MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 141
JANUARY 1978, PAGES 127-133

On the Observed Rate of Convergence
of an Iterative Method Applied to
a Model Elliptic Difference Equation

By R. A. Nicolaides

Abstract. A proof is given of the fact that the rate of convergence of a multiple grid
type of algorithm is O(hl/’) in the case of a model elliptic difference equation.

1. This note provides a theoretical explanation of the O(h") rate of convergence
observed in the application of a multiple grid method to a model finite difference
Poisson problem. The method in question was proposed in [2] and some numerical
results were given from which the o(n”) figure was inferred. This method consists of
applying a second degree acceleration technique to the iterates from a linear station-
ary iterative method of the first degree. Only the latter involves anything new—it is
the multiple grid part of the algorithm—and is all that will be considered here. More
specifically, once the spectral properties of the iterating matrix of the first degree pro-
cess are established, the properties of the composite algorithm can be deduced by
standard techniques. These were discussed in [2] and well-known books and papers
[1], [3], [4] may be consulted for more details. Use of these techniques will be
made in Section 4. In Sections 2 and 3 the necessary theoretical preliminaries are
developed.

2. The problem considered in [2] was the solution of the partial difference
equation

(2'1) Lhug' ='fl’]l’ i)]= 13 2, RN (X

on the (n + 2) x (n + 2) square grid 2, (with grid boundary 88,,) of side length 7
and grid points of the form

Py=(hjh), Li=0,1,....n+1; @+Dh=m

uﬁ} is the sought for grid function evaluated at P;; and u,f; vanishes on 982, l’]' isa
given grid function and the operator L, is the discrete Laplacian operator defined be-
low.

For grid functions v" defined on ﬁh the following operators are required:

A =p10t -0, 0<i<n,0<j<n+1,
1%ij i+1j ij

VR =10 -0t ,), 1<i<n+1,0<j<n+1,
1 Yij ij i—1j
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with corresponding definitions for A% and V;’ the forward and backward difference
operators in the y direction. In this notation the formula for summation by parts be-
comes

n+1

n n+1
22) 2 oAiwy = Z Viv

U y
i=0

and the discrete Laplacian L, introduced above is defined by

(2.3) Lyl = — AVl — ASVOL

A notational convention that will be used from now on is that undefined difference
quotients such as V"u”! oj are defined to be zero. With this understanding it follows
from (2.3) using (2.2) that if ug. vanishes on 9%, then

& ong o N on 2 h, h\2
(24) '}':o wiilpty; = 'Zo [(Viup)® + (Vaup)l,
ij= ij=

which of course is an analogue of a result widely used in the continuous case. An-
other definition is needed; if v" and w" are grid functions defined on some subset
T, of &,, then

(2-5) (Uh» Wh)fh Z_ vz] 1],

i, ]El“h

and also
hi2 _— A2
ptE =@, v .
Tn T Ty

The summation indices on (2.5) are to be taken over the set of points in T—‘h. 24)
then can be written as

h h — h, h|2 h, hi2 _ h, h2 h, h 2
(2.6) @", Lyu )ﬁh = |Viu Iﬁn + VZu Iﬁh = |ATu lﬁn + |A%u Iﬁh

The notational convention introduced above is in action on both of these equations.
The lemma which follows is a discrete analogue of Poincaré’s inequality, essen-
tial to later arguments. The proof is little more than a discrete copy of a proof well
known in the continuous case but will be given for completeness and because it is
short.
LEMMA 2.1 (POINCARE). Let Fh be any (n + 2) x (n + 2) square grid with
spacing h = A/(n + 1), and let v" be any grid function defined on Fh. Then

n2 2(nt2 h h2 noh2 —2
v Il-,h<A <n+1>[IAlv Ifh + 1A%y Ifh] + @ +2) ,g; Uh
i,j€Ty,

Proof. Note. h is used as a symbol here to avoid proliferation of notations. It
is not related to the A used earlier.
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Name the grid points P;;, i, j = 0,1,...,n + 1, in the usual way. It is clear

j’
that
N h max(i,k)—1
v~V =sgn(i —kh Y Al

a=min(i,k)

and, consequently, that

max(i,k)—1 max(j, )—1
vp— g =senG—kh Y Ak +senG- DR 3 AR,
a=min(i,k) B=min(j,l)

Squaring both sides, using Cauchy’s inequality twice and increasing the summation in-
dices yields

n n
W5 + h)? - 20k < 2k*(n + 1)[ S (A + ﬁz (A’;ugﬁy],
a=0 =0

Summing fori,j=0,1,...,n+ 1,thenfork,I=0,1,...,n+ 1, gives

2
(n+ 222+ + 2P0 -2 X v
h h ijeTy,

<2n*(n + D + 2)3[|A’;uh|2f + |A;'vh|2F 1,
h h

which is equivalent to the stated result.
In the next section some facts about the iterative method under discussion are
collected together.

