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Stability of Rounded Off Inverses Under Iteration

By Harold G. Diamond*

Abstract. Let f be a monotone and strictly convex (or concave) function on a real inter-
val and let g be the inverse function. Let I(x) = x. For ¢ a real valued function and N
a positive integer let ¢N(x) denote the rounding of ¢(x) to N significant figures. Let h =
gy ° [ the composition of 'n and gp. It is shown that
h°holN=h°h°h°IN,

and that equality can fail for fewer iterations.

1. Introduction. Let f denote a continuous strictly monotonic real valued func-
tion defined on some real interval T and let g denote the inverse function. For R a
radix, N a positive integer, and ¢ any real valued function let ¢,; denote the composi-
tion of the function x > ¢(x) followed by rounding off to NV significant figures in the
base R.

Let I(x) = x, the identity function, and let 1 = A1) = gy ° fy» the composition
of fy and gy. We define T* = T*(1), the domain of {1, to be the set of x € T
for which fj(x) € f(T). Similarly, for £ = 2 we define ) = h o B*1) on the
domain T*(®) consisting of all x € 1*(5=1) for which Ine h(k_l)(x) € (D).

The object of this article is to see whether 4 is, in some sense, an identity func-
tion on numbers having at most MV significant digits. We consider the recursion

Iy, fy°oIy, holy, fy°hely h® ol ...

and ask whether any of the equations

(1A) hely=1Iy,
(lB) fvoholy =fyoly,

N N N N
(10) R oIy =holy,
(1D) fy B oIy =fyehely,
(IE) h(s) o IN = h(2) ) IN’
. . . are valid.

In concrete terms (which motivated the investigation), suppose we have a ma-
chine which very accurately performs a functional operation and then rounds off its
results to MV significant figures. We enter x = I,(x) and successively form

fN(x), &y ° fN(x)a fN °gy° fN(x), ce .
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and ask whether, after a fixed number of steps, we get values repeated every other
time.

Let us first discuss the rounding rules. To fix our ideas, from here until the
statement of the theorem assume that the radix R = 10, the number of significant
figures N = 2, and the interval T = {#: .1 <¢ <1}. Any rounding rule /, assigns
the nearest two digit decimal in case it is unique. Specific rounding rules assign one
of the two nearest values in the remaining cases. The ambiguous cases in T are the
90 numbers .105, .115, ..., .985, .995.

It can happen that none of the equations (1. . .) holds. We give two examples
of this phenomenon. First take the rounding rule to be

I,(x) = .01[100 x + .5] xel),
where [t] = the greatest integer not exceeding ¢. This shifts each of the 90 ambiguous
numbers upward. Let f(¢) = ¢ + .005. Then for x = I,(x) € T we have

f,(x)=x + .01, g,x)=x, h,(x)=x+ .01

This example exhibits the so-called drift phenomenon. Drift can be eliminated
in the present case by changing the rounding rule to eliminate the bias toward + o°.
One such rounding rule is “round to even”: I,(.105) = .10, I,(.115) = .12, I,(.125)
= .12, etc. Details and further references can be found in [2].

Our second example is more extreme in that drift occurs regardless of how one
rounds in the ambiguous cases. Let ¢ be a function of period .01 which satisfies
#0) = ¢(.01) = —.001, ¢(.009) = — .009, and ¢ is linear on each of the intervals
(0, .009) and (.009, .01). Letf(r)=¢t+ ¢(t) fort €T =(.1,1). Forx =1,(x) €
T we have ‘

L) =x, g,(x)=x+.01, h(x)=x+ .01

These examples suggest that a convexity condition is needed to obtain positive
results. It is easy to see that the relation (1A) still need not be true. For example,
let f(f) = #* for 0 <t <o and x = .34. Thus f,(.34) = .12, g,(.12) = .35. We
shall show later that the relations (1B)—(1D) can also fail for a convex monotonic
function f. However, stability is achieved for further iterates as we now show.

2. Statement of Results.

THEOREM. Let T denote a real interval and f a real valued monotone function
which is strictly convex or strictly concave on 1. Let R denote a radix and N a
positive integer such that RN > 3, and let Iy, %) and 1*®) (k=1,2,...) beas
defined above. Then (1E) holds for all x € T*(3),

Remarks. A. The result is independent of the precise rounding rule. Indeed it
is all right to round the ambiguous numbers capriciously.

