k<r-1l,0=1,
(211) le —u$Plly < Cyn'5/4Mull,, r=4,0=5/4.

We note that the estimate (2.10) for k = r — 1 is the optimal order in h provided
u € H™*1(Q). From (2.11) we nearly obtain the optimal order, 4, with only two ex-
trapolations. For brevity sake, we shall present experimental results for one model
problem
Au=2&%Y inQ=10,1] x [0, 1],

2.12) u=e&%t  ondf.

We choose a subspace V,‘: of bicubic splines on a uniform mesh of size A.

In [15], the second author has treated the same model problem with several
other projection techniques; however, results for the penalty method, with or without
extrapolation, were not presented therein. We present in Tables I-IV at the end of
this section, evidence that the extrapolation procedure, with-appropriate v’s, provides
significant improvement in the performance of the penalty method.

In Tables I-IV all required systems (2.5) are solved by separate application of
band Cholesky decomposition; we are interested only in the performance of extrapo-
lation.

In these and subsequent tables, we present mesh sizes, corresponding L, error
er(h) = llu - ug")llo, and the rate of error reduction,

Pix = log(ek(h,-)/ek(h,-_l))/log(h,./hj_l).

We attempt to estimate the asymptotic rate of convergence p,, assuming e, (h) =
Ch’* as h > 0 via Pjk> to compare with the estimates (2.10) and (2.11), but caution
that the mesh size with which we have computed are far from the asymptotic
range.

Tables I and II for ¢ = 1 produce some notable trends and yet some anomalies.
Clearly, without extrapolation the convergence is first order for any given choice of .
The error decreases in direct proportion to increasing vy for fixed 2. Moreover, each
successive application of extrapolation significantly improves the error when compared
to behavior shown for fewer extrapolations involving the same weights. The first ex-
trapolate is seen to produce nearly second order accuracy. However, Tables I and II
show contrasting behavior for the second extrapolate. When the weights are small, i.e.
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Table I, the reduction is only second order, while in Table IT we witness reductions
which are greater than third order. In neither case do we see predicted third order
convergence; again we emphasize that the error bounds for extrapolation are only
asymptotically correct.

Results are presented in Table III for ¢ = 5/4 which nearly concur with the
accuracy predicted by (2.11).

Lest our experimental results lead to any unwarranted general conclusions we in-
clude the following remarks:

(i) Our extrapolation procedure may be thought of, in some sense, as extrapola-
tion to the limit as y - e°. Our experiments (Tables IA, IIA) indicate that the error
decreases with increasing y. This suggests that one could just use large boundary
weights rather than use extrapolation. However, the effect of this approach is to
force the boundary conditions to be more nearly satisfied at the expense of satisfying
the equation in the interior. In our model problem, the use of a tensor product basis
whose elements coincide with the boundary allows a freedom which is not present in
more general situations. Approximation of the boundary conditions becomes a one-
dimensional problem; each of the boundary elements still has the freedom in the other
dimension to admit approximation of the equation in the interior near the boundary.
For other elements in our model problem or for other regions using elements which
do not coincide with the boundary we would lose approximability near the boundary.

(i) In fact, by taking very large boundary weights the error begins to increase
(see Table IVA). The asymptotic error formula (2.10) contains a term of order yh?
for cubic splines. For fixed 4 and very large <y this term becomes the dominant one
in the error expansion. Not surprisingly, this is manifested in rates of error reduction
near 4, as h decreases, until y gets so large that the error is being controlled by this
factor of y. The error increases as 7 is further increased, extrapolation is no longer
warranted and in fact results in loss of accuracy (see Table IV).

(iii) We thus have a dilemma: (a) how large should the boundary weight, v, be?
(b) should we extrapolate at all? We are concerned here with the implementation and
performance of extrapolation; our only concern is that the leading terms in the error
expansion, at each stage of the extrapolation process, are in fact dominant. We con-
tend that, rather than having to make a decision on how large to force ¥ before the
term yh* begins to dominate, extrapolation with moderately large boundary weights
will produce the same net effect. The determination of suitable values of y may
easily be tested computationally by a standard device given in [17, p. 313].

