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A Collacation Method for
Fredholm Integral Equations of the Second Kind

By E. N. Houstis and T. S. Papatheodorou

Abstract. An interpolation scheme based on piecewise cubic polynomials with Gaussian
points as interpolation points is analyzed and applied to the solution of Fredholm equa-
tions of the second kind.

Introduction. We consider an interpolation scheme based on piecewise polyno-
mials with continuous first derivatives and the Gaussian points as interpolation points.
A collocation method based on this interpolation scheme is applied to one- and two-
dimensional Fredholm equations of the second kind.

This scheme has been applied to a collocation method by de Boor and Swartz
[4] and Houstis [9] for the numerical solution of ordinary differential equations.
Also, Douglas and Dupont [6], [7], [8] and Houstis [10], [11] have studied a collo-
cation method for partial differential equations based on the above scheme. A sur-
vey of numerical methods for the solution of Fredholm integral equations of the sec-
ond kind is given by Atkinson [1].

In Part I we present the formulation and error analysis of the interpolation
scheme. In Part II we apply this scheme to the solution of Fredholm integral equa-
tions of the second kind and give an experimental comparison with Nystrom’s meth-
od.

I. PieEcewiSE CuUBIC HERMITE INTERPOLATION AT THE GAUSSIAN POINTS

1. One-Dimensional Interpolation Scheme. Let A = (xi)JIV +1 be a partition of
I=la b],h;=Ix;, —x;I, I, = [x;, x; ;] and h = max h;. Throughout this report
we denote by P, the set of polynomials of degree less than 4, and Py A the set of
functions that reduce to polynomials of degree less than 4 in each subinterval [x;, x;, ,].
Also, we denote by H, the (2N + 2)-dimensional vector space of all continuously
differentiable piecewise cubic polynomials with respect to A.

The Gaussian points in the subinterval [x;, x;, ] are
%t X D

bj+i=7 "'\/5 5. i=1L2

(1.1

Let E(J) be the space of real-valued functions defined on /. We introduce an
interpolation operator Q: E(I) — H, such that
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(1.2) (QNf)(ol) =flo), I=1,...,2N+2,

where 0, =a, 0, =&,;,,] = s N, i=1,2,0,p,, =b.

This interpolation scheme is well defined. In fact, if h(x) € H, also interpolates
f as above, then e(x) = Qpf(x) — h(x) is a cubic polynomial on [x,, x;, ;1,0 <i <N,
and e(0;) = 0,1 <i < 2N + 2. We show that e(x) is identically zero in [x;, x;, ,].
If this is not so, then without loss of generality we may assume that e(x) # O for all
x € [x,, x,]. Rolle’s Theorem implies that e(x,)D, e(x,) > 0. Similarly, D, e re-
stricted in [x,, x3] has roots in (x,, 0,), (04, 05). Thus, e(x;)D,e(x;) > 0. By in-
duction e(x, . )D e(x, ) > 0 contradicting the relation e(x, . ,) = 0. This proves
that e(x) =0 in L.

»

2. Two-Dimensional Interpolation Scheme. In this section we introduce a two-
dimensional analogue of the interpolation scheme of the previous section. Let A,
(yj)]l"”'1 be a partition of [¢, d],J = [c, d], k; = ;) — il J; = jp vjyq] and
k = max k;. Also, we denote by p = AxAy a partltlon of [a, b] x [c, d] and by H,
the vector space of all piecewise bicubic polynomials p(x, y) with respect to p, such
that D;D;’p(x, ») is continuous on [a, b] x [¢, d] forall 0 <, n <1

The Gaussian points in the subinterval [y;, y;, ] are

_yi+yi+1 k. ki
T2i+j = ) \/§ DI

A two-dimensional interpolation operator is defined as the tensor product
Qp = QN ® QM = QNQM-

3. Error Analysis. In this section, we establish a priori bounds for the interpola-
tion scheme introduced in Section 2 for a uniform partition A of [0, 1] with mesh

i=1,2.

length h =N"1.
Let
(1-x?%1+2%), 0<x<lI,
o) = {1 +x)?*(1-2%), -1<x<0,
0, otherwise,
and

x(1-x)?, 0<x<1,
Yx) = {x(1 +x)?, -1<x<0,
0, otherwise.