B. For simplicity in stating the theorem we have used the same radix R and
number of significant figures NV for both the domain and range of the function f.
Actually, this is unnecessary for the proof, and so our result could be restated with
radices R and R’ and round off to N and N’ digits. We need only assume R" > 3
and RV > 3. See [3] for discussion of a related linear problem.
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C. For some special functions a stronger theorem holds. For example, one can
show that if f(x) = 1/x and the radix equals 10, then (1B) holds generally and (1A)
holds for each interval T of the form [10%, 10¥* %], where k is any integer and N is
any positive integer.

3. Proof of the Theorem. We shall use the following notation throughout. Let
x=Iyx) € 1*3) y =go [y @) (so that f(y) = fp(x)), and z = I;(») = h(x). We
can assume that x, y and z are all distinct, for otherwise the theorem holds trivially.

We shall say that I,(0) = 0. Of course we have I(@) # 0 if a # 0. If f(a) = 0
for some @ = Iy(a) € T, then fy(a) = 0, g ° f,(@) = @, and h(a) = a. In this case the
theorem holds. Similar remarks apply if g(b) = O for some b = I\(b) € f(T). Thus,
we can and shall exclude any occurrence of 0 except as a possible value of x in case
0e 1+(3),

We begin by considering the possible orderings of x, y, z. Since z = Iy (y), y
cannot be closer to x = I,(x) than it is to z. In other words,

) ly —zI< Ix = yl;
and the configurations z <x <y and z > x > y are impossible.

Now we have the simple

LEMMA. Let f be monotone, x = Iy(x),y = g © fy(x), and z = I(y). Assume
that z lies between x and y. Then fp(x) = fj(2).

Proof of the Lemma. Since f is monotone, f(2) lies between f(x) and f(3).
Since f(x) rounds off to fp(x) = f(»), so does f(z).

f0) = flx)
1
f2)
fx)
——
x 2 y

FIGURE 1
Thus, if we have x <z <y or x >z >y, then fp(x) = fy(2) = fy ° h(x).
Applying h © g, to each side of this equation, we obtain P (x) = K3 (x); i.e. the
theorem holds in this case. (When in subsequent arguments we obtain the formula
fn&) = fy(2), we shall simply say that the theorem is proved in that case.)
We turn our attention to the remaining possible arrangements x <y <z and
x >y > z. There are two main cases for us to consider:

fo) ~ f(x)
y-x

3) -1 |

z=y
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or

@ 1@ - 1)
z-y

We remark that (3) holds if

S l 10) = £6x)
y-—x

x <y <z f1, fstrictly concave, or

x <y <z f{, fstrictly convex, or

z <y <x, 1, fstrictly convex, or

z <y <x, f, fstrictly concave,
and (4) holds in the remaining four cases. It is not necessary to treat all these cases
individually.

We assume first that (3) holds. Later we shall treat (4) by transforming it into

(3). We have by (2) and (3) that

(%) If@) = fI < IfB) = f(),
ie.
If() - fN(x)l < IfN(x) = f)l

This inequality implies that f(z) = fy(x) (and hence the theorem holds) pro-
vided that either

6) lfy)l # R¥ for any integer k
or
Q) Ify(x)| = R*  for some k and If(x)! < lfy()l < If(2)L.

Now we shall prove the theorem in case (3) holds and If(x)| > Ify(x)| = R* >
If(z)|. We need a bit more notation. Let § = fy(z) and w = g(8), i.e. f(w) =
1 N(Z)-

fx)
7o) =RF = Iy @) A possible
configuration
f2) 1
0 = flw) = fy(2)

x y z w

FIGURE 2
We claim that f(x), f(»), f(z), and f(w) all have the same sign. sgn f(x) =
sgn f(») since f(») = Iy(f(x)). By (5) and the round off rules we have
(®) If@) - fO) < If(p) = f(x)| < % « RKH17N,
Since If(y)! = R¥, it follows that sgn f(z) = sgn f(»). For f(w) = fy(z) we use the
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fact that |f(z)l < R¥ and the round off rules to conclude that |f(w) — f(z)| < % -
R¥™N_ Thus

€] Ifw) = F3)I < Ifw) — ) + If2) - fFO) < RFNR + 1)/2;

and, as in the case of f{z), we deduce that f{w) and f(y) have the same sign.