3. Iterative Solution. Let us first mention that several direct approaches for
solving the systems (2.5) have been investigated. These include the method of modifi-
cation [7], modification of the LDL? decomposition [6], partitioning [3], and a
Lanczos-type procedure [8]. None of these seems to compete with the reaccumula-
tion of 4 + yB and subsequent triangular band factorization. We have compared
these techniques, as well as the later-described iterative method, with the band Cholesky
decomposition of 4 + yB obtained after the usual row-by-row ordering of elements.
We must remark that we do not account for any sparsity within the band; for solution
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of a single problem on a rectangle, a technique like that of George’s nested dissection
[5] may be appropriate.

Our aim here is not a general comparison of iterative vs direct techniques in the
finite-element procedure. Since A + B is positive definite, we know that SOR will
converge. Our approach is to assume that (2.5) has been solved for y = vy, by a direct
method involving Cholesky decomposition of A + v, B and to use this in solving (2.5)
forj=2,...,k To this end, we write (2.5) in the form

3.1 A4+ v Bx =F+v,G,

(32) (4 +7;B)y = F + vG.

Put

3.3) M=A+v,B u=y-x, §=v-7v,, K=-38B

then (3.2) becomes
M-K)u +x)=(F +v,G) +§G.

Expanding and using (3.1),
(34) Mu = Ku + Kx + §G.

This suggests the iterative scheme
(3.5) MU+ D) = Ku™ + Kx + 8G,  u(® arbitrary.

We could proceed to analyze the spectral radius p(C) of the iteration matrix C=M"'K.
However, let us go on to suggest a technique for accelerating the convergence and han-
dle the above as a special case. Using a device suggested in Isaacson and Keller [9], we
let 0 < 6 <1 be a parameter, and rewrite (3.4) as

(3.6) (1 - 0OMu = (K — 0Mu + (Kx + §G),
which induces the iterative scheme

3.7 (1 - M+ D = (K - oM™ + Kx + 5G,
)
(3.8) Mu(nt1) = 1—1—0 (K — 0Mu™ + Kx + §G].
This defines an iteratic;n scheme with matrix

Co = 1+0 M~Y(K - 6M) = i——i—a (c-on.

Observe that Cy = C. Now, from (3.4), and (3.8) we have, with (™) = 3 — 4(n)
(3.9) Me(n+1) = 1—1—0 [k = 6M]e™ or e*+D =, e,

Then, in order to establish convergence, we must determine conditions under which
p(Cy) <1 (cf. [16]). Moreover, the rate of convergence is essentially determined by
p(Ce), so we seek to minimize bounds on this quantity in terms of v = I§l/y; by
appropriate choice of 6.
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THEOREM 3.1. Let A, B be real, symmetric positive semidefinite matrices and
A + 7B be positive definite for any v > 0. Let 8, Cy, and v be defined as above and
0<o9<1/2.

(i) If 8 <0and v <1, then p(C,) < 1 and the bound on p(C,) is minimized
by choosing 8 = 6 = v/2, with p(Cy) < /(2 —v).

() If8 >0and v <1and 6 < (1 —v)/2, then p(C,) < 1 and the optimal
choice is § = § = 0 with p(C) <.

Proof. Let X be any eigenvalue of Cy. Then, for some v # 0, Cyv = v, so

L [C-6Nv=x=[C—-060Ilv=N]1-0,

1-06
or
Cv = [6 + X1 = 0)]v,
so by (3.3)
(3.10) —8Bv = [0 + M1 —60)](4 + v,B.
Denote the conjugate transpose of v by vf. Then
(3.11) - 8uf By = [0 + A(1 - 6)] v A4v + 7, Bv].

Define z = vHBv, w = vHAv; z and w are nonnegative since A and B are positive semi-
definite. (3.10) becomes

(3.12) —8z=1[0+ N1 -06)] [w+7,z],
or
(3.13) 6 +N1-0)=-8z/(w + 7,2).

The denominator is nonzero since A + v, B is positive definite. Now, consider two
cases.

