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Revision of a Derivative-Free Quasi-Newton Method

By John Greenstadt

Abstract. A derivative-free Quasi-Newton (DFQN) method previously published [J.
Greenstadt, Math. Comp., v. 26, 1972, pp. 145—166] has been revised and simpli-
fied. The main modification has the effect of keeping all the successive approxi-
mants to the Hessian matrix positive-definite. This, coupled with some improve-
ments in the line search, has enhanced the performance of the method considerably.
The results of numerical trials on many of the “standard” test functions are dis-
played, in addition to comparisons with two other methods. These indicate that
the present DFQN method is not too far behind that of Gill, Murray and Pitfield,
the most efficient one presently known.

1. Introduction. The work to be described here is an extension of a previous
attempt [1] to devise a derivative-free Quasi-Newton (DFQN) method, which does
not make explicit use of difference approximations. Considerable improvements have
been made, which have rendered the method much more robust and efficient than
before.

As is usual, our problem is to minimize a function f of the argument x (which
is a vector with N components). We assume that we have available only the value of
f (for any x), but none of its derivatives. Part of our task is to estimate the gradient
of £ ( = {af/ox;}) and its Hessian (= {92 f/bxiax]- }) using the available function values
only. We shall denote the true values of the gradient and Hessian by g and G, respectively,
and the estimates by g and G. Naturally, our reason for making these estimates is so
that we may calculate a good step §, according to Newton’s famous formula:
1.1) §=-G g

When G is positive-definite, formula (1.1) will always provide a descent direction,
i.e., one in which f(x) initially decreases. The principal difficulty in [1] was that the
computed estimate, G, was often not positive-definite (even when the true Hessian G
was). One of the main improvements of the present revision is a reliable way of pre-
venting this mishap.

2. Cycles of Steps. The overall sequence of steps, by which the minimum of
f(x) is sought, is partitioned into subsequences, or cycles, of N steps each.! Each such
cycle is handled independently of all the others, so that the notation we shall use will,
for convenience, ignore the fact that there is really a sequence of cycles.

In fact, we shall refer the various points {x,}, reached in a given cycle, to the
starting point (x,) of that cycle. The relative position vector 7; within this cycle is
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202 JOHN GREENSTADT

then defined as follows:
2.1) Ex;,-x9 (@=1,...,N).

Obviously, 7, = 0. Further, we shall mostly regard f as a function of 7, rather than x.
We shall denote the step vectors within a typical cycle by {o;}, with i = 1,

..., N. Each step can also be defined in terms of a suitably normalized direction

vector s;, and a step length &;. The sequence of successive relative positions {7;}

within the cycle is, by definition, given by:

2.2) T =Ty T 0

In turn, g; is given by:

(2.3) 0; = hgs;.

The step length &; is to be found by a line search along s;, starting from 7,_,.
For convenience, we parametrize the line through7,_,, and in the direction s;, using
the parameter @;, so that any position 7(e;) along this line is given by:

2.4 () =71,y + o,
On this basis, the function f(7(e;)) can be denoted by Fy(a;), so that
(2.5) Fo) = flr;y + ay5,).

During any line search, we evaluate F;(c;) for various values of a;, and finally
end up with a set of three such values {a{"), &®), o{®)} with the properties:

(2.62) o) <of®) <of,
1 2 3

(2.6b) FiafV) > Fof®) < Faf).
(It is not necessary, however, that F,.(al(z)) be the minimum of Fy(q;).)

We define the step length as follows:
@7 By = o).

The sequence of directions {s;} is chosen as follows:

(a) At 7, (the start of the cycle), we assume that we have estimates g, and G,

to the true values g(7,) and G. The (unnormalized) direction 8, is calculated by the
Newton formula:

(2.8) 5, =-G g
(b) The normalized vector s, is calculated by:
29) ==L
' 1= 576,

(where the superscript T indicates the transpose) which results in:2

2This normalization is feasible because G can be kept positive definite. In [1], a different
normalization was necessary. (Note, too, that all vectors are regarded as column matrices.)
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(2.10) sTGs; = 1.
(c) The subsequent s; (for i = 2, ..., N) are selected recursively, in such a way
that they all form a conjugate set with respect to G. Thus,

(2.11) s,TGs]-=8,.]: Gi=1,...,N).

(In the program used for testing, successive coordinate directions were selected,
and the Gram-Schmidt orthogonalization procedure was applied, with G as the weight
matrix. The linear independence of each new direction vector was checked.)

With a set of {s;} that satisfy Eq. (2.11), the following considerations prove to
be useful: Since the {s;} have been constructed so as to be linearly independent, we
can form the nonsingular matrix S, whose columns consist of the vectors {s;} as fol-
lows:

(2.12) S={sy,8,..->5xy}

Also, we can form the matrix R, whose columns consist of the products { Gs;}
as follows:

(2.13) R ={Gs,,Gs,,...,Gsy} =GS.
Forming the product R7S, we have

(2.14) RTS = {s]Gs;} = {8} =1

as a consequence of (2.11). Hence, it is clear that

(2.15) RT = §!

and it follows that:

N
(2.16) Y ssTG =SRT =587' =1
i=1

3. The Quasi-Newton (QN) Conditions. All QN conditions may be regarded as
identities on quadratic functions. Following this viewpoint, we approximate f(7) lo-
cally® by a quadratic function Q(7), defined by

G0 0(1) = Qp + 17gy + %17Gr,

where g, and G are the approximations associated with the current cycle. After

this cycle has been completed, the information gathered in regard to f(7) is to be
used to update g, and G. (These updates we shall denote by g§ and G*.) This will
be done in such a way that Q(r) will match f(7) on every step in the cycle. This up-
dated Q (to be denoted by Q%) is defined quite analogously to (3.1):

(€¥) Q*(r) = Qf + 7gs + KT G*r.

