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A Clough-Tocher Type Element
Useful for Fourth Order Problems
Over Nonpolygonal Domains *

By Lois Mansfield**

Abstract. A new macro-element useful for finite element approximations to fourth
order elliptic problems with curved boundaries is presented. An error analysis is given

which shows that these elements achieve 0(h2) accuracy in energy.

1. Introduction. The purpose of this note is to present a new macro-element
useful for finite element approximations to fourth order elliptic problems with curved
boundaries. Let £ be a closed bounded region of the plane with curved boundary T
Let 7 be a triangulation of 2 with triangles with at most one curved side along the
boundary.

For second order problems a very successful technique for handling curved
boundaries is the use of isoparametric transformations. The exact boundary I" of £2
is replaced by a piecewise polynomial curve I') and the finite elements are required
to satisfy the essential boundary condition u = 0 on the approximate boundary. On
each curved triangle T the finite elements are transforms back to T of polynomial
elements on the standard triangle T;. The same class of polynomials are used as
finite elements on T as are used in defining the mapping from T to T. Isoparametric
elements, however, cannot be used in a conforming finite element method for fourth
order problems because one cannot construct a C!-coordinate transformation which
maps curved triangles onto straight ones. In [7], Zldmal proposes and analyzes a
similar procedure but separates the coordinate transformation from the definition of
the finite elements.

In our procedure we also separate the coordinate transformation from the
definition of the finite elements. We shall assume that twelve parameter Clough-
Tocher cubic macro-elements introduced in [5] are used on interior triangles. We
shall use a quadratic polynomial coordinate transformation which means that I', will
be a piecewise quadratic polynomial approximation to the exact boundary I'. Although
the coordinate transformation is only a C°-transformation so that normal derivatives
are not preserved, normal derivatives on the edges of the standard triangle can be ex-
pressed as easily computed polynomial combinations of tangential and normal deriva-
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tives on the edges of the curved triangle. For a quadratic polynomial coordinate
transformation and Clough and Tocher elements on interior triangles (which imply
that tangential and normal derivatives on the straight edges of curved triangles are
quadratic polynomials), these combinations will be cubic polynomials.

Thus, in order to obtain C!-finite elements on curved triangles in the region
Q,, with boundary T, we must use a C!-element in T, which has cubic polynomial
values and normal derivatives in the edges of T, and choose the defining parameters
so that the normal derivatives along edges match the above-mentioned cubic poly-
nomial combinations of tangential and normal derivatives on the straight-sided edges
of the curved triangles. An appropriate rational element was constructed in [2] and
applied to curved boundaries in fourth order problems in [6].

In this note we construct a new piecewise polynomial macro-element which also
has cubic polynomial values and normal derivatives on the edges of T,. This element
is defined in the next section. In Section 3 we provide a mathematical analysis which
shows that our procedure achieves O(h%) accuracy in energy, i.e. has the same
accuracy as Clough-Tocher elements on polygonal domains.

2. Construction of New Macro-Element. On any triangle T, the set TC(T) of
tricubic polynomials (see [1]) is the set of all polynomials which are cubic along all
parallels to the three edges. If T has edges N\, =0,i=0,1, 2, the set of tricubic
polynomials on T consists of all cubic polynomials plus linear combinations of two
of the quartic polynomials A? Ny t )\,.2 A,ﬂ_ 1 1=0,1,2. (Here and below all sub-
scripts will be counted mod (3).) Let T be the macro triangle of Figure 1 with
vertices P;,i = 0, 1, 2, and center of gravity G.

FIGURE 1

Let j = 0 be the equation of the edge opposite P; in the triangle T}, normalized
so that ].(Pj) = 1.
Let P(T) = {p € CY(T): ply, ETAT),i=0,1,2}.
THEOREM 1. In any triangle T there exists a unique u € P(T) which has given
(i) values and first partials at each vertex P,i=0,1,2,
(ii) u, and u,, at the midpoint of each edge \; = 0, where 3/37 denotes the
tangential derivative.
PROOF. Let u be a C!-piecewise tricubic polynomial with all the conditions (i)—
(ii) zero. We show that ¥ =0. On T, u=p;= )\,?q,., where g, is a quadratic poly-
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nomial which is linear on T; N T;,, and T; N T;,,. Thus
a; = Ol ipakier +

where o is some constant and /; is & linear polynomial. If we normalize A; = 0 so
that \;(G) = 1,i =0, 1, 2, then \; = A, ; on T,NT; ,,and p; =p;,, on

T; N T;,, implies that q; = q;,, on T; N T;, , which in turn implies that [; = I, ,
onT; NT;y . OnT; N Ty

INVAG ~ D Vg gy + VG~ Ny =0
or equivalently
29N ~ Ny g + AV~ Vg) =0 on T; N Ty
Thus A\(P;,,) = O implies that q,(P,,,) = [;(P;;,) = 0, which together with [, =

liy; onT; NT;,, and a similar result on T; N T}, implies that [; = f\;, where

B is some constant. Thus, we have

@ VD = N My iy VM i T 38NV, on T, N Ty

The continuity of the Vp; at G implies that § = 0. At the midpoint of 7; N Ty, {,
N =Nyr = Miirg = Miyq ipo = % Thus, from (1) we obtain the relations
0Vl iy = Oy Vi 4 Since Vi iy == Vi it follows that

Qg =0y, Q) =70, 0 ="Q&,

which is possible only if @, = &; = &, = 0. This completes the proof.