Case 1. 1f § <0, (3.13) implies 0 < 8 + N1 - 0) < - 8/y; =, s0

0 -0

(3.19) —1-_—0<7\<111:—6.
Since § < 1/2,-6/(1 —6) > —1 and since » < 1, (v — )/(1 — 6) < 1, hence | Al < 1.
Moreover, if 6 < v, we minimize the bound in (3.14) by setting (v — 6)/(1 — §) =
6/(1 — ), or § = v/2, in which case

(3.15) N <v/(2 ).
On the other hand, if we would allow 6 > v, then I\l < 6/(1 — ), and since g(6) =

6/(1 — ) is monotone increasing, the best bound would occur at 8 = v, giving I\l <
v/(1 — v), which compares unfavorably with (3.15).

Case 2. 1f § > 0, (3.13) yields

(3.16) -v<O0+N1-6)<0,
or
-v—0 -6
. SAS—— <0.
(.17 1 —o A T—a 0

F0<(-v2adv<1,(-v-0/1-60)>1,s0 N<(@+8)(l-0)< L.
But, since n(0) = (v + 6)/(1 — ) is monotonically increasing on [0, 1], the best
bound is I\l < » obtained at § = 0.
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From this theorem, we may conclude that the iterative method (3.5) (8 = 0)
will converge if » < 1 and that p(C) < v. Moreover, if we wish to accelerate the
convergence, our best bet is to select § < 0, 6 = »/2. This has the advantage of
making 7y, the largest parameter, which allows » to be made smaller. In fact if we
wish to solve a sequence of problems of the form (2.5), then we should order the
parameters as y, > Y, > . .. > ¥, with 7v; — v, small so that the spectral radii
of the iteration matrices can be made as small as desired. We note that choice of
6 <0 or @ > 1 has no advantage; moreover for 6 = »/2 we obtain p(C,) =
(1 — )y + )

We can estimate the relative error in the nth iterate #(™) in (3.8) in the
Euclidean vector norm [|*||z and in doing so investigate the role of the condition
number in the iterative process. We recall the following result on simultaneous
diagonalization (cf. [4]).

LEMMA 3.1. Let M and K be symmetric, with M positive definite. Let 0 <
6 <1, so that (1 — 6)M is positive definite and K — OM is symmetric. Then there
exists P such that

(3.18) (1 -60)pimMpP =1,
(3.19) PH(K — 0MP = A = diag(),, . . . , Ay),
(3.20) P = VDU,

where V and U are unitary,

1 1
D = dia e )
8 < Vi, Vi >
{u; }f-‘;l are the eigenvalues of (1 = )M, and u, Zu, = .. .2 uy >0.

With these results we may give an explicit characterization of the spectral radius
of C, as a norm. Define a norm on RY by N(¢) = IIP'¢ll; and the subordinate
matrix norm by

NCo9) 1P~ Cydllg
N(Cp) = max ———— = max ———F——
o#0 N(@)  o20 1IP ¢l
But from (3.18) and (3.19), we find

(3:21) PlC,P=A.
Thus, {)\j };‘;1 are the eigenvalues of C,. Letting ¢ = P 1¢, it follows that
IP~1CyPY Il
N(C,) = max ———— = max_{I\;}= p(C,).
VY #0 "'I’"E 1<j<N

Hence, letting u(®) = — x, (3.9) yields

N
Sior < e

Now [le™| = IPP~1e(™||; < [IPlIzN(™) so that

(3.22)
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(3.23) Ny < NEe™)
PP~ Iyl P~ Higlwllg
But N(») < IP7!igly llg so we compose (3.22) and (3.23) to yield

lle® Il N(e™)
< 1
T P oy

< ”P"E"P—l"Ep(Co)n'
Referring back to (3.20),

1Pl <IDlg =1 -0y "Mz and P Mg <ID7Hg = - 0)IMIy .

Recalling that the spectral condition number of M is k(M) = M||llM~ 4 g We obtain
finally the Euclidean relative error bound

(3.24) e/ lyllz < Vik@Dp(Cy)".

Now, King [10] has shown that k(M) = O(h~'~9); thus from (3.24) we note in the
particular case 0 = 1, the effect of conditioning in the iterative scheme appears only
as O(h™1).