3“Locally” means: On the set of points {Ti}’ (withi = 0, ..., N) which make up a
cycle.
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Along the line defined by (2.4), Q*(7) depends only on a;, so that for conve-
nience, we shall define a function R,(e;) as follows:

3.3) Rfap) =Q*(ri_y + 0,8;)
and, by expanding Q*, we obtain:
Rfe) = (Qo + 11185 + #1,G*1,y)

+ (s7gd + sTG*1,_ oy, + B(sTG*s;)o?.

(3.4)

The three expressions in parentheses will be denoted by a
that R;(o;) can be abbreviated to:

;» b; and ¢;, respectively, so

(3.5) Ro;) =a; + bo; + Yool

We are now ready to match up the data developed in the line search, and sum-
marized in (2.6), with the local approximation (3.5). We shall require that:

G6) RV =Fo"), R)=Ffr), R®)=F(@®).
More explicitly, Egs. (3.6) are:
a; + ba™ + Y ()2 = Fa),
G-7) a; +baf®) + %ci(a,(2))2 = F,.(a,@)),
a; + bla,(a) + 1éci(oz,(:")f = Fi(a,(:")),
which can be solved for a;, b; and ¢; in terms of the known quantities
(D o oy and {Fie"), Fa®), Fof>)}.

We may now regard the data gleaned in each line search as summarized implicit-
ly in the calculated values of a;, b; and ci.4 Referring back to their definitions,
we may write:®

T T

(3.82) s; &5 +5; G*ri_y = by,

(3.8) sTG*s; = c;

and we have thus generated conditions on g§ and G* in terms of the known quantities
{s;, 74, by, ¢;}. These conditions hold for i =1, ..., N, i.e., for every step in the
cycle.

We now introduce additive corrections to g, and G, defined as follows:
(3.92) 8 =8+,
(3.9v) G*=G +T.
Equations (3.8) can then be rewritten in terms of the new unknowns vy and I
(3.10a) sTy +sTTr,_, = b, —sFgy —sFGr, _ | =

i i i

4Because of (2.6) it may readily be proved that c; > 0.
It turns out that a; need never be used.
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(3.10b) sTTs; = ¢; —s7Gs; = ¢; — 1.

The last reduction follows from (2.11). We can also reduce (3.10a) by noting that,
based on (2.2) and (2.3):

(3.11) T =T Ry,

which implies that

i
(3'12) T,' = Z hiS]-.
j=1
Since 7;_, clearly does not include s;, and since s; is conjugate to all {s]-} with j <1,
we have:
(3.13) sTGri_, =0

from which it follows that €; can be reduced, so that (3.10a) becomes:
(3.14) s{y +5{Triy =€ = b; — 5 &
Equations (3.10b) and (3.14) are the QN conditions for this problem.

4. Variational Derivation of I'. After having completed a cycle of V steps, we
consider next how to use the information collected to estimate the corrections vy and
I. In [1], a functional was constructed, involving both quantities; and a variational
procedure was used to derive formulas for both. However, there were serious am-
biguities in that approach,® so that we shall now depart from that scheme.

Our strategy will be to regard y as merely a (vector) parameter, and to concen-
trate at first on I alone. If G (and hence I') be regarded as a covariant tensor of
second rank (as it is when thought of as a “metric”), then the simplest quadratic in-
variant involving I" would be (with a convenience factor of 4):

(4.1) ®, =% Tr{G'IG¢'17}

(where the symbol Tr indicates the trace). We are not assuming I' to be symmetric
a priori, but will require it to come out that way.

To the bare functional ®,, we must adjoin the QN constraints, as well as the
symmetry constraint on I. We use the Lagrange multipliers {6,}, {n;} and A (a ma-
trix). The complete functional is then:

N
®=%Tr{G'IG'IT} -2 Y 0,{sT(v + 1i_))— ¢}

4.2) . =1
=¥ n{s7Ts; —¢; + 1} = Tr{ AT - T'T)}.
1

=

We follow the method of solution described in [1], but shall not go into detail
here; the formula for I" turns out to be:

6as emphasized to me by M. J. D. Powell.
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N
4.3) I'=¢G El {05,75y + 1iy87) + n857)G.
=

(Note that, although 0, appears formally, it is not really included, because of the van-
ishing of 7,.) .

The n’s may be immediately evaluated by applying QN condition (3.10b). We
have:

N
sTs, = 3 {0,[sEGs 7T Gsy + sEGr,_ sTGs, ] + NSk TGssTGs, }

i=1

(“4.4) = Z {0187 1Gs + 8554 Griy] + 183,85 )

=1
=20, 70 _Gs, +m =mp =, — 1.

