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Some Remarks on the Construction
of Extended Gaussian Quadrature Rules

By Giovanni Monegato*

Abstract. We recall some results from a paper by Szego on a class of polynomials which
are related to extended Gaussian quadrature rules. We show that a very efficient algo-
rithm, for the computation of the abscissas of the rules in question, was already described
in that paper. We also point out that this method extends to rules for integrals with an
ultraspherical-type weight function. A bound for the error of some of the above rules is

also given.

1. Introduction. A remarkable class of integration rules has been considered by
Kronrod [2] and has received some attention by others; for instance, see [3]—[6] .
Consider the n-point Gaussian quadrature formula

) [ £y ax = 3 HOAE™) + RO@),
i=1

which has, as it is well known, degree of exactness 2n — 1, ie., R(Gn)(f) = 0 whenever
f is a polynomial of degree at most 2n — 1. It is also well known that the nodes E,(")
are the zeros of the Legendre polynomial of degree n.

In order to give an estimate of the error Rg')(f), Kronrod proposes to associate
with (1), for comparison, a new rule which uses 2n + 1 abscissas in (—1, 1), # of
which are those present in (1), and has maximum degree of exactness. More precisely,
he studies a quadrature formula of the type

n n+1
@ Jor@ax = 3 amramy + 7S By + RE),
i=1 j=1

where E,(”), i=1,...,n,are the zeros of the nth degree Legendre polynomial P,(x),
while the nodes x](") and the weights A,(”), B](") are chosen so that (2) has degree of
exactness 3n + 1 (3n + 2 if n is odd). If we denote by E, +1() the polynomial of
degree n + 1, whose zeros are the abscissas x}"), J=1,2,...,n+1,thenE, (x)
has to satisfy the following orthogonality relation

1
(€)) f_an(x)En+l(x)x’°dx=0, k=0,1,...,n.

The coefficients of E,, , , (x) may be uniquely determined, up to a multiplicative con-
stant, by solving a nonsingular triangular linear system which is derived from the de-
fining relation (3) and the orthogonal property of P,(x). Szego [7] has also shown
that the zeros of E,, , ; (x) are in (-1, 1) and alternate with those of P, (x).
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Kronrod computes the coefficients of E,, , , (x) by solving the linear triangular
system we have just mentioned, which is very ill-conditioned. A much better algo-
rithm is given by Patterson [4], who expands E,, , ,(x) in terms of Legendre polyno-
mials and obtains a well-conditioned linear system of equations. More recently, Piessens
and Branders [6] propose to expand E,, , ,(x) in a series of Chebyshev polynomials,
and give an algorithm which is the most efficient. All three methods were directly
derived from (3).

In the next section, we first outline some results from the paper by Szeg6 [7] .
We then remark that the method presented by Piessens and Branders can be derived
in a different way, as it had already been done in [7]. As a matter of fact, Szegs
gives a method which is valid for a wider class of polynomials E,, , , (x), arising when
in (1) and (2) a weight function of the type (1 — x2)*~* is present. This same method
can, for example, be used to derive the extension of Lobatto rules. An estimate for
le')(f)I is also given when 0 < pu <1.

2. Szego’s Results. Let us consider Legendre’s differential equation
4 (1 -x*y"—2xy' +n(n + 1)y =0.

It is well known that the nth degree Legendre polynomial P,(x) is, up to a constant
factor, the unique polynomial solution of (4). Let x be arbitrary in the complex plane
cut along the segment [—1, 1] and n > 1; then a second solution of (4), which is lin-
early independent of P,(x), is the so-called Legendre function of the second kind

Pn(t c, ¢,

)
dt = + +...,
t xntl xn+3

®) 0.0 =1/,

X —
with the last expansion convergent for [x| > 1. We thus have

1 a4 o
(6) [0,()] =B+ += 4+, 0>,
x2
where E,, . (x) is a polynomial of degree n + 1. It can be shown [7] that £, ,(x)
satisfies the orthogonality relation (3); hence, it is the polynomial we are looking for.
Moreover, from (5), (6) and the fact that Q,(x) satisfies a three-term recurrence rela-
tion, it also follows [7] that

™ 0 (X)E, () =1+b,0,,,()+b5,0,,,)+ - +b,0,,,,).