As mentioned above, we have compared the work involved per iterative step (3.8)
with the computational effort expended in a band Cholesky decomposition of the
matrices in (3.2), since this would be the dominant part of the cost in solving the
additional problems. Let us suppose, for example, that Q is the unit square with mesh
size h = 1/H and V}, consists of tensor products of splines of order 7, then the matrix
K has (H 4+ r)> = N? rows and columns, but only 4Hr of these are nonzero.- Then,
assuming we have kept Mu™), determination of the right side of (3.8) will cost about
(4Hr)* multiplications, which is negligible in comparison to the back substitution work.
With the usual ordering, the band width is (H + 1), so using the estimates of Martin
and Wilkinson [14], each back solve costs 2N2/(H + 1) ~ 2rN3 multiplications. In
comparison, to perform Cholesky band factorization requires about 1/2N2r?(H + 1)? ~
1/2N*r? multiplications. Hence it would take roughly N/4 iterations before the work
would be comparable, and we shall see that we achieve convergence to workable accura-
cy in far fewer iterations. In fact the results of Theorem 3.1 do not depend upon N.
We should note that a similar comparison should be carried out if other techniques of
direct solution were to be contemplated.

4. Studies of Iterative Technique. In order to support our contention that the
iterative method (3.8) yields an economical, effective method for producing the penalty
extrapolates, we examine here the effect of the parameter  for acceleration and some
experimental results for the model problem obtained via these iterations. In Table V,
we examine the relative [, error in the solution vector (" *1) of (3.8) for 6 = 0 and
0 = 6 = v/2. In this example, v, =100, 7, = 80,s0v = .2, 6 = .1. We see that
Theorem 3.1 is substantiated; when 6 = 0, the error is reduced at each step by about
.195 ~ v, while when 6 = .1, the rate is about .106, whereas the bound is »/(2 — v) =
1/9.
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TABLE V. Comparison of iteration parameters

Iteration Number e =.1 L] Relative Error =0 L] Relative Error
1 .101E-0 .190E-0
2 .102E-1 .363E-1
3 .107E-2 .695E-2
4 .113E-3 .134E-2
5 .120E-4 .257E-3
6 .127E-5 .501E-4
7 .135E-6 .977€E-5
8 .145E-7 .191E-5

Now, we present in Table VI a representative sample of extrapolation with the
accelerated iterative solution of linear systems. Having iterated until the /; relative
error is less than 1077, these results are identical to those produced via direct solution.
We note that even if we only iterate until the error is less than 1072, the results do
not deviate in the most significant digits from those produced via direct solution.

The L, error behaves much as expected for £ = 0, 1, and 3 extrapolates, and as in
Section 2, Table II, the 2nd extrapolate shows reductions at a rate greater than the
asymptotically predicted rate of 3. For this parameter range, each extrapolation pro-
duces improved results. Starting with vy, = 100, we required 6 iterations to solve for
Y, =90, 8 iterations for v; = 80, and 10 iterations for y, = 70. We have computed
with weights even closer together than these, thus requiring even fewer iterations, and
noted similar behavior.

Suppose we want to compute the kth extrapolate based on v;, 75, - - - » Y4 1>
ie. u® =ul(y,, ..., v,,,) We order the parameters so that vy, >, >...>
Ye+1 > 1 with vy =7, ., small. If we use the iteration (3.5) for the computations,
then in place of u},"), we find

up uk) = Z a; ni(7z

Here vnl('yl) = v(7, ) is obtained by solving (2.2) and fori=2,...,k+1, v,,i('y,-)
is the solution of (2.2) with y = v; which is obtained from the iterative scheme (3.5)
upon termination with iteration n;.

Our aim here is to obtain estimates for |Iu§,")— a ,f")ll in some norm ||*||. Toward
this end we note that (3.2) may be written as

D(y;) = v(1,), 8) + 7, A1y — v(r,),

(4.1) = (v, — Y () —v(ry), & + (1)) — g &}

for all ¢ € V. Here vu(y,) is the solution of (2.3) with y = v; and 0 = 1.
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TABLE VI: (0 = 1) Three extrapolates, iterative solution

kth Extrapolate hj ek(hj) ® ik
k=20 1/4 .665E-2
RO 100 1/6 .444E-2 1.00
1/8 .333E-2 1.00
k =1 1/4 .477e-4
vy = 100 1/6 .218E-4 1.93
Y, = 90 1/8 .127e-4 1.89
k =2 1/4 .137E-4
M = 100 1/6 .296E-5 3.77
Yz = 90
Y3 = 80 1/8 .103E-5 3.68
k=3
vy = 100 1/4 | .136E-4
Yy = 90 1/6 .286E-5 3.84
Y3 = 80
Y T 70 1/8 .931E-6 3.9