The various reductions follow from (2.11) and (3.13).
We next apply the remaining QN condition (3.14) to I" and . Substituting for
I' from (4.3), we obtain:

i T1es =G LA + a8 + mpysf Yy

$: GT_y }

(4.5) —Z {6,877 ,Gry +sT G118 GT-1)+"18111

=077 ,Gr,_, +Zo (T Gri_y XsTGri_y) +nsTGr_,

The last term above vanishes because of (3.13). The term preceding that vanishes too
because regardless of the values of i and j, at least one of the factors is zero (again
because of the conjugacy of the {s;}). If we define:

(4.6) 12, =17 ,Gr,

-1
then we can write
4.7 sT'r,=0; T,__l

We can greatly simplify (3.14), if we recall that the set of vectors { Gs;} is
complete. This means that we can expand the vector vy as follows:

N
j=1
so that
r N
“.9) ;Y= Zl My =ty
I=

and (3.14) reduces to:

(4.10) w+T 0,=¢.
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Since the {¢;} are known quantities, we need not concern ourselves further
with the QN condition (4.4). On the other hand, the QN condition (4.10) involves
two unknown quantities (viz., u; and 0,) for each step. As we shall see, the constraints
on {6,} which are necessary to insure the positive-definiteness of G* will enable us to
determine both quantities.

5. Maintenance of Positive-Definiteness. We shall first express G* directly in
terms of G by applying the correction (3.9b) explicitly. We obtain, with the help of
(4.3), (4.4) and (2.16):

N
G*=G+I'=) GssTG+T
i=1

M=

N N
(5.1) =Y GssTG+ 3 (;=1GssTG + X 0,657y +1,_45T)G

-
Il
-

|
.[\'42

Il
-

{c,GssTG +1,G(s;7L, +7,_,5T)G).

1

Our subsequent analysis will be greatly simplified if we transform G* as follows,
to form B:

(52 B =STG*s,
where S is defined as in (2.12). The elements of B are given by:

— T %
By, =51 G*s,,

N
=sTY {cGssTG+0,G(srL ) +1,y5))Gls,,
i=1
< T T T
(53) =Y {c5tGsXs] Gsp) +0,[(s3 Gs )11 Gs,,) + (55 GTimy )si GSpy)] }
i=1

N
= Z {eidkibim + oilski(Ti'{'-l Gs,) + (SIZ'GTi—l)Sim] }

i=1

=8y + 0k (TE_1Gs,) + 0,,6TGT,,_1)-

The reductions are based on the conjugacy relation (2.11). Further simplification
may be effected by generalizing (3.13), based on the expression (3.12) for 7;. Since
('r,ff_lem) is the same as (sz;G'rk_l), we need consider only the latter. Clearly, if

k < m, this expression vanishes, since Tr—; does not then contain 5,,- On the other
hand, if £ > m, then the surviving part of the inner product is hm(s;';,Gsm) which, of
course, is just equal to h,,. We can summarize as follows:

(5.4) 6TGr_)=0 ifk<m,
=h, ifk>m.
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On this basis, we can display B:

¢, h6, hbs hb, - - -  hby
R0, ¢ hyfy R0, - - - hyby
h63 hy03 c3
(5.5 B=
h6, hy0,
hy-10n
hiby  haby hy-10n N

Equation (5.2) can be solved for G* by multiplying by R and using (2.14). We
have:

(5.6) RBRT = RST)G*(SRT) = G*

which shows, together with (5.2), that G* will be positive-definite if and only if B is.
We may, therefore, concentrate our efforts on B.

There are undoubtedly several ways of accomplishing our end; we shall consider
two, but display numerical results for only one of them.

First, we shall concentrate on keeping all the eigenvalues of B positive. This may
be done by the use of Gershgorin’s Theorem [2]. If A is any eigenvalue of B, then it
satisfies:

I\-B;I< 3 1Bl

;.7 7t
which means that
(5-8) A>B; -2 Bl
j#Ei
so that if, for some number ¢; > 0, we insure that
jFi

we then have
2 min ¢, .
(5.10) A= min ¢; >0

1
From (5.5), it is clear that:
(5.11a) B;=c,
i-1 N
(5.11b) 2 B;l=16,1 3 mi+h; 3 6l
J#Ei j=1 j=i+1

Since, as was indicated previously, all of the {c;} are positive, we may “scale”
the ¢;, in a sense, by setting:

(5.12) ¢i = ﬁici’
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where §; > 0. Substituting these relations in (S .9), we ask that:

i-1

(5.13) c—IOIZh—h E |0I
j=i+1
in which case, we shall have:
(5.14) A = min fic;.
1
If we rewrite (5.13), we obtain:

i-1 N
(5.15) (Zh,. 19, <A =B)e;—h; X 161,

=1 j=i+1
which for i = 1, ..., N serves as a set of bounds on { 16,1}. (Clearly, §; must be

less than unity.) These bounds may be applied recursively, starting with 6. Thus,
for example:

(5.162) <_§: h> oy ! <1 - Bylen

N-2
(5.16b) <}: h,.>|e,\,_l < - By_1)ey—r — hy—1 10y,
=1

etc.

We shall next consider another method” for bounding the 8’s, related not to
the eigenvalues of B, but to a sequence of principal minors of B.