Next we give an upper bound for [f(w)l. We have If(w) — f(2)| < If(z) — f(»)|,
since f(z) rounds off to f(w) rather than to f(y). Also, we have |f(y) — f(z)| =
lfG)! = 1f(2)! since |f(»)| > If(z)| and sgn f(y) = sgn f(z). Thus

lfW) < I + Ifw) - f@ I < If)! + If() — f()] = If)L.

We conclude this part of the argument differently according to the relative size
of If(w)l and If(z)|. First, suppose If(w)l = If(z)|. We have f(w) included between
f(2) and f(y); and we can apply the lemma with f(»), f(z), f(w), and g in place of
X, ¥, z, and f, respectively. We deduce that Iy (w) = I,(y) = z, i.. A(x) = h(x),
and the theorem is proved in this case.

Now suppose that If(w)| < If(z)| < If(»)| = R¥ < If(x)l. We set ¢ = I(w) and
repeat the foregoing analysis with x, y, and z replaced by z, w, and ¢, respectively.
We show that the process must now terminate by the time we reach (6).

In case ¢ lies between z and w, then by the lemma fy(z) = fy(?), i.e.

(10) fy © h(x) = fy © BP(x);

and the theorem is proved in this case.

Next suppose that ¢ does not lie between z and w. Then as in (2), z cannot be
between ¢ and w, so w lies between z and . Also, f(x), f(»), f(2), and f(w) lie in
linear order, since their absolute values do and these numbers are all of one sign. It
follows by monotonicity that x, y, z, and w and hence x, y, z, w, and ¢ lie in linear
order.

The assumed inequality (3) implies that f is steeper near x than near z. It
follows that f is steeper near z than near £. Thus (3) holds with x, ¥ and z replaced
by z, w, and ¢, respectively.

The analogue of (5) now holds:

I70) — fy(@)! < Ify(2) = fD).

It follows that fy(f) = fy(2), i.e. (10), and hence the theorem is established, pro-
vided that

(6" lfw)l = Ify(@)| # R"  for any integer L
Now (9) and the fact that RY > 3 imply that

2RN
Thus R¥~! < If(w)l < R¥, and hence (6") holds. This concludes that the proof of
the theorem in case f satisfies (3).
Now consider the other main case, in which (4) is assumed to hold. That is,
the graph of f gets steeper as we move from x toward z.

lfw)l = IfO) = If(y) — f(w)l > R¥ (1 —ﬂ> > Rk,
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Since y lies between x and z, f(») lies between f(x) and f(z) by monotonicity.
By the round off of f(z) we have
lfw) = f()! = Ify(2) - F) < If(2) - fO)L.
Thus f(y) lies between f(x) and f(w), so y lies between x and w.
It follows from (4) and the above that f has a steeper secant line over the inter-
val between w and z than over the interval between y and z, i..
fw) - 1) @ - 1)
w-z z—y
It is convenient here to call f(3) = ¢, f(z) = 7, and f(w) = 0. The preceding
inequality can be rewritten as '
£0) — ) |_ |&m) —&®) l
0-m n=¢ |
Now we have the situation of (3) with ¢, 0, 0, and g in place of x, y, z, and £ It
follows from the preceding argument that
ev°fvoen°Iyoean®) =eny° Iy o en®
or since { = f(y) = fy(x), we have K3 (x) = K (x).
The proof of the theorem is now complete in case f satisfies either of the in-
equalities (3) or (4).

>

<

4. An Example and a Question. We give an example of a monotone concave
function for which Egs. (1A)—(1D) fail to hold. Let R = 10, N = 2, f(f) = 115 —
35/t —97) on T = (98, =), and g(t) = £~ 1(£) = 97 + 35/(115 — ¢) for ¢t < 115.
We have f,(110) = 110, g,(110) = 100, £,(100) = 100, g,(100) = 99, f,(99) = 97
or $8 {acvurding to e round off ruie used). Of course g,(97) = g,(98) = 99 as
predicted by the theorem.

We close by posing a related problem which may have some more practical
importance. Suppose one allows a “reasonable” calculational error (cf. (1)), as well
as round off, for each determination of a functional value. Under what conditions
does an analogue of our theorem hold?
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