The basis functions of the C! cubic piecewise polynomial space H A are defined by

XX .
By ) =¢(——), 1<i<N+IL

X~ X; .
By@) = hy|——), 1<i<N+1.
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For later use, we define the Gramian matrix
GNE(Bi(o]-);i,j= 1,...,2N+2)

of the interpolation operator Q. Using the (2N + 2) x (2N + 2) matrix

—

1 n
h 0
Hy = ,
0
1
L h
we find that®
[ I I
ll Al l
01 I :
R S S
__:__B_l_‘f.l_ 0
| | I
Hy'Gy = )
N B I
| | |
0 B 1Al
| | |
| IB (1)
oo
where
oa f B «
A= ) B=
Yy 8 -5 -y
and
LR VA B=9_4‘/§ _3+\3 o _3-43
18 ° 18 7T 36 ° 36

We will also use the matrix

o, [-7 48
T=BA" = :
1 -7

It is easy to see that for all integers n, (T° =1),

where
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a,,, =-Ta, +48c,, Chiq =a, —Tc,.
More generally, from 7% = TST? we get
4., =am, *48c,  cg, =ca, *agc,,
1, . _1
3.1) Gt =5 (Coqr tCsy)y  c0p = 96 @y, —a5_,),

1
ag@, =5 @ o), ay=aq, c;=-c

Let N, = la, /c, | = —a,/c,. Since det(T™) = 1, we can easily show that A, is
decreasing with n and for all n

VA8 <\, <7, A =7,
(32) cp =D e, g, = (1)l
2 2 R I D -
Since
_1 1
Ia,,l—z(lcnﬂl—lcn_ll), Icnl—%(la,,ﬂl—la,,l),

we also have

P

1
>yl =5,y |+ lepl = legl = leg_y s
l=q

(.3)
p
> el = 3¢ (41| + a1 = 2l = gy .
=q

We introduce a (2N + 2) x (2N + 2) matrix R in partition form

| [
| |
T T2 | : Fi,2N+1 Ti2N+2
—— o — o —— —— — —— —— I ___________________________
| I
Ry, I : Ry N1
|
| |
| |
| |
| I
| I
Ry | : Ry N1
|
_____________ e
Fan+2,1 FanN+2,2 Ir "aN+2,2N+2
L > s | | 2N+2,2N+1 2N+
|
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where the first and last rows are defined as
_
[r1,2i—1’ 71,2,'] =LE'N_ [CN—j+1 “N—j+1]:
M
[r2N+2,2i—l’r2N+2,2j] = ey [-¢j-1 441,

while the 2 x 2 matrices Rn, are defined as

m

Rym =AY, +0,,cT"™], n=1,...,Nm=1,... ,N+],

with

zls[o 7\”], zms_cl)m[c"’""“ aN""“], m=2,...,N+1,
0 1 N 0 0

and

1 if2<m<n,

0 otherwise.

The reason for introducing the matrix R becomes apparent by the following
lemma, which shows that we have explicitly constructed the inverse of the matrix
Hy'Gy.

LemMA 3.1. The matrix Hy IGN is invertible and its inverse is the matrix R.

Proof. Let S =R(Hy'Gy). Tt is enough to show that § = I. We partition §
into blocks:

S11 T11 T TN S1,2N+2
W, S T Sin Wy 2N +2

S= ’
Wy Sn1 Snn WN 2N+2
San+2,10 Tan+2,1 - -+ TaN+2,N S2N+2,2N+2

where each Sy is 1 x 1,Sl.]. is2 x 2, w;; is 2 x 1 and Ty i 1 x 2. Performing the
multiplication of the matrices R and Hy 1G,,, we obtain

S =1 =1,
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Ty = 51 278125411 = [r1 2j1 rigl4t [’1,2;'—1 '1,2i+2]B

—1y
= (C_NX {ley—jr1an—j1] ~ len-jay-1THA
_ _
T ey {ley—je1 an—je1] = lenjr1 an—jr 1134 = 0,01,
and
Sian+2 =Tion+1 =0
Similarly
0 . .
Wi = WiaNt2 = , 12N+2J=[00], i,j=1,...,N,
and

San+2.1 =0 Sani22N+2 T 1.

For the square blocks S, ,, we find

Spm =RpmA tR

n

B

n,m+1
= A_l(_ T)n—I{Zm + Zm+lT + (On,m - 0n,m+l)(_ T)l—m }A

From the definition of Z,, and T we obtain Z,, + Z, T = 67'1. Then from the

definition of g, ,, we get S, ,, = 67'1. This concludes the proof of Lemma 3.1.