If we define the matrix B, as follows:

K3 hy,6, LT hy0; 7
h,0, )
5.17) -
( B,=
hi_,6;
_hlei hi—lei ¢ -
and the vector g, by:
(5.18) q;={hy, hy, ..., b}

then, clearly, we have the recursion:

B, 10,
(5.19) B:=[ S ]
%Gi-19; <

1
and we shall attempt to insure the positive-definiteness of B, given that of B, . If
this can be done for all i then, since B,, = B, we shall have our result.
To further facilitate the analysis, we transform B; with the matrix Q;, defined
by:

TWhich is based on a suggestion made by Dr. S. Schechter.
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' “Lo 1
to obtain the new matrix D;:
B, 0
=T
(5.21) D, =Q; B, = ,
0 ¢
where
= . —_ (AT 1 2
(5.22) ¢ = ¢~ @i Bim19i-1 ;-

As before, if D; can be kept positive-definite, then B, will be also. Since B;_,
has been assumed to be positive-definite, then D; is positive-definite if and only if
¢; > 0. We therefore choose some positive number §;, and require that:

(5.23) ;= ¢; = Wi 07 =>Bc; >0,
where
(5.24) w; = 7B qp

and this in turn establishes the constraint on 6;:

(5.25) w107 <(1-B)e

(and again, §; must be less than unity).
If this recursive process is continued until i = N, we then have a positive-defi-
nite Dy ; hence a positive-definite By, ; hence a positive-definite G*.

6. Selection of 6, and y;. The remaining QN condition, Eq. (4.10) will now be
used in conjunction with the constraints on {6, }, to effect unique choices for 0; and
u; at each step. Clearly, for i = 1, we have the forced choice:

6.1) My =€

and, as remarked previously, 8, does not enter into the problem at all.

For i > 1, our strategy will be to choose the ; of smallest magnitude, con-
sistent with the constraint on 6,. This strategy is in the same spirit of “minimal cor-
rection” which prompted the formulation of the selection of I' as a variational prob-
lem.

If there were no constraints on the 9’s, the choice would obviously be

(6.2a) =0
(6.2b) 0, = ¢/

i-1

s I>1

However, this strategy almost always leads to an indefinite G*, with catastrophic re-
sults (as observed in practice). This is the reason for applying the constraints to keep
G* positive-definite.
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FIGURE 1

Since the constraints (5.15) and (5.25) may both be written in the same form:

(6.3) AR

with A; > 0, we shall treat them together. From (4.10) we have:
6.4) €~ 1 =T 10;

so that

(6.5) le; — w;l = 1',?_1 16,1 < 1',-2_17\,. =,

We now wish to choose y; as small as possible in magnitude consistent with
(6.5). This is a (trivial) linear programming problem, which may be solved graphically.
In Figure 1, the two oblique lines bound the region of the (e, u) plane wherein (6.5)
is satisfied. The heavy line traces the minimum magnitude u; within this region.

This solution may be written as:

(6.6) u; = sign(e;) x max(0, le;l —v)

with this choice of ;, §; may now be determined from (6.4). In this way, we have,
so to speak, “apportioned” the increments to the corrections I" and v in a natural
manner by using the constraints on G*.
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Thus, at the end of a cycle, we are in a position to update 8o and G, according
to (3.9), (4.3) and (4.8). In addition, because g, is assumed to vary linearly with x,
we must perform a translation of it, to the new starting point. If we denote the trans-
lated value by g¢*, we have

6.7) &5* = 8§ + G*ry.

7. Choice of {B;} in Second Method. As a matter of experience the second
method described in Section 5 for maintaining positive-definiteness turned out to be
considerably the better. Hence, all of our results are for this method.

The choice of the §’s remains arbitrary. By way of a guide, we shall examine
the effect of the B-values on the determinant of G*. We have:

(7.1) det G* = (det G*)(det G)™!(det G) = det(G*G~!)(det G)
and, using (5.6):
(72) det(G*G™") = det(RBRTG™') = det(BRTG™'R) = det(B) det(RTG'R).

But, from (2.15) and (2.14):
(73)  det(RTG™'R) = det(S"'G1R) = det[(GS)"'R] = det[R™!R] = 1

so that, finally:
(7.4) det G* = (det B)(det G).
Next, from (5.21), we have:
(7.5) det D, = det(QTB;Q;) = (det B;) x (det Q,)%;
but it is clear from the form (5.20) of Q; that det Q; = 1, so that
(7.6) det B; = det D,.
On the other hand, it is also clear from (5.21) that
1.7 det B; = det D; = (det B;_,) x ¢,
which gives a recursion for det B;, and since B, = ¢,, we conclude that:
N
(7.8) det B = iI=11 ®;
Using all these results, together with the constraints (5.23), we can bound
det G * below as follows:
det G* = (det G) x (det B) = det G x <H¢,~)

> det G x (Hci> x <I;IB,> '

i

(7.9)

Clearly, if some of the ¢’s are small, det G* will be much smaller than det G since
B; < 1. Whatever the case, it is obviously advantageous to try to keep the determi-
nants as large as possible. This means that the §’s should be fairly close to unity.
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The most obvious way of ‘“‘balancing” the §’s is to set them all equal to a pre-
determined constant. We may simply choose a value, once and for all, or make use
of (7.9) as a guide to fitting a value to each problem. If all of the §’s are equal;
(7.9) becomes:

(7.10) det G* > [(det G) x <[i]c,. >] < BV

Since we have no control over the factor within the brackets, we can ignore it, and
concentrate our attention on V. If we demand that this factor should be no less
than some fixed constant p, then we should set 8V = p, so that:

(7.11) B=p'N,

which has the desirable property that g gets closer and closer to unity as NV gets larger.
The value of p must be established by numerical experiment.

8. Numerical Results. We have performed our tests on many of the ‘“‘standard”
functions in the literature using the “‘standard’ starting points. We list the names of
these functions here, with appropriate references, and add any comments that serve
to clarify our results (V is the number of arguments):

(1) Helical Valley [3].

