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On the Fluctuations of Littlewood
for Primes of the Form 4n +1

By Carter Bays and Richard H. Hudson

Abstract. Let ﬂb,c(x) denote the number of primes < x which are = ¢ (mod b).
Among the first 950,000,000 integers there are only a few thousand integers n with
1r4'3(n) < 1r4'1(n). The authors find three new widely spaced regions containing
hundreds of millions of such integers; the density of these integers and the spacing
of the regions is of some importance because of their intimate connection with the
truth or falsity of the analogue of the Riemann hypothesis for L(s). The discovery
that the majority of all integers n less than 2 X 1010 with 1r4‘3(n) < 1r4,1(n) are
the 410,000,000 (consecutive) integers lying between 18,540,000,000 and
18,950,000,000 is a major surprise; results are carefully corroborated and some of
the implications are discussed.

1. Introduction and Summary. In a letter written in 1853 [2] Chebyshev made
several very interesting remarks on differences between 114,3(x) and m, ,(x) where
m, o(x) denotes the number of positive primes < x which are = ¢ (mod b). These re-
marks were “popularly” interpreted [9] as asserting that there are many more primes
of the form 4n + 3 than of the form 4n + 1.

A very important interpretation of Chebyshev’s assertion is the conjecture that

i lm F - )E e — s
X —> o0 p>2
for it follows from the work of Hardy-Littlewood-Landau [3], [11], [12], that (1.1)
is true if and only if no zero of
oo (_ l)n

(12) L(s)= 3.

(2n + 1) (s=0+if, 0>0)
n=0

has real part > % [10].

Due to a famous result of Littlewood [15], it is known that there are infinitely
many integers x with m, 3(x) <m, ,(x); indeed, using Ingham’s [6] Q-notation, we
have

/2
(1.3) My (%) = my 5(x) = 82, log log log log x) .
On the other hand, let N(x) be the number of integers n < x with m, 5(n) —
M4 1(n) < 0. Because of the results of Hardy-Littlewood-Landau, Knapowski and
Turdn conclude on p. 26 of [9] that we probably have
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. N(x) _
14 lim o 0.

xX—>00

The results of Leech [13] and Shanks [17] give N(3 - 10%) = 3406 so that
(1.4) appears to be easily true. The results in the next section suggest, however, that
N(x)/x probably does not tend to zero nearly as fast as could be anticipated on the
basis of the earlier numerical work of Leech, of Shanks, and of Lehmer [14]. The un-
expected and rather astonishing fact that by far the majority of all integers less than
2 x 10! with m,,3(x) <m, 1 (x) are the 410 million consecutive integers lying be-
tween 18,540,000,000 and 18,950,000,000 clearly calls for considerable corroboration
which we provide in Section 4. A brief discussion of the implications of this unex-
pected turn of events appears in Section 5.

2. Notation. We define an integer n with
@.1) Ma,3(n) — g 1 (n) = An) = -1

to be an axis crossing. Moreover, we define the Ith axis crossing region for each I > 1
to be the Ith set of consecutive positive integers ny(), n,(0) , . . ., nl) with the
properties that (1),

2.2 Amo() = A(nAD) = -1,

and that (2) A(n) = 0 for all n with no(@>n> ne( - 1) and n, (1) > 2n,(1-1).
The choice of the factor 2 is somewhat arbitrary and is motivated only by the wide
spacing of the regions discovered to date. We call ny = ny(!) an initial regional axis
crossing and n, = n.(J) a final regional axis crossing.

All axis crossings less than 2 x 10'® occur in the interior (including the bound-
ary) of six rather widely spaced regions (this is, of course, what should be expected
assuming the truth of the analogue of the Riemann hypothesis for L(s) [6, p. 106]).

Any set of consecutive integers n with A(n) < 0 for every n in the set will be
called a negative block. In the exterior of axis crossing regions there exist only non-
negative blocks, i.e., (long) sets of consective integers with A(n) > 0.

Finally, we define a deepest regional axis crossing to be an integer n, lying
within an axis crossing region with the property that

(23) A(n) = A(ny)
for every integer n lying within the region.

3. Description of Axis Crossing Regions. Outside the ranges considered below,
all integers less than 2 x 10! lie inside nonnegative blocks.

Description of Region 1 (Leech and Shanks)
ng =ng =26861 n,=26862 A(ng) =-1




THE FLUCTUATIONS OF LITTLEWOOD 283

Description of Region 2 (Leech and Shanks)
ng = 616841 n, = 623681 n,= 633798  A(n,) =8

Range max.A(n) min A(n)
616769—633882 12 -8

Description of Region 3 (Lehmer)
ny =12306,137  n,; =12366,589  A(n;) =-24  n,=12,382326

Range-steps of 40000 max A(n) min A(n)
12,284 44912 324 449 68 -12
12,324,449—-12,364 449 35 -18
12,364,449—12 404 449 34 -24

Description of Region 4
no =951,784,481  n,; = 951,867,557 A(ng) =—-48  n,= 952,223,490

Range-steps of 40000 max A(n) min A(n)
951,780,000—-951,820,000 35 -19
951,820,000—-951,860,000 9 - 37
951,860,000—951,900,000 19 -48
951,900,000—951,940,000 23 -22
951,940,000—951,980,000 53 0

negative block max A(n) min A(n)
951,850,000—951,880,000 -12 -48

Description of Region 5

ny = 6309280709  n, = 6345026777  n,= 6,403,150,198
A(ng) = —1374

630—631 denotes interval from 6,300,000,000 to 6,310,000,000
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Range-steps of 10,000,000 max A(n)
630—631 811
631632 207
632—633 229
633—634 15
634—635 -559
635—-636 - 86
636—637 -19
637—638 187
638—639 64
639-640 361
640—641 674

negative block max A(n)
6,340,000,000—6,370,000,000 -19

Description of Region 6

ny = 18,465,126,293

ng = 18,699,356,297

Ang) =-2719

ny

min A(n)

