An Iterative Process for Nonlinear Monotonic Nonexpansive Operators in Hilbert Space

By W. G. Dotson, Jr.

Abstract. The following theorem is proved: Suppose H is a complex Hilbert space, and $T: H \longrightarrow H$ is a monotonic, nonexpansive operator on H, and $f \in H$. Define $S: H \longrightarrow H$ by Su = -Tu + f for all $u \in H$. Suppose $0 \le t_n \le 1$ for all $n = 1, 2, 3, \ldots$, and $\sum_{n=1}^{\infty} t_n (1 - t_n)$ diverges. Then the iterative process $V_{n+1} = (1 - t_n)V_n + t_n SV_n$ converges to the unique solution u = p of the equation u + Tu = f.

It is well known that the equation u + Tu = f has a unique solution u for each f in a Hilbert space H provided that $T: H \longrightarrow H$ is monotonic and Lipschitzian (e.g., see [3]). The purpose of this paper is to show that if T is nonexpansive (Lipschitz constant 1), then the Mann iterative process [1] will, under a certain condition, converge to this unique solution.

The normal Mann iterative process is defined by $V_{n+1} = (1 - t_n)V_n + t_n T V_n$. We will use the condition that $\sum_{n=1}^{\infty} t_n (1 - t_n)$ diverges, which has been extensively used by Groetsch [2].

THEOREM. Suppose H is a complex Hilbert space, and $T: H \to H$ is a monotonic, nonexpansive operator on H, and $f \in H$. Define $S: H \to H$ by Su = -Tu + f for all $u \in H$. Suppose $0 \le t_n \le 1$ for all $n = 1, 2, 3, \ldots$, and $\sum_{n=1}^{\infty} t_n (1 - t_n)$ diverges. Then the iterative process $V_{n+1} = (1 - t_n)V_n + t_n SV_n$ converges to the unique solution u = p of the equation u + Tu = f.

Proof. We first observe that S is nonexpansive and satisfies $Re(Sx - Sy, x - y) \le 0$ for all $x, y \in H$. Since Sp = p, we get

$$\begin{split} \|V_{n+1} - p\|^2 &= \|(1 - t_n)(V_n - p) + t_n(SV_n - Sp)\|^2 \\ &= (1 - t_n)^2 \|V_n - p\|^2 + 2t_n(1 - t_n) \mathrm{Re}(SV_n - Sp, V_n - p) \\ &+ t_n^2 \|SV_n - Sp\|^2. \end{split}$$

Using $\operatorname{Re}(SV_n-Sp,\ V_n-p)\leqslant 0,\ t_n(1-t_n)\geqslant 0,$ and $\|SV_n-Sp\|\leqslant \|V_n-p\|,$ we get

$$||V_{n+1} - p||^2 \le \{(1 - t_n)^2 + t_n^2\} ||V_n - p||^2,$$

which can also be written

$$||V_{n+1} - p||^2 \le \{1 - 2t_n(1 - t_n)\}||V_n - p||^2.$$

Received April 15, 1975.

AMS (MOS) subject classifications (1970). Primary 47H15; Secondary 47H05, 65J05. Key words and phrases. Iteration, monotonic operators, nonexpansive operators.

Upon iteration this yields

$$\|\,V_{n+1} - p\,\|^2 \leqslant \left\{ \prod_{k=1}^n \, \left[1 - 2t_k(1-t_k)\right] \right\} \|\,V_1 - p\,\|^2 \, .$$

We note that $0 \le 2t(1-t) \le \frac{1}{2}$ for $0 \le t \le 1$. From the divergence of $\sum_{n=1}^{\infty} t_n (1-t_n)$ it now follows that $\lim_n \|V_{n+1} - p\| = 0$, whence $\{V_n\}$ converges to p.

A particular case is of some interest, viz. $t_n = 1/n$. $(1/n)(1 - 1/n) = (n - 1)/n^2 > 1/2n$ for n > 2 establishes the divergence of $\sum_{n=1}^{\infty} t_n (1 - t_n)$. There is however an alternate method in this particular case which gives the additional information of an error estimate. As before, we let p denote the unique solution of u + Tu = f, and we observe that

$$||SV_n - Sp|| \le ||V_n - p|| \le ||V_1 - p||.$$

We have

$$V_{n+1} = \frac{n}{n+1} V_n + \frac{1}{n+1} S V_n$$

and so

$$V_{n+1} - p = \frac{n}{n+1}(V_n - p) + \frac{1}{n+1}(SV_n - Sp),$$

whence

$$\|V_{n+1} - p\|^2 = \frac{n^2}{(n+1)^2} \|V_n - p\|^2 + \frac{2n}{(n+1)^2} \operatorname{Re}(SV_n - Sp, V_n - p) + \frac{1}{(n+1)^2} \|SV_n - Sp\|^2.$$

Thus, we get

$$(n+1)^2 \|V_{n+1} - p\|^2 - n^2 \|V_n - p\|^2 \le \|V_1 - p\|^2.$$

The left-hand side collapses upon summation from n = 1 to n = N to yield

$$(N+1)^2 \|V_{N+1} - p\|^2 - \|V_1 - p\|^2 \le N \cdot \|V_1 - p\|^2.$$

Hence for each $N = 1, 2, 3, \ldots$, we have

$$||V_{N+1} - p||^2 \le (1/(N+1))||V_1 - p||^2$$
.

Thus $\{V_n\}$ converges to p and for each n we have

$$||V_{n+1} - p|| \le \frac{1}{\sqrt{n+1}} ||V_1 - p||.$$

Department of Mathematics North Carolina State University Raleigh, North Carolina 27607

1. W. G. DOTSON, JR., "On the Mann iterative process," Trans. Amer. Math. Soc., v. 149, 1970, pp. 65-73.

- 2. C. W. GROETSCH, "A note on segmenting Mann iterates," J. Math. Anal. Appl., v. 40, 1972, pp. 369-372.
- 3. E. H. ZARANTONELLO, Solving Functional Equations by Contractive Averaging, Technical Report No. 160, U. S. Army Math. Res. Center, Madison, Wisc., 1960.
- 4. E. H. ZARANTONELLO, "The closure of the numerical range contains the spectrum," Pacific J. Math., v. 22, 1967, pp. 575-595. MR 37 #4657.