The iteration (3.5) may be written as

D(u, (1), ¢) + v, Y, (v;), ¢

(4.2) =0 =0 (), 9 + €~ v(r,), 9}
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for all ¢ € V. Here u,(v;) = v,(7;) — v(y,) where the iteration is terminated after

n; iterations.
We subtract (4.2), with n = n;, from (4.1) to yield
DY) = vy, (1) 9) + 1,1 0() — v, (),

(4.3) = (’yl - 7i)h—l<v(7i) - vni—l(‘yi)’ é.

Choose ¢ = v(y;) - vni('y,.) in (4.3) to yield
@4)  HY 00) = v, (1)) = Oy = 1000 = 0,1 ), V) = v, (1),

where H2(¢) = D(¢, ¢) + vh ' 1o 12 and Ip 12 = (¢, ¢).
From (4.4) and the Schwarz inequality it follows easily that

"1 T

(v,) = v, (r)lp < () = v, 1 (Dl;

1
and hence,
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— 2

2 (7, 7,') - ’
(4.5 Hy (r) =, (1)) < —h b(r) = v, 1 (V)5
1

By the triangle inequality we have
H, 0O = v, () < Hy 00r) =0, (7)) + Hy 0, (7) ~ v, (1)
so that, by virtue of (4.5), we obtain

(ry — 7!
H'yl(v('yi) - vn,-—l('yi)) < __\/7_-1—— Iv(7i) - vn,-—l (7,') lo

+ Ha, 1 (vni(7i) T Vp1 ('Yi))-

It follows that

s
(4.6) () = v ()l < —:—‘— B2 H, @7 = Vet ()

1
Combining (4.5) and (4.6) yields

Y17

i

Hy () — v, (1)) < < ) Hy (0, (Y) = v, (7))

It is well known that for all ¢ € H'(R), lloll, < C{D(9, ¢) + 16l3} so that

Y~

lo(ry) = v, (I, <C (

if
> H‘Y 1 (vni(’yi) - vn,-—l(”i))'

i

Furthermore, it is known (cf. [10]) that for many subspaces V;, H., l(¢) <
K\, lxllg, where ¢ = E}indx, X=X xN)T and K is independent of
and v,. Thus

i

Y1~
o(7,) = v, (0l < CVAry < - >leni-x,,i_lllg,

where x,, . is the column vector corresponding to v,, (7;)-
1 1
It follows from the triangle inequality that

~ k+1 Y1 T
IIugk) _ugk)"l < CVr, }:1 la,| < l> %y, = X, 1l
i= i

We have proven the following:

THEOREM 4.1. Suppose v, > 7, > ... > Y, > I’Lu;”‘) =T} qu(y;)
where v(y;) is the solution of (2.2) with y =y and 0 = 1,u ,f") = Zi’f__*'ll aivni('yi)
where vni('y,.) = uni('yi) + v(y,) and uni('y,.) is the n; th iterate of the scheme (3.5);
then there exists C > 0, independent of Yy, . . . , Yy 4 and h, such that for p =0, 1
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(k) _ (k) S AT
Nul® =N, <V X gl \ —— (B S S

i=1 Yi

where Xp, is the vector representation of vni('y,.) relative to the basis {¢i }fil of V.
Moreover, by a similar analysis, it follows that for p = 0, 1
k+1 -\
~ l 7
Nufd —a N, <Crvi? 3 gy — ) lx, = xles
i=1 1

where x, is the vector representation of v(y,)-
We remark that it is not difficult to obtain a bound for [ju{*)— a ;(,")Ilp =01
in terms of data. Specifically, it can be shown that

(k) _ (K S Y%\ —1/2 [ —1
il w0 Ny <€ 3 oyl (=) A0 AIAG + k3
i=1
with C independent of & and v,, . . . , ¥, - Here we have taken u(y;) = 0 for

i=2,...,k+1
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