3. To introduce the algorithm suggested in [2], first of all, the difference equa-
tion (2.1) must be put into matrix form. To do this, an arbitrary fixed order is as-
signed to the grid points of S—lh and the equation (2.1) written for the points of £,
in the order of their listing. This is the usual procedure. The result of it is a system
of linear equations, NV of them, which will be denoted by A huh = f, where 4 pis
an N x N positive definite matrix with 4/h? in each diagonal position, and the mean-
ing of the vectors u” and f” is the obvious one.

No confusion will arise with the earlier use of these symbols. Secondly, the in-
ternal grid points are partitioned into subsets as follows; take N = n? for some posi-
tive integer n so that there are n* points in €, and divide them into n? sets of n?
points by drawing n2 — 1 lines equally spaced and parallel to the x axis and again for
the y axis. List the subsets in some order and denote them by ng), i=1,2,...,
n?. For any vector v" defined at the points of Qh', a “contracted” vector v" is de-
fined by:

3.1) @), =
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This transformation may be represented by a matrix (£ h)T, where E}, has dimensions
n* x n? and the ith column of E,, associated with §?, has 1/n in those positions
with numbers corresponding to grid points in Qg) and zeros in the other positions.
The matrix ETE,, will then be the unit matrix of order n> x n*. With these nota-
tions, the matrix

_ h?
(3.2) ( - E,(ETALE,) 1E,{A,,)<I - TA,,)

was found in [2] to be the iterating matrix of the first degree method referred to in
Section 1. The relevant spectral properties of (3.2) are deduced below.
Let

2
(3.3) M, = ( - E,(ETA,E,) 'ETA,), B, = <I - Ah>.

LemMA 3.1.  The eigenvalues of 11, B, are real.
Proof. Let Si = A,, with S, positive definite. Then Shl'[hS,:l is similar to I,
and is an orthogonal projection matrix. Also S,B, = B, S}, and so II, B, is similar to

Sy11,S;,"' By, = (S,11,5,,")*By,.
The latter has the same eigenvalues as the symmetric matrix
(ST, Sy )B,,(S, 11,5, ")

and the lemma follows.

Let E, denote span(E}) and let P, = E,(ETE,) 'ET denote the orthogonal
projector onto E,. Put also @, =1-P,.

LEMMA 32. Let wh € E},. Then the corresponding grid function wf.} satisfies

— 2
3.4 > w;=0, k=1,2,...,n%
(34) ijeaf®)

Proof. w" necessarily satisfies

wh = (I - E,(ETE, ) 'ED)s" = (I - E,E])s"

for some vector s”. The vector on the right consists of a vector s minus a vector
which is constant in each Q;,k ) and equal to the average value of s over Q},k). So
the average of w” is zero over each ng) and this is equivalent to (3.4).

The eigenvalues of I1,B,, v, satisfy for some real vectors §h,
(3.5) I,B,¢" = .
Multiplying on the left of (3.5) by Q,, and using Q,E, = 0 gives

(3.6) 0,B,¢ h =7Qh fh
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and multiplying on the left of (3.5) by P, A, gives after a little simplification when
Yy#0

(3.7 0, A4,8" = 4,¢".
Put § =1 -1, 8 # 1. Substituting from (3.3) for B, in (3.6),it follows that

2 2
e O™ = 50,87 = 4,8

by (3.7).
Multiplying on the left by A;l and taking the (vector) inner product of both
sides with th", there results the equation for 8,

Q48" 08"
(@8, 4710,M

el

(3.8) =

where the property Q,7;Q,l = Q,zl = Q,, has been used. (3.8) will be used to bound y
above and below. This will be done in Section 4.