(2) Rosenbrock’s Function [4].

(3) Wood’s Function [S].

(4) Powell’s Quartic Function [6].

(5) Watson’s Function [7]. This has been tested for N = 6 and 9.

(6) Chebyquad [8]. This has been tested for N = 4, 6, 8 and 20.

(7) Random Trigonometric Functions [3]. These are trigonometric polynomi-
als whose coefficients are random variables (fixed, of course, for each case). The
starting points are also random variables. Because of this, the behavior of each func-
tion so generated is unique and unpredictable, so that 3 runs were made for each case.
Runs were done for N = 3, 5, 10, and 20, and the number of function evaluations
averaged. Those runs wherein the method converged® to a minimum different from
the predetermined one were ignored, since they do not support a fair comparison. All
the runs shown to converge did so to the correct solutions.

(8) Biggs’ Exponential Functions [9]. There are two functions, called EXP5
and EXP6 with 5 and 6 arguments, respectively.

In Table 1 are shown the numbers of function evaluations necessary for con-
vergence for most of these functions, when the value 8 is fixed independently of NV.
Since 0 < 8 < 1, the five B-values covering this range were tried. It is abundantly
clear that, although fixing § may be satisfactory when N (indicated in parentheses) is
small, it is totally unsatisfactory for large N, as evidenced by the failures of conver-
gence (marked “F”’) for Chebyquad and the trigonometric functions when N = 20.

8For all functions but tlie random trigonometric functions, convergence was defined as
requiring that gTG -lg <10 . For the trigonometric functions, it was defined as requiring
that maxt(lxi —xg;1) <10 °, where x(, was the known location of the correct minimum,
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TABLE 1
Function evaluations vs (-values

> 1 3 .5 7 9

Function
Beale (2) 85 76 86 66 82
Hel (3) 285 287 315 232 239
Ros (2) 236 174 203 203 165
Wood (4) 508 316 314 266 288
Pow (4) 1060 668 568 467 711
Wat (6) 940 1064 662 456 540
Cheb (4) 222 176 326 122 138
(6) 343 403 314 346 253
(8) 3780 1524 684 836 603
(20) F F F 5044 3499
Trig (3) F 85 126 122 82
" 64 116 85 102 118
" 120 113 74 105 148
MEAN F 105 95 110 116
Trig (5) 737 244 249 215 158
" F 235 260 218 220
" 430 303 225 331 180
MEAN F 261 245 255 186
Trig (10) F 3336 743 874 978
" F 3681 1422 512 728
" 22246 2548 1721 644 610
MEAN F 3188 1295 677 772
Trig (20) F F F 3611 1949
" F F F 3988 2789
" F F F 3471 2740
MEAN F F F 3690 2493

The results with 8 determined from Eq. (7.11) are shown in Table 2 for nine
representative values of p over its allowable range. Clearly, the performance is far
better (since there are no failures) and the performance of the algorithm is relatively
insensitive to the p-values. However, the value p = .5 seems slightly better than the
others, so that this value was used for further runs.

For comparison with the results of Gill, Murray and Pitfield [10] (GMP) the
convergence criterion was adjusted for each function, for termination when the differ-
ence between the function value at the end of a cycle and its known minimum value
fell within the accuracy given by GMP. In Table 3 are shown the numbers of cycles
(noted as ITER), the number of function evaluations (EVALS), and the final accuracy
(ACCUR.). The DFQN method is comparable to GMP except for the Chebyquad
cases, EXP5 and EXP6. The reason for this poor behavior is not known. (The L in
the last line indicates that a local minimum was found.)

In Table 4, the DFQN method applied to the random trigonometric functions
is compared with the results quoted by Powell [11] for his 1964 method requiring
no derivatives. As can be seen, the DFQN method is slightly worse, but manages to
keep up for large N. An additional set of three cases for N = 50 was run, with the
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TABLE 2

Function evaluations vs p-values

p-+ .1 .2 .3 .4 .5 .6 .7 .8 .9
Function

Beale (2) 78 91 81 68 74 66 85 88 63

Hel (3)] 251 269 250 202 194 204 255 285 282

Ros (2)| 189 220 146 147 144 137 163 175 148

Wood (4)| 287 277 331 301 277 261 257 243 228

Pow (4)] 634 806 556 674 501 576 636 561 527

Wat (6)] 476 582 385 371 369 354 346 386 478

Cheb (4)] 228 122 122 129 121 121 130 130 134

(6) 273 341 359 426 268 328 329 360 366

(8)] 563 503 567 744 503 578 593 587 635

(20)] 3454 3155 3053 2963 3069 2820 3023 3099 3253

Trig (3) 78 63 96 90 78 66 104 75 92

" 73 77 60 76 68 121 63 74 108

" 77 71 59 74 71 132 93 107 115

MEAN 76 70 72 70 72 68 87 85 105

Trig (5)| 219 204 179 212 183 282 267 259 155

" 294 181 176 178 183 202 199 242 224

" 187 207 216 517 207 178 214 224 189

MEAN 233 197 190 302 191 221 227 242 189

Trig (LO)), 22 88 |17 ALY, fRA TEA 02 S 7130

" 778 606 715 674 626 928 863 727 612

" 598 566 753 636 768 696 617 841 751

MEAN 733 570 682 642 686 793 804 716 690

Trig (20)]| 2061 2314 1665 1838 1851 2158 2428 2231 2720
" ]2428 2326 1958 2118 1861 2196 2106 2519 2513
" ]12651 2260 2642 3223 1928 1998 2256 2170 2717

MEAN 2380 2300 2088 2393 1880 2117 2263 2307 2650

results and the mean shown. (The number of function evaluations for convergence
of the DFQN method appears to be proportional to N!-8))

It is of interest to observe the detailed behavior of this algorithm for a few
cases. In Tables 5 and 6 are shown the results for the Helical Valley and for Rosen-
brock’s Function. Not only is the convergence clearly superlinear near the solution,
but the final estimate “GG” of the Hessian is quite close to that computed by cen-
tral differences at the solution point.