We give a cardinal basis for P(T) with respect to the interpolation conditions
of Theorem 1. Let P, = (0, 0), P, = (1, 0), P, = (0, 1), and let M, be the mid-
point of A, = 0. An element g € P(T,) can be expressed as

2
g=2 P, +8P)diya * gy(Pi)¢i+7)
i=0

+ gy(M2)¢1o + gxy(M2)¢11 + gx(M1)¢12 + gxy(M1)¢1 3

+ (gx(Mo) + gy(Mo))¢14 + (gxx(MO) - gyy(Mo))¢15s

where
¢, =301 —x—p)? =21 —x —y)° +3¢,/2 + 3¢,/2,
¢, = 3x2 - 23 + %eqy,
¢y =3y% - 293 + %e,,
¢4 =x(1 —x —y)* —Yhe, + Yo, + 8,
¢s = x> —x* + Ve, — %8,
b = xy? - Yoe, — Y%e, =8, + 48,

¢, =y(1 —x —y) —Yhe, + Yoe, +35,,
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¢g = x2y — Yhe, — %e, — 8, — %8,

$g =° —y? + Yhe, + %5,

$10 = €3>
611 =8,,
$12 =€,
¢13 81’
$14 =~ e,
$y5 = %8y,
where
2 14 4
232334 T
9>‘i 81)\" + 3)‘i“i,i+2“i,i+l on T;,
4 14 4
—] 252 19,2
&= 81)‘i+2 + ) Niv2Mita,it ——8_)‘1'2+2“i+2,i on Tiyo,
4 4 14
S22 4.0 1952
81>‘i+1 ) Niibipr,; t ) NitMipr,i4e2 o0 Ty,
and
1, 1 2 2
§>‘i“i,i+2 ‘5"?":‘,“1 - §>‘i“i,i+2"‘i%i+1 + §>‘i“i,i+2“i,i+l on T;,
8; =< —=A\? -2y
i~ g Ni+2Miv2,i41 3 it2Mig2ip1Miea,y On Tiyy,

1 2
232 252
9 Nipdip; 37\i+1“i+1,z‘“i+1,i+2 onTiyy.

3. Error Analysis. In this section we show how the macro-element constructed
in the previous section can be used in the finite element method applied to fourth
order elliptic equations defined on nonpolygonal regions §2 of the plane, and we
analyze the error. Throughout we take the boundary conditions to be the homo-
geneous Dirichlet conditions.

) u=u,=0 onT.

Let T be the curved triangle shown in Figure 2 with the curved side given by the
quadratic polynomial curve approximation to the curve I' which interpolates I" at
P,, P, and a point M, between P, and P,.

The standard triangle T with vertices @, = (0, 0), @, = (1,0) and @, = (0, 1) is
mapped onto T by the mapping
3) x=0=-s5s-0Py + (s — 2st)P, + (t — 2sH)P, + 4stM,,,
where X = (x, y). Let E; be the edge opposite the vertex P; in T and let E; be the
edge opposite the vertex Q; in T;. We want to construct finite elements \fl(s, t) whose
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)]

FIGURE 2

transforms back to T defined by

W(x, y) = VG5, 1), ¥(s, ) = ¥, 2)
match on the straight edges E, and E, , given cubic polynomial values f; and given
quadratic polynomial normal derivatives g; which come from the use of Clough-Tocher
elements in interior triangles. Throughout we define f, and g, by

£,(6) = u(x(s, 0), ¥(s, 0)),

&)= gg(x(s’ 0). 0))2—? - %(X(s, 0), ¥(s, 0))%;5,

with similar definitions for f; and g;, i = 0, 1. Thus j; and g, are the tangential and
normal derivative along E, scaled by the length of E,. The normal derivative g; on
the edge E; of T, under the mapping (3) is given by
(O] g,' = Pif; + 0;8;,
where for i = 1, 2, the functions p; and o; are linear polynomials. The functions p,
and o, are rational functions but they do not actually enter into our computations
since we shall take f, and g, to be zero in order to match the homogeneous
Dirichlet boundary conditions. We choose our finite elements ﬁl(s, t) to be elements
of P(T,) which have zero values and normal derivatives on E, and which match given
cubic polynomial values f’; = f; and the normal derivatives g; given by (4) on the
edges E, and E,.

