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An Iterative Process for Nonlinear Monotonic
Nonexpansive Operators in Hilbert Space

By W. G. Dotson, Jr.

Abstract. The following theorem is proved: Suppose H is a complex Hilbert space,
and T: H — H is a monotonic, nonexpansive operator on H, and f € H. Define

S: H— Hby Su =~ Tu + ffor all u € H, Suppose 0 < t, <1 foralln=1,2,
3,...,and 2::1 t,(1 —t,) diverges. Then the iterative process V.4 = (1 — )V,

+ tnSVn converges to the unique solution u = p of the equation u + Tu = f.

It is well known that the equation u + Tu = f has a unique solution u for each
fin a Hilbert space H provided that 7: H — H is monotonic and Lipschitzian (e.g.,
see [3]). The purpose of this paper is to show that if T is nonexpansive (Lipschitz
constant 1), then the Mann iterative process [1] will, under a certain condition, con-
verge to this unique solution.

The normal Mann iterative process is defined by V., =1 —¢t,)V, +¢,TV,.
We will use the condition that =_, ¢,(1 — ¢,) diverges, which has been extensively
used by Groetsch [2].

THEOREM. Suppose H is a complex Hilbert space, and T: H — H is a mono-
tonic, nonexpansive operator on H, and f € H. Define S: H—> Hby Su=-Tu + f
forallu €H. Suppose 0<t,<1foralln=1,2,3,...,and Z;_, t,(1—1,)
diverges. Then the iterative process V,, ., = (1 —t,)V, + t,SV, converges to the
unique solution u = p of the equation u + Tu = f.

Proof. We first observe that S is nonexpansive and satisfies Re(Sx — Sy, x — »)
< Ofor all x, y € H. Since Sp = p, we get

W, —pI> =10 =2, )V, —p) + 1,5V, - Sp)I?
= (1=t,)2V, =pl* + 2t (1 —t,)Re(SV,, — Sp, V,, — p)
+221sv, - Spll?.

Using Re(SV,, = Sp, V, —p) <0, ¢t,(1—¢t,) =0, and ISV, — Spl < IV, - pl, we
get

WV, —pI? <{-1) + 2V, -pl?,
which can also be written

W, —pI? <{1-26,(1 =)}V, —plI*.
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Upon iteration this yields

n
W, =12 <{ T [1-26,(0 -] {1V, = pl2.
k=1

We note that 0 < 241 — ) < % for 0 <7 < 1. From the divergence of
Z,_1 t,(1 —t,) it now follows that lim IV, —pll =0, whence { ¥, } converges
to p.

A particular case is of some interest, viz. t, = 1/n. (1/n)(1 = 1/n) = (n - 1)/n?
> 1/2n for n > 2 establishes the divergence of Z7_, #,(1 - ¢,). There is however
an alternate method in this particular case which gives the additional information of
an error estimate. As before, we let p denote the unique solution of u + Tu = f,
and we observe that

Isv,, - spl < 1V, = pl < 1, = pll.

We have
n 1
Varr =1 Vot 515
and so
Visr =P = —2=(V, = p) + ——(SV,, - 5p)
n+l1 n+1%n n+1¥n ’
whence
2
2n
v, ., —pl2=—2—Iv —pl?2 + ——Re(SV, —Sp, V, —
n+1”P n+ip " P (n + 1)? SV =5p. Vo = P)
1 a2
+(n+1)2"SV" Spll.
Thus, we get

(n + 1)? 1V, —pI? =n?lv, -pl? < v, —pl?.
The left-hand side collapses upon summation from n = 1 to n = N to yield
N+ 12 MWWy —pI? =1V =pI2 <N - IV, - pl2.
Hence for each N=1,2,3, ..., we have
W1 =12 < W+ D)1V, —pll2.

Thus { ¥V, } converges to p and for each n we have

1V, ,, - pl <——=1v, - pl.
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