-29
-347
—471
=717

—1374

—930
—389
—589
-626
—-226

=50

min A(n)

—-1374

1846—47 denotes interval from 18,460,000,000 to 18,470,000,000

= 19,033,524,538

Range max A(n) min A(n) Range max A(n) min A(n) Range max A(n) min A(n)
184647 1010 -295 186667 —-1435 -1906 188687 -898 -1984
1847-48 171 -372 186768 -1720 -2374 188788 —1453 -1922
1848—49 74 -587 1868—69 —2041 —2548 1888-89 -1195 -1944
1849-50 364 —-454 1869—70 -2221 -2719 1889-90 -867 -1592
1850-51 628 -478 1870-71 -1862 -2635 1890-91 -1032 —1846
1851-52 -56 =717 1871-72 | -1723 -2229 1891-92 -938 -1983
1852-53 24 =713 1872-73 -1829 -2450 1892-93 -538 -1294
1853-54 28 —-467 1873-74 -1944 -2612 1893-94 -324 -1130
185455 -126 -1115 1874-75 -2088 -2672 189495 -54 =772
1855-56 -739 —-1431 1875-76 —1538 —-2260 1895-96 17 - 685
1856—57 -789 —-1471 187677 -1318 —-1994 189697 —498 -939
185758 -820 -1505 1877-78 -1300 -1755 1897-98 -140 - 649
1858-59 -694 -1270 1878-79 -1003 -1618 1898-99 0 -540
1859—60 =767 -1217 1879-80 -1087 - 1566 1899-1900 244 -607
1860—61 -848 -1335 188081 -882 —1489 1900-01 256 -125
1861-62 -616 -1805 1881-82 -529 —1474 1901-02 735 -81
1862—-63 -1354 -1839 1882-83 -469 —851 1902-03 948 169
1863—64 -1294 -1831 188384 -281 —949 190304 762 -60
1864—65 -878 -1731 188485 -418 -1201
1865—66 - 665 -1636 1885--86 -690 -1392

negative block
18,540,000,000—18,950,000,000

max A(n)
—54

length of negative block exceeds 410,000,000

min A(n)

—-2719
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4. Corroboration of Results in Section 3. It would be unfortunate if the large
amount of interesting data in Section 3 were marred by a faulty prime count; since
prime counts of earlier authors have occasionally been in error, we have performed a
sextuple corroboration of our results as follows.

(a) We computed primes of the form 6n +1 with an independent sieve size and
found our prime counts to agree at x = 19,920,000,000. Here, we have

1y () = 439,415,009, 7, 4(x) = 439,418,549,
7 () = 439,412,098, g o(x) = 439,421,549,
n(x) = 878,833,649

(b) We checked our prime counts in (a) against those of earlier authors. We

have:
4 1(1010) = 227523275,  m, 5(10'%) = 227529235,

7(101%) = 455052511  (corrected value of Lehmer [14]).

(c) Our prime count for the modulus 6 agrees with that of Brent [1] at 10'},
namely,

7g,1(10'1) = 2059018668, ¢ 5(10'') = 2059036143,
m(10'!) = 4118054813.

(d) Although all the above forms of corroboration work off the same sieve,
we note that our values for n, for regions 1, 2, and 3 agree with Leech [13], Shanks
[17], and Lehmer [14].

(¢) We have used the generalization of Hudson and Brauer [4] of the formula
of Meissel to primes of the form 4n + 1 which, of course, works on an entirely differ-
ent principle than the sieve used above, to verify certain special values.

(f) The entire program was rerun with an independent sieve size to double
check all values listed in the paper.

5. Discussion of Numerical Work. Unfortunately, we did not compute the ex-
act length of the negative blocks listed in Section 3. However, it is quite clear that
the negative block which includes the 410,000,000 (consecutive) integers between
18,540,000,000 and 18,950,000,000 easily contains the majority of all integers less
than 20 billion with A(n) < 0. Taken as an isolated fact (and, perhaps, in any case),
this turn of events is rather astonishing. However, to put it into perspective, one
should note that the negative block which contains the 30,000,000 integers between
6,340,000,000 and 6,370,000,000 certainly dwarfs anything that occurs before 6
billion. The extraordinary length of negative blocks remains a major surprise, and it
is not likely that its cause will be fully understood for some time.

Since even the most powerful analytic tools have proven quite unsuccessful in
such investigations, we would like to recommend for consideration a new tool which
we feel has some promise for increasing our understanding of the way in which Little-
wood fluctuations are propagated.
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The true importance of the formula of Meissel lies in the generalization referred
to in the 1966 lecture of Brun (see A. L. Whiteman’s excellent review, MR 36 #2548).
Since it is well known (see [6], [11], or [17]) that the so-called Chebyshev phenom-
enon is an effect arising primarily from products of two primes < x, a meticulous row-
by-row analysis of the effect of products of two primes < x (following the pattern in
[4] and [5]; e.g., for x = 18,699,356,297) would satisfy the hopes of Viggo Brun
that “younger mathematicians will continue to explore reasons for the subtle influence
of the distribution of primes not exceeding a'/2 on the distribution of primes be-
tween a'/2 and a”. We certainly recognize that until such a meticulous analysis has
been completed, or until vastly more numerical information is available, all conjectures
regarding the true order of magnitude of N(x) are highly speculative. However, the
data in this paper certainly suggests to us that N(x) # o(x®) for any § < 1 and that,
in fact, we could well have N(x) > x/log x for infinitely many x. If anything like the
latter is true, the 7th and 8th axis crossing regions should prove to be very interesting.
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