In the triangulation 7, let 4 be the length of the longest side and let  be the
smallest angle. We assume that
® a>ay >0,

where @, is an absolute constant not depending on 4. It can be shown that under the
assumption (5)
6) cl<|p§f)l, lo,(.j)|<cz, i=012,j=0,1,

where ¢, and ¢, are absolute constants depending only on sin a;.
In order to show that our procedure for curved domains has the same order of
accuracy in the energy norm as the use of Clough-Tocher elements on polygonal do-
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mains, it is sufficient (see [6, Section 2]) to show that for some v,, in our finite
element space S, C Hg(Qh)

() ' — v, N <Kn?,

H2(2p)
where K is independent of A, and u is the extension of the exact solution u to Q,

(in the case that , & ). On interior triangles we take v, to be the Clough-Tocher
interpolant analyzed in [3]. On curved triangles we take v, to be the interpolant

u 1 to u defined as follows. Suppose u has values f; and normal derivatives g; on the
edges of T. Let Hij be the cubic polynomial interpolant to fJ with respect to values
and tangential derivatives at the vertices, and let QUg; be the quidratic polynomial
interpolant to values of g; at the vertices and at MI We define u; to be the transform
under (3) of the element #; of P(T,) which has cubic polynomial values f] = HCf;
and cubic polynomial normal derivatives g given by

EI = p,(HCfI)' + UI' QUg], ] = 0’ 1’ 2.

Note that HCf, = QUg, = O so that v, C H3(S).

THEOREM 2. Let u € C*(T) and let u 1 be the interpolant to u defined in the
preceding paragraph. Then there exists a constant C independent of u and h such
that

(8) U = Ul w7 < CHAFIEN 4 o 0< kl<2.

ay
PROOF. Lete=u —u ;and é(s, 1) = e(x(s, 1), (s, £)). By Theorem 2 of [6],
there exist constants independent of A such that
C,h% <U(s, I < C,h2,

where J is the Jacobian of the mapping (3). In addition,

Dix(s, 1) = 0(h"),  Diy(s, ©) = 0" alli

Dis(x, y) = O™,  Ditx, y) = o™ "), 1<lil<2.
Thus

) ID%(x, )| < Kn* 2 IDPe(s, 1), lal = k.

IBI<k
We write é(s, t) as € = it — mit + mit — @iy, where mil is the unique element of P(Ty)
which interpolates & with respect to the conditions of Theorem 1. The method used
by Ciarlet in the error analysis in [3] can be applied directly (except for a change in
norm) to show that

(10) \DPi(s, 1) — DP(maa)s, | < Klily oo p < K'B*lu s emry:
To complete the proof, we must show that

~ _ ~ 41>
(11 | DA(mia)s, £) — DPii(s, )| < Kn*llu "w4,°°(r)’

for some positive constant K.



A CLOUGH-TOCHER TYPE ELEMENT 141

Note that D*@; and D*ii, 0 < lal < 1, agree at the vertices of T, and on the
edge £,. Thus

DPnu(s, 1) — Dﬂﬁ,(s, 1= i a,.DBF,-(s, 1),
i=1

where F,, F, are the cardinal functions associated with the linear functionals
ou(R;)/on, where the R, are the midpoints of the edges E , and E, of T, and F; ,,
i =1, 2, are the cardinal functions associated with the linear functionals
82u(R;)/nd7. Thus

a; = pi(l/z) [f;(%) - (HCf,)I(%)] s
a;,, = PRI (8) — (HCF)' (A)] + o, (B)Iff' (%) — (HCS,)"(4)]
+0,(4)(8;(4) - (QUg) (%), i=1,2.

The functions DPF(s, £), 0 < I8 < 2, can be uniformly bounded. By the Peano
Kernel Theorem,

I8 - B (4 <K max D)l
s€[0,1]

<Ky o <Knll, .5 j=1,2,
and
lg;(4) — (QUg)'(5)l <K max 1g{3)s)l
sE[0,1]

<Klitly o 7 <KH], . 1.

This combined with (6) establishes (11) and proves the theorem.

The bound (7) follows from Theorem 2.

Similarly to isoparametric elements for second order problems, numerical integra-
tion is required to evaluate the integrals involving partial derivatives. The analysis
of [4, Chapter 11] and [7] cannot directly be extended to apply to our finite ele-
ments since we have not shown the convergence of any v € S, to 4 in H™(T;) on
each subtriangle T, for m > 2. The analysis of [6], however, can be applied to show
that O(h?) accuracy in energy is preserved if an integration rule exact for quintic
polynomials is used for each subtriangle of each curved triangle. This is in contrast
to the fact that for equations with constant coefficients, such as the biharmonic
problem, a rule exact for quadratic polynomials is sufficient for subtriangles of in-
terior triangles.

One should expect greater accuracy to be required on curved triangles, however,
since finite elements associated with curved triangles are tricubic on each subtriangle
of T rather than cubic and second partials in x and y are transformed to a sum of
first and second partials in s and ¢ by the mapping (3), rather than a sum of second
partials alone. This is in contrast to second order problems.
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