LEMMA 3.2. If Gy, is the Gramian of the interpolation operator Qy;, then

(34) I(HN' Gp) Ml < 100
forall N = 2.
Proof. Let
2N +2
IR, =S Wil
m=1

From the definition of R and relations (3.1), (3.2), (3.3), we obtain

N
IRl = 5" (Iry g |+ 1y 25D
j=1

| N
(leg—jr | + oy 41 D) = EV—II;(IC,I + la,l)

1
len

=

1

/

la layl 7 le, |
<L 9,3 T T a3
12 eyl 2 7 15 eyl 2 leyl

It is easy to see that [Rll,, ., = IRIl;. For the remaining rows we use (3.1), (3.2)
to get that for 2 <m <n,
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ARn’m = (- T)"_lZm + on’m(— Hr—m
- IcN—n—m+2| + lcN—n+mI IaN—n—m+2I + laN—n+m|
1
~ 2yl ;
zlg(‘ By p-mi2l T Oy pimD) ey pmial T ey pgml

while for n < m

“lensn-m! t leN-n-m+2l (v T a—y

1

AR = o

1
ﬁ(laN+n—ml - laN—n—m +2D IcN+n—m| - lcN—n—m +2l
Finally, for m = 1,

1 0 IaN—n+1l
AR, | = )

0 IcN—n+ll

Using again the relations (3.1) through (3.3), we now find

N
> 4R, ,lI
m=1

R +L<laN_,,+ll L enl | oy +laN_n>

< _1
ES
2 ICNI 96 ICNI ICNI ICNl ICNI

ley_pl ley_i | layl
LS g I IV ) 30
2 |CN| “CN” Ich 3

and

ley—n+1l | 1 (l’aN—n| lay| 3 len—n+1l

1
<= + +9
AR mllz <3 [2 P TANN el el

ﬁ[\’]z

leyl el eyl eyl

ley—n! av_ 1l layl  lep_ql
Nn+|N1+N+N1 <

By definition now, we have for/ =1, 2,

N N
IRlIypsr= 3 IATTAR, 1, < 3 47 ILIAR,, 15
m=1 m=1
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while l471||, = (7+/3 + 9)/4. Thus, for the norm |IR|l = max,||R|l; the following
bound holds

IRl = IIH'Gp) "l < 100.

This concludes the proof of Lemma 3.2.

Remark. As the proof of Lemma 3.2 suggests, the bound (3.4) can be improved.
Our conjecture is that a more careful analysis will show that the norm [[(Hy'Gy) "Il
is decreasing in N, that

_ 69.—29 3
lim Iy Gy) oo == V3
N->eo

and that for all N > 2

69 — 29/3 - _ _ 33v/3+9
-2V <ty G < ;G = B
Numerical experiments confirm this conjecture.

LEMMA 33. Let Q) be the interpolation operator defined by (1.2). Then Qy
is bounded in the L_-norm.

Proof. We can express the Qpf interpolant as

N+1

(QNf)(x) = Z {aiBz,'_l(x) + biBzi(x)/h},
i=1

where the B;’s are the previously defined basis functions of H,. Let f denote the
column vector {f(oj)}?=1‘71+2 and set Ly, = (Hy'Gp)T. Then,

In Lemma 3.2 we prove that |ILy!|l,, < 100; therefore,
max(max(la,1, 1b;1)) < 100llf1l, .
' 0

Forall x € [x;, x;, 1,1 <i <N, we have

(OnNx) = aBy; (%) + BBy, (x)/h + 84183141 () + by By, ,(X)/h;

and since B,; ,, B, /h are bounded by unity, we obtain
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(3-5) QNN < 400Ilfly, -

TuEOREM 3.1. Iff€ W=D, s =0, 1, 2, 3, or 4, then
() Qnf—f as N— =, and
(ii) for the interpolation error we have

QNS ~ fll, _ <chIDll, _,

where c is independent of h.

Proof. Let 0,f be the Hermite interpolant of f, defined by interpolation of f
and its first derivative at the nodes of the partition A. From the triangle inequality
we find

(3.6) I = Qpflly _ <1+ IRy = 3l _-

Moreover, for the Hermite interpolation error, it is known [3, p. 236]
(3.7 Wf = dpfll,_<ch’IDfl,_, s>0.
From (3.5), (3.6), (3.7) and Lemma 3.3, we now get
IWf = Qpfll, < Chslleflle.