Let us introduce the function

® 0 ,(x) = %[Q,(x +i0) + Q,(x —i0)],

which is analytic on (=1, 1) and satisfies (4). The following convergent expansion is
known [8, p. 92]

) Qn(cosq)) = 2.3 254 (2n2: ) i ficos(n+ 2w+ 1), 0<o¢<m,

v=0
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where

13- (-1 m+Dn+2)---(n+»)
fo=l L= a2 GAADm+5R)  mrr+ i)’

©)
v=1,2,....
In his paper, Szego sets
Ap/2€089, 7 even,

(10) E,, ,(cos ¢) = Ngcos(n + 1)p + Ajcos(n = 1)p + -~ -+
%)‘(n+l)/2’ n odd;

then, by means of (7), (8) and (9), he deduces that the coefficients A; are the solution
of the following triangular system

k
Y =0, k=1,...,m, m=[”’;‘],
Y i=o0

a1n
2-4---2n _
3-5"°(2n+1)f°)\°—l'

Let us rewrite (10) in the following form
= 1
E,.,(x)= . E,i,(x)
0

(12) 0,2 T1(x),  neven,
=T, )+ a,T,_x)+---+
%0y 1 1y2, 1 o0dd,
where x = cos ¢ and T} (x) is the kth degree Chebyshev polynomial; then, from 11
and (9), we have

Qa,y =-f1’
(13) k-1
o =~fi = fopp Kk=2,...,m;
i=1

and
fi =@ +1)/[(2n +3),

a4 kD +k+1) _
1T kDt 2k +3) e k= Lom-L

We now observe that (13) is identical with system (6) of Piessens and Branders [6],
and the form of the recursive relation (14) is simpler than the corresponding one pre-
sented in [6].

In his paper, Szego has extended his results to certain ultraspherical polynomials.
If we denote by Pf,“)(x), U > —%, the ultraspherical polynomial of degree n, orthogo-
nal on [-1, 1] with respect to the weight function (1 — x2)*~% and with Qf,“)(x) the
corresponding function of the second kind
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P®
(1—x2Y“%Qﬁ")(x)=%I%3I (1 -2y h—— (t) d, n>1,

then, by an argument analogous to the Legendre case, we have

(u) ag“)
(@ = xP AW = B 6) + 4 =t

where ES.“+) 1 (%) satisfies the orthogonality relation

1
f_l(l —x’)“‘%Pf,“)(x)E‘f,‘Ql(x)x" dx=0, k=0,1,...,n.
In a way much similar to the Legendre case, Szegd derives the following expansion,

(1 - COSsz)“_% @“)(COS o) = \/_ P% gofy‘)cos (n + 2v + l)¢,

(15)

“)= M) (V+1_)(n+v+l) u) =Ol...,
=1 58 (v+l)(n+v+l+y)f( PR

where Q,f“)(cos ¢) is the ultraspherical analogue of Qn(cos 9).
Let

AW n/2 COS ¢, neven,

Eﬁ,“}l(cos ¢) = )\g“)cos (n+ 1o+ )\g“)cos(n -Dp+---+
%k?,:?'_ 1)/27 n Odd;

Szego [7] has proved that for 0 < u < 2, the zeros of E(“)l(x) are all distinct and
in (-1, 1); moreover, they interlace with the zeros of Pf,“)(x). He has also proved the
following properties of the coefficients )\,(“):

@ o<u<1A\P>0,AW<o0,i=1,...,m,

AW > - 3AW,;
i=1
G) 1<p<2,A® >0,i=0,1,...,m;
(iii)
E{®(cos ¢) = cos 2¢ — %,

E®) (cos ¢) = f [cos(n + 1)p — cos(n — 1)¢], n=>2;
p=1, E) (cos ¢) —-\; cos(n + 1)¢;

2 1 'n+li .
2)_ =0,1,...,m.

As before in the Legendre case, we write
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1
Fi,"zl(x>=@ 1) 4
af,‘;)le(x), n even,
=Ty )+ T, () +-- - +

" %ol 2 modd,
u>-%, n=1, x=coso.

The coefficients a,(“) are again the solution of system (13) with f,f“), v=0,1,...,
m, given by means of (15).

A particular case is the extension of Lobatto quadrature rules, considered by
Patterson [S] and Piessens and Branders [6], which is easily obtained by letting u =
3/2. The algorithm is again essentially identical with the one presented in [6], but
the recursive relation (15) is simpler than the corresponding one given in. that paper.

Similarly, we may construct extensions of Lobatto-type quadrature rules with
multiple nodes at the endpoints of the interval of integration, when they exist.

3. An Error Estimate. From the properties of the coefficients )\1(“) we may de-

rive that, when 0 <u <1,

E® (0l<2, -1<x<I.

This is sufficient to give an estimate of LRS(")(f)I when f is a sufficiently smooth
function.
Let us suppose f € C(3#+2)[—1, 1] ; then

n . 1 1 % ) n
16) R0 = s gy a1 = OO 1D

where

KW = 2_n M .
n n!  T(u)

We also know that, for u > 0,

max IPS.")(X)I — (n + 2u — 1) , .

—-1<x<1 n

so that from (16), when 0 < pu < 1 we get

le')(f)I al(n + 2u)

23n+28=3(3y 4 2)IT(u + 1)[(n + u) Mans2

with My, ;5 = max_ <o FC" @)

In much the same way, when #n is odd, if we assume f € cBn+3)-1,1], we
may derive the same bound for IR(”)()‘)I where M3, , , has to be replaced by M3, .3
= max_, ¢, <; FC" T D) and 3n + 2)! by 3n + 3)L.
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