The output for Powell’s function with a quartic minimum is given in Table 7,
and shows quite clearly that a method based on quadratic approximation hardly
works at all near a higher-order minimum. The convergence is certainly not super-
linear (barely linear!), and the final estimate for the Hessian is very far from the
differenced estimate (which is very accurate). Oddly enough, the “Hadamard condi-

tion number”, defined by:
N N Y

@.1) Cy = (det G) (H > Gy

\i=1 \ j=1

has almost the same value for both estimates. Since G is, in reality, singular, the
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conjugacy relations (2.11) become impossible to maintain with sufficient accuracy.
Each time such a failure occurs, it is noted, and the total printed in the output, as

shown.
TABLE 3
Comparison of DFQN and GMP methods
DFQN GMP
Function ITER  EVALS ACCUR. ITER _EVALS  ACCUR.
Hel 23 194 3.5%x10"27 27 165 2.5x10"26
Ros 25 136 3.7x10713 26 133 2.8x10" 14
Wood 25 261 3.4x10°20 55 395  4.4x10719
Pow 43 421 1.3x10°22 41 398 1.6x10722
Wat 6 24 333 4.4x10712 33 351  1.0x107" 11
Wat 9 69 1388 1.4x107 10 56 939 2.gx107 10
Cheb 4 9 105  2.8x10718 8 67 2.9x10715
6 15 232 2.3x10"Y7 13 135 2.5x10715
8 23 487  7.9x10”14 20 251  1.6x10713
20 69 3069  2.8x10713 47 1189  2.5x10°13
Exp 5 61 718 3.5x10720 a4 401 4.9x10718
Exp 6 42 669 5.3x10713 (1) 99 978  4.1x10"18
TABLE 4

Comparison of DFQN and Powell’s methods

on random trigonometric functions

DFQN POWELL 1964

Trig 3 72 108
Trig 5 191 167
Trig 10 686 504
Trig 20 1880 2389
Trig 50 9989

" 15078

" 10943
MEAN 12003
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TABLE 5
HELICAL VALLEY
CYCLF EVALS F X+
0 Yy 2.5000F03 ~1.0000F00 0.0000F00 0,0000E00
1 32 2.0216F01 "9,2457E701 6.2522F 01 4.1739E00
2 40 1,7257F01 "g.6814F°01 6.1197E°01 4,0746E00
3 ug 1.1676F01 “4,9033E°01 9,9748F 01 3,2299E00
y 57 8,7017F00 “2.7873E701 9.9702E° 01 2,8815E00
5 65 5.5328F00 2.6616F°01 1.0667E00 2,1264E00
6 N 4,6213F00 4,3775E°01 1,0103E00 1.8770F00
7 83 1.8108F00 8.4808E£ 01 6.6381F 01 1.0132F00
8 92 1,2519F00 7.9490E°01 4.7963F 01 8,5569F 01
9 101 8.1327F01 8.9252F 01 2.9189F 01 4,.5458F 01
10 107 3.7603F 01 9,1868F 01 3.6711E°01 5.9447F 01
11 113 2,4722F° 01 9,5125£°01 2.8770F 01 U4.4645F 01
12 120 6.6381F 02 9,7831E701 1.4257E 01 2.2493E°01
13 129 3,0043F”03 1.0035F00 5.8743F 03 1.3294E°02
1y 136 1.1976F 03 1.0023FE00 1.5532F°02 2.4799E°02
15 143 5.3857F 04 1,0010F00 1.1213F°02 1.8699F 02
16 152 1,2269F 04 1,0003E00 4,5152F" 03 6.3285E 03
17 158 8.5734F 06 1.0000F00 ~1.6533F 03 ~2.7338F 03
18 164 2.8928F° 07 1,0000E00 ~3.3210F 04 ~5.2372F 04
19 170 6.0667E"10 1.0000F00 6.1106E 06 8,3140F 06
20 176 3.5394F712 1.0060E00 3.1216E°07 6.5073E°07
21 182 2.2862F"15 1.0000F00 ~2.1773F 08 ~3.7078E_08
22 188 9.0942F 21 1.0000F00 2.6327F 11 3.6231F 11
CONVERRFD
23 194 3.4648F 27 1.0000700 ~2.4880F 14 ~3,5224F 14

GNORV STFP 8,2842F 14 1,349F 10

Ge
200.03 70.025331 _  0.014072
©0.025331 _506.61 318.31
0.014072 ~318.31 201.99
GGDIF
2.000072 1.4010F711 77,92287 12
_1.40107711 _5.0661F2 3.1831F2
7.92287712 T3,1831F2 2.020072

9. Discussion. Although the performance of the DFQN algorithm is creditable
enough in most cases, it is clearly inferior to the GMP method for Chebyquad, EXPS
and EXP6.