This proves conclusions (i) and (ii).
THEOREM 32. IffE WS(Q), s =1,2,3,4,and Q = [0, 1], then

I = @Al < ek IDSA, _ + WPRUDEDSFI,  + KIDAA, )

(3.8)
< cp“llfllws’w, Where s =p + q

and p,q are integers.
Proof. From the triangle inequality we have

W= Qpfll, < W = Qnfll, _ + 1080~ Cpy, _
<WF = Quflly_ + 10 = Qpe) = (F = Cply, + I = Qpafly,_-
Using the results of Theorem 3.1, we now get
IWf = Qpfll, _ <HIDRSfll,  + APIDE(f = Opl,  + KID3AlL
<KDLl + WPRUNDEDESN, | + KIDAl,
< Cpsllfllws,m,

which completes the proof of the theorem.
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II. Two-DIMENSIONAL COLLOCATION

4. Procedure and Error Estimation. In this section we consider the problem of
approximating the solution of the integral equation

@1)  Au=uP) - \[_KkP.Qu@dQ = f(P)  where O.= [0, 1)

and, for brevity, P = (x, ¥), Q@ = (s, t) and dQ = dsdt.
Let

Ku= [ kP; Qu(@)do.

We seek an approximation u, € H,, to u of the form

2N+2 2M+2
(42) w@®= 3 T B B0)
i=1 j=1
such that
(4.3) (I -0, Ku, = Q,f.

THEOREM 4.1. If

Al. M\ is not an eigenvalue of the kernel k(P; Q).

A2. The right side and the kemel of Eq. (4.1) are in W*=(Q2), s = 1, 2, 3, or 4,
then

(i) for sufficiently small |p| the collocation system (4.3) is uniquely solvable and

(i) for the error of approximation we have

- - < ot
44) e —upll,  <clu—Quull, <cp Ilullws,“-

Proof. By the definition of the operator K we obtain

@5) K~ @ Kull,_ =||f (€, @) - Q k¢, QudQ

ILoo

and since |lk(;, Q) — ka(; Q)Ile —> 0 as |p| — 0 it follows from (4.5) that
(4.6) IK ~ Q,KlIl — 0 as |o| = 0.

In fact, for any e > 0 there exists 8 () such that for |p] < 8,(€) the inequality
K — QpKII < € holds. But in this case, on the sphere IIulle = 1 we have

I = AQ,Kully, _ = I = MNKull, | — INICK = Q,Kull;, = a— e,

where 0 < a < inf“u“L - 7\K)uIIL°°.
Consequently, formsufﬁciently small |p|, the relationship

(4.7) inf I = \Q,Kull, >8>0
lull, =1 “

holds, from which conclusion (i) follows.
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Now from (4.3) it follows easily that
u—u, =I-22,) " - Q,u)

from which
_ 1
@8 M=yl <UC =N K) e — Quully | < gt = Qpuly,_

and combining this inequality with that of (3.8) we obtain (4.4). This concludes the
proof of Theorem 4.1.

Finally, we remark that the above results also hold for one-dimensional integral
equations of the second kind.

5. Numerical Results. In this section we present some numerical results con-
cerning the approximation of the solution of some one-dimensional integral equations
taken from [2]. The numerical solutions are computed by one-dimensional analogue
of the collocation scheme introduced in Part II with a three-point Gaussian rule and
by Nystrom’s method with Simpson’s numerical integration rule [1]. The partition A
used is uniform with mesh size # = 1/N. The rate of convergence estimate

< error for h > log 2
error for A/2
is also given.

The integral equation

u(s) — N[ kGs, Ou(dydr = fs),  a<s<b,

is solved for various kernel functions k, right side functions f and parameters A.
Case (i). k(s, t) = cos(nst), 0 <s, t <1, = 1. The right side f is chosen so
that u(s) = e* cos(ms).

COLLOCATION NYSTROM
N Max. Error Rate Max. Error Rate
3 | 4.55 x1072 1.18x 1072
6 | 4.24 x1073 3.4 5.85x 10”3 4.3
12 | 3.37 x107% 3.7 3.47x 1077 4.1
24 | 2.59%x 1073 3.7 2.145x 107° 4.

« 10=6 -7
48 | 1.75% 10 3.9 1.33% 10 4.