4. If u;} and uf; are grid functions vanishing on 982, the following relations
may be (trivially) verified

@) ", v")ﬁh = h2@h, V"), @ th")ﬁh = R*@", 4,07,

where the quantities in parentheses on the right are vector inner products. To obtain
a lower bound for v the simple inequality

@", uhy? < W, 4,u") ", 45 u?)

actually valid for any positive definite matrix, may be used. Thus,

the last coming, e.g. from Gershgorin’s theorem (strengthened as in [3]). So then
42) Y >-1.

By using other arguments, unnecessary here, it may be shown that ¥ > —1 + Kh2.
This is well known. To obtain the upper bound is less simple.

To begin with, define w” by Ahw" = th'h,where th‘h appears in (3.8).
Then (3.8) becomes

n2 A,wh, 4,w") . p2 @,wh, A,wh)

TE TR AW T el d O AW

This minimum value is estimated (actually sharply to within a multiplicative constant)
in the following theorem.
THEOREM 4.1. Let s" be any vector such that A,s" € E; and let s% be the
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corresponding grid function vanishing on 0$);,. Then
h h —1(.h
(L,s", Lys )ﬁh = ()~ (s", LhSh)ﬁh

Proof. Let 4,5" = w" € Ej_ and let wi be the corresponding grid function
vanishing on £,. Then ", 4 hsh) = (s", w"). By (2.6), (4.1) and the last equation,

h By — [ABGh 2 hh 2 ARGh|2 hoh 2
(", L,s")- = |APHE + |aRsh R |ARsP R+ Afsh 2
PR gy 1 g, 2" g, "1 @, 2" g,

=(s", —h2ZZ w,“,

h

Let s_;’c denote the mean of s,-i over Q,(‘k), so that

skh = S}}.
=k ij*
(9] ijeatk)

Then since w” € E}, and by Lemma 3.2, it follows that

(4.3) |A':sh|§_zh + |A%s |2 = h’}j X wish —s7).
afk)

By Lemma 2.1, with A2 = [(n — 1)7/(n® + 1)]2, and making use of the vanishing
over &) of (s} — 57), one has

h _ 312 2 h —ohy2 h — o2
@44 s slﬁﬁk)<(n )A (1ak(sh —5hy)| (k)+IA (s" —5™)] (k)),

and furthermore,

4.5) ARG = sM)2 . = |aks# 2 i=1,2.

(k) (k)

Applying Cauchy’s inequality to (4.3) and using (4.4) and (4.5),

|A’;s"|2ﬁh + 165" 2 <h22<2 () > <): % —sp >/

k k
(k) ;l)

=2 Wk

h _Sh
"=l
. al® alk)

n+ h hoh 2 hoh 2 %
<< - >AZ| | (k)[IAs | (k)+IA s (k)]

Y
ntl hoh 2 hh2 1%
<< ” > Alw"lﬁh[lAls |§h+|A2s Iﬁh]

by Cauchy’s inequality again, and using the fact that
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(): AT )+ 185812
k

Y2
< (IARMIE + Akt E )4,

this reduces to
hehi2 4 (ARh2 < [T 2,02 < 2 .
|A%s 'ﬁh |AZs"| < ln A Iw”lﬁh\ﬂhlw"lﬁh,
and since (W*, w")_ = (L,s", L,s")% , the result is proved.
a h n g p

It now follows, making use of the expression for § given before the statement
of Theorem 4.1, that

2
s 1 _h
4 wh 4n
and finally that
h
. <1--—.
(4.6) y<I1 an

Thus, all the eigenvalues of IT, B, are contained within the interval (-1, 1 — h/4).
It will now be shown that the composite iteration consisting of applying the second
degree method to the iterates from IT, B, converges at the rate O(h™). 1t is known
that to do this, the quantity
i L ) Il (C R R 12
[1-CDI+ [ - - h/4m)]

and its square are formed. The effective rate of convergence is then given by

In (—(——1 —va _ﬁ2)>%.

1+/(1 - u?)

Expanding in series and neglecting all but the smallest powers of z gives for this lat-
ter the required O(h”) figure. The quantity called in [2] the effective spectral radius
is similarly computed and turns out to be 1 —h"|\/2n. The empirically observed value
was 1 — 2h% \/.

Finally, it seems reasonable that the results found above could be adapted to
generalizing the rate of convergence result to other second order elliptic problems.
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