The possibility of improving this type of algorithm by generalizing it has been
outlined by Powell [12]. He terms these methods “B-conjugate” methods.® The re-
lations (2.11) are retained, but the QN conditions, instead of being restricted to
(3.10b) and (3.14), are generalized by Powell to:

9.1) 2CjGi=r,, a=1,...,m,
ij

where the coefficients {C,.,. o} and the quantities {7, } are known in terms of values

of x and of f. {Gi’;} is, of course, required to be symmetric. With these more gener-

al QN conditions, for example, it might not be necessary to achieve the conditions

(2.6) in the line search, thus rendering it possible to reduce the number of evalua-

tions of f.

901', with our notation for the Hessian, “G-conjugate”.
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TABLE 6

ROSENBROCK’S FUNCTION

CYCLFE EVALS P X+
0 3 2,4200E01 “1.2000F00 1.0000F00
1 10 4,3754E00 “1.0098F00 1,0776F00
2 16 3,4680F00 “7.7971F"01 S.5312F 01
3 20 3,4240F00 “8.3303F°01 7.1924F 01
[N 24 3.1383F00 “7.5679F 01 S5.9554E 01
5 29 2.1103F00 “4,3391F"01 2,1156F 01
6 3y 1,8595E00 “3.6362F"01 1.3299F°01
7 39 1.3154F00 “1.4380F 01 2.9102E°02
8 us 1,0228F00 1,6316F 02 ~2.3224FE°02
9 52 8,0424F"01 1.1630F701 ~1.7436E°03
10 57 4,6536F 01 3,5187F701 1,4509F°01
11 62 3,1257F 01 5.0231F°01 2.2685E 01
12 68 2,5411F 01 5,0955E701 2.4799E 01
13 74 2,3928F701 5.1840F°01 2.6017F 01
14 80 1.4731E701 6.26167 01 3.8338F 01
15 86 4,3617F°02 7.9123E701 6.2659E° 01
16 92 3.6691F°02 8.4213F 01 6.9833F 01
17 99 2,9450E°02 8.5294E°01 7.186€E 01
18 105 1,2068F 02 8.9858F 01 8,0323E° 01
19 110 1.8136F 03 ©,6289F°01 9.2507F 01
20 115 7.0522F°05 9,9808F 01 9.9535E 01
21 120 5,2966F 06 1.0021E00 1.0042E00
22 124 5.1426F 07 1.0000F00 1.0001E00
23 128 8.1359F_09 9.9993£701 9,9987E 01
24 132 3.8825F 11 1,0000F00 1.0000E00
25 136 3,668UF 15 1.0000700 1.C000F00
26 140 7.1632F20 1,0000F00 1.0000F00
CONVERGFRD
27 144 4,6940F 25 1.0000F00 1.0000F00

GNORM ,STEP  9.6865E 13 3,7896F 10

GG

801.99 ~399,99
299,99 200

GADIF
_802 T400
400 200

Powell reported mixed success with an algorithm he devised based on these
ideas. His difficulties seemed to be a result of the lack of insurance, in conditions
(9.1), that G* would be positive-definite. Moreover, Powell made no provision for

estimating g§. If (9.1) is generalized further to:
.2) 2 CyoGh + Zi: d;680i = 4>
ij

thus introducing more variables {g;}, it would then be possible to constrain G* so
as to maintain positive-definiteness, while at the same time having the QN conditions
(9.2) strictly satisfied. This might be done along the lines of Section 6 (also suitably
generalized); i.e., some norm of y would be minimized, subject to a set of inequality
constraints on G*. The exact QN conditions would then be used to complete the

solution for the updates.
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TABLE 7
POWELL'S FUNCTION
CYCLE EVALS F X+
0 [ 2.1500E02 3,0000F00 ~1.0000E00 0.0000E00 1.0000E00
y 51 4.,0171E” 04 6.4978E702 ~7,3758F 03 6.1345E°02 6.4117E°02
8 90 6.9257E°07 4,0372E°03 ~3,5742E"04 1.2360F°02 1.2275E°02
12 123 9.3623F 08 “4.4864F°03 4,4668E" 04 5,0931E°03 5,0853E°03
16 168 6.7213F°08 ~2.9309F703 2.9034E"04 5.5437E°03 5.5250E°03
20 206 2,1248F" 10 “4,8166F 04 4.8600F 05 1.0142F 03 1.0193F703
24 242 4,4252F"13 “4.4901E704 4,4846E"05 ~1.3276E 04 ~1,3284E" 04
28 284 2.3800F"16 “4,3286F"05 4,3292F"06 2.3392F 05 2.3392E°05
32 319 2.9111F"18 “2,9425E705 2.9425F 06 ~1,6880F 05 —1.6881E05
36 358 9.2835F°19 “2.4931F705 2.,4931FE706 ~1.2547F"05 ~1.2547E"05
40 393 5.9539F722 ~7.7086F°07 7.7085E°08 1.0337E°06 1.0337E°06
[ 436 6.5258E 23 ~“7.8105F°09 7.8120F"10 1.1271E°06 1.1271% 06
48 490 1.6951F 24 “4.2223%F707 4.2223E°08 1,6984F 07 1.6983E 07
LONVERGFD
**ORTROCONAL,ITY FAILURES 9
49 501 1.2448F 24 “4.4294FT07 4.4294E°08 1.4176E°07 1.4176E-07

GNORM ,STEP 8.6802F"13 7.63F 13

GG

0.82669 8,267 1.8316 _"1.8316

8.267 82.671 18,317  718.317

_1.8316 18,317 16.94 16.94

1.8316 ~1£.317  T16.94 16.94

GADIF

2.0000%0 2,0000F1 5.0487FE°17 T1,2102F_10
2.0000F1 2,0000F2  “4,1374F"11 8,0779E716
_5.0487F717 T4,1374%"11 _1.0000F1  ~1.0000F1
1.21027710 8.0779F16 ~1.0000F1 1.0000F1

10. Acknowledgments. I am indebted to M. J. D. Powell, S. Schechter, and
G. Golub for provocative criticisms and suggestions (some of which have already
been mentioned).