Case (ii). k(s, 1) = eP?,0 <5, ¢+ <1,A=1. For the numerical example we
pick f so that

u(s):eas, a=1,6=5.
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COLLOCATION NYSTROM
N Max. Error Rate Max. Error Rate
3 | 2. 33x 1073 1.60x 10°%
6 | 2.17 x 107° | 5.9 1.55% 1072 3.37
12 | 2.72 x 1077 | 6.3 1.02x 1073 3.90
24 | 1.1 x10"% | 4.6 6.49% 107> 3.97
48 | 8.57 x 10710 | 3.7 4.06x 10°° . |a.00

Case (iii). k(s, ) =t—s,0<¢t, s<1,A=1. Choose f so that
u@s) =s*?, «=1,3,5,7,9.
a=1 COLLOCATION NYSTROM
N Max. Error Rate Max. FError Rate
3 9.79x 1073 .5 4.32x 1073
6 6.92x 1073 .5 1.52x 1073 1.5
12 | 4.87x 1073 .5 5.33x 107% 1.5
24 | 3.43x 1073 .5 1.88, 10°% 1.5
48 | 2.42x 1073 .5 6.66x 107> 1.5
a=3 COLLOCATION NYSTROM
N Max. Error Rate Max. ZError Rate
3 | 4.21 x107¢ 1.36 x10”4
6 | 1.46 x1074 1.5 2.30 X1075 2.60
12 | s.10 x1073 1.5 3.95 x106 2.54
24 | 1.79 x10”° 1.5 6.90 x10~7 i 2.52
48 | 6.32 x1076 1.5 1.17 x10~7 2.56
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«=5 | COLLOCATION NYSTROM
N Max. Error Rate Max. Error Rate
3, | 1.05 x 107" 1.03 x 1073
-5 -5

6 |1.82x10 2.5 7.55 x 10 3.77
-6 -6

12 | 3.21x10 2.5 5.25 x 10 3.85

26 | 5.64 x 1077 2.5 3.66 x 107/ 3.84
-8 -8

48 | 9.95 x 10 2.5 2.57 x 10 3.83

a=7 | corrocaTron NYSTROM

N Max. Error Rate Max. Error Rate

3 1.61x 1072 2.22x 10”4

6 1.50x 1074 3.5 1.37x 1073 4.

12 | 1.24x 1076 3.5 8.52x 10~/ 4.

24 | 1.09x 1077 3.5 5.31x 1078 4.

48 | 9.74x 107? 3.5 3.3x 1072 4.

a=9 COLLOCATION NYSTROM

N Max. Error Rate Max. Error Rate
3 4.32x107% 4.56x 107°

-5 -5

6 4.66x107°| 4.64 2.88x 10 3.98
12 6.97%1077| 4.74 1.80x 10°° 4.

24 2.61x1078| 4.74 1.12x 1077 4.

48 8.75x10%%] 4.90 7.00. 1072 4.

Case (iv).
-s(1-7), 0<s<t<l1,
A=.3 and k(s t)=
-(1-s5), O0<r<s<l

171
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Choose f so that

u(s) = 25s5(1 —s).

COLLOCATION NYSTROM
N Max. Error Rate| {Max. Error Rate
x -2 -3>
3 |4.75% 10 3.39x 10
6 l4.05x 1073 3.6 || 5.69x 1072 2.6
12 [3.09x 1074 3.7 || 1.445 1072 2.
oy |2.49% 1073 3.6 || 3.61x 2073 2.
s |2-22% 1078 3.5 || 9.01x 1076 2.
Case (v). k(s, ) =t—-5,0<s,t<1,A=1.
Choose f so that
u(s) = sin(s)
COLLOCATION NYSTROM
N Max. Error Rate Max. Error Rate
3 1.45 1072 1.73 1073
6 7.24 1073 1. 4.22 1074 2.
12 | 3.63 1073 1. 1.04 1074 2.
24 | 1.86 1073 1. 2.50 1072 EX
48 | 9.00 1074 1. 6.45 10°° 1.95

The estimated rates of convergence in Cases (i)—(v) are in good agreement with

those suggested by Theorem 4.1 depending on the smoothness of the solution.

The above data indicate that the collocation method is faster than Nystrom for
problems with smooth solutions and nonsmooth kernels. The Nystr6m method runs
faster in the cases of nonsmooth solutions but we believe that collocation with non-
uniform mesh will do equally well. It is worth noting that for both methods all the

time is spent in solving the linear system.

The Cases (i)—(v) were solved by the collocation method described in this paper
with a two-point Gaussian rule. The results obtained are less accurate, but the com-
puted rate estimates agree with the a priori estimate obtained in Theorem 4.1 as ex-

pected.
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All the numerical experiments were carried out on a CDC 6500 in single pre-
cision.
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