Appendix—Line Search. We shall sketch the line search here, touching on the
principal precaution for avoiding catastrophes due to rounding error. (There are
various other safeguards in the program, but these have little theoretical interest.)

The first phase of the search we term the ‘“trap” phase. Starting with a normal-
ized direction vector s, we are evaluating F(a) defined as f(r + as) as described in
Section 2. Our first value (o = 0), we shall denote by a,, and the corresponding
value of F(0) by F,. We then increment o to the value a5, and evaluate F,. (If
s is the first step direction—viz., the Newton direction, then a; is the value given by
the Newton formula; however, in no case is a; permitted to exceed unity. For the
other directions in the cycle, a; is estimated on the basis of the progress made in
the first step—again, a; cannot exceed unity.)

If F; <F,, the step a; is doubled, o, becomes «,, a; becomes a,, and a
new oy is defined as a, + 2(a, — ;). The function values are also relabeled. Fj is
next evaluated, and compared with F,. If F; < F, another progressive step is made,
etc. For some oy, F will be > F,. In this case, we have “trapped” a smallest
value of F.
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Now, it can happen that, although G is positive-definite, even the “Newton
direction” may not be a descending one, because we have only an estimate of the
gradient, and not its true value. Hence, it can always happen that the initial F, is
=>F,. In this case, we reverse the signs of s and a,, denote a5 and F; by a; and
F,, respectively, and make a new step a; in the opposite direction. The new F,
may be < F,, in which case, we proceed as in the preceding paragraph. Otherwise,
we again have “trapped” the smallest value F,.

Under certain circumstances, this would end the line search. However, there
may be certain unsatisfactory conditions that necessitate a more refined “squeeze”
of the middle point (a,, F,).'® These are:

(@) It is the first step of the cycle and &, = 0. (This might result in a null
step for the entire cycle, thus unnecessarily terminating the algorithm,)

(b) The estimate of ¢ gained from the o’s and F'’s via the method of Section
3 exceeds 10. (Because of the normalization of the {s;}, the value of ¢ becomes
very nearly unity near the solution. For this reason, large estimates of ¢ are suspect,
since a very bad value for ¢ can render it very difficult or impossible to recover good
estimates g and  during later cycles.)

The “squeeze” itself is based on first fitting a quadratic to the three points
P,, P,, and P;. The minimum of this quadratic will occur at a,, with a, <a, <
3. When F, is now evaluated it may be > F,. In this case, we perform a “cut”,
ie., if, for example, a, > a,, we compute!?

(A1) as = %ey +a,)

and “close” the interval, by discarding P;. Then P, becomes P,, and we evaluate
Fg; Pg then becomes the new P,. If F, is again > F,, we repeat the process. Note
that the “cut” is always on the side away from P,.

When F, < F,, we fit a cubic to the four points P,P,,P,;,P,. Let this
cubic be centered around a, as follows:

(A2) k(@) =co + cy(@—ay) +cy(a—ay)? + oy —a,)?

(with the ¢’s having known values after the fitting). We can then solve for the mini-
mum of k(e), and we obtain the solution (for ¢, # 0):

" et ()
(43) R R S E TV
where

(A4) p =3c,cs/c2,

o is a dimensionless ratio, independent of the scaling of F or a, and, for a cubic, is
bounded above by unity.

10 we shall henceforth denote the pair (o, Fy) by P;.
llThis device was originally suggested to the author by Dr. Y. Bard.
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The criterion for terminating the “squeeze” is based on the relative change in
the estimated value of F”(a) from a, to ag. In this case, the estimates are based on
k(c), and the values of k" at a, and &g turn out to be:

(A5a) K"(a) = 2¢,,

(ASb) K"(eg) = 2¢,0/T - p,
so that:

(A6) KKy =1—-p.

It can be shown that, when the values {a;, a3} do not bracket the maximum
of k(a), then k¢ will be larger than k. Hence, we can expect that the “normal”

state of affairs would be that the ratio in (A6) would be greater than unity, which
means that p would be negative. Numerical tests have indicated that it is in fact
reasonable to allow k" to increase by 20% but to restrict any decrease to 1%. This
gives an allowable range for p as follows:

(A7) - 44<p< .02

and when p is found to fall within this range, the squeeze is terminated.

The principal danger from rounding error occurs when the differences (F,—F,)
and (F3 — F,) are too small relative to |F,|. Then, too many significant figures are
lost, and the values of b and ¢ become too inaccurate. This has the effect of spoiling
the updates for g and G. Therefore, since the machine accuracy in this study is about
16 significant figures, the line search is terminated and no update is made when,

(A8) min(F), — F,, F3 = F;) <107'2 x F,
so that we can expect at least a few correct figures in our update.
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