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A Remark on the Hensel Factorization Method

By Hans Zassenhaus

Abstract. In response to a remark of David Yun a new version of “On Hensel fac-
torization I”’ (J. Number Theory, v. 1, 1969) is given which sets in evidence the
quadratic convergence behavior of the method using a minimum of bookkeeping.

In 1974 it was shown by Miola and Yun (see also Yun (1975)) that a p-adic
method of polynomial factorization which apparently was suggested in Zassenhaus
(1969) usually is slower than a similar method suggested by K. Hensel (1913) even
though the first method exhibits quadratic convergence while the second is a linearly
convergent approximation method.

However, as in all numerical work in algebraic number theory, it is necessary
to develop the underlying idea to its full range of application for the purpose of a
fair comparison of effectivity. It is the purpose of this note to indicate in greater
detail the algorithm recommended in accordance with Zassenhaus (1969) for the pur-
pose of finding a congruence factorization

1) f(®) = figfo(®  (mod p2*7[2]),
provided a congruence factorization

(2 1) = f,(0f,(£)  (mod pZ[t])
as well as a congruence

€)) f10g, (1) + £,(Ng, () =1 (mod pZ[t] + f()Z[¢])

are known already.

Here p is a prime number, and f; f;, f,, &;, &, , are members of the ring of
polynomials Z[¢] in the variable ¢ over the rational integer ring Z with f, f}, f, being
monic nonconstant, k is a natural number and f, £, are desired to be monic mem-
bers of Z[t] satisfying the coherence condition

@) fe@®= 5@ (mod pZi]) (i = 1, 2).

Before the method of approach is explained, let us agree on the following two reduc-
tions:

(1) By the common polynomial long division method we find for any member
A of Z[¢t] and for any monic member B of Z[¢] an equation
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©)] A4 = Q(4, B)B + R4, B),

where (4, B), R(4, B) are members of Z[#] such that either R(4, B) = 0 or the
degree of R(A, B) is less than the degree of B.

It follows from (2) that the degrees [f], [f;], [,] of £, £, f, respectively
satisfy the equation,

6) [f1 =[A] + L]

In case the degree of g; should happen to be not less than the degree of f,
replace g, g, by Ez =§2 - Q(gz, fl)fl, El =& ~ Q@l!_f2)f2‘ _

It follows that f,g, + f,&, =1 (mod pZ[t]) and [g,] < [£,], [g,] < [fi].

Thus, without loss of generality (3) may be replaced by

3 f18 + 18, =1 (modpZlt]), [g] <[fsy;]l G=12).

(2) If A is a rational integer, B a nonzero rational integer then we find by long
division an equation (5) with rational integers Q(4, B), R(4, B) subject to the inequal-
ities

(6) — |BI < 2R(4, B) < |BI
characterizing R(4, B) as absolutely least remainder modulo B.
If instead
n .
(72) A=) Af (mE€E1>0;4,€20<i<n),

i=0

then there obtains the equation (5) with

(7b) 04, B) = f Q(4;,B)Y, R(4,B)= f‘, R(4,, B).
i=0 i=0

Without loss of generality we may assume that the polynomials fl satisfy the additional
condition

® f=RUp (=12,

conferring the advantage of using polynomials all of whose coefficients are least ab-
solute remainders to a certain module.
The algorithm is as follows: Let

(%a) Eo=r&, Ny =R(E%o —Ei0, -

IfNg =0, thenlet E,; = E; (0<j<k),p, = 2F. Otherwise, there is an
exponent v, = 1 for which

(9b) p"°IN,,

where the ‘I’ symbol indicates that precisely the vyth power of p divides N, ; in other
words,

(9¢) p“°IN,, p’ot! + Ny.
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Suppose we defined already £, ;_; and N;_; = R(E} ;_\Ey ;-1 f) subject to

1 ’j'_
the condition that

(94d) pv,-—l I Nl —1
for some exponent v;_; satisfying the inequality
(%e) o 2i-1_
Then let
99 E; =R(E, j_y + Ni_y = 2R(E, ;_N;_y, f), p2vi-1),

Nj =R(E%j _Elj’f)’

and here we have either N; = 0 or there is an exponent v; satisfying the inequality

9g) y=2w,_, =2
such that

YilN..
(9h) P

IfN]- = 0, then let
Ey,=Ey, v, =2"7"Y_  (i<h<k).

Otherwise, we continue with the algorithm.
Having obtained E,,, we define f}, by

(10a) fix = ged(Eyy, ) (mod p**Z[1]),
(10b) fie = R(flk,f)a f1 monic, fig = R(flk, pYk).

Let us explain the items (9a), (9b) and (10). From (3) and (9a) we infer that

Eyo =118 (mod pZ[t]),
1 -E o =f8, (modplZ[t]),
Eio—Elo =E1o(1 ~Ey0) =f,/,8:18, =f (mod pZ[1]).

Suppose
Ni_, = E} j-1 ~E1jo1 (mod fZ[]),
E,;=E j +N_; —2E, ; Ny (mod fZ[s] +p*"iF1Z[t]),

then we have

— 2
EY =By =B o + Ny + 4B 1Ny

2
+2E, ;,_\Ni_y —4E; ; N, —4E, HN?_,

- El ,j—1 —N;

1 F4E; ;N

j—1
=N7, (mod fZ[r] + p**im1Z[1]).
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Thus, we obtain either N; = 0 or (%h), (9g).

In general, the factor ring R = Z[¢]/p”Z[t] (p a prime number, v a natural
number) need not be a unique factorization ring nor is there always a greatest com-
mon divisor (ged(y, v)) of two given elements u, v. E.g., (¢ + 2)? = (¢ — 2)? (mod
237[1]), and ged((z + 2)%/23Z[1], (% - 4)/237[¢]) does not exist. But if uR + vR =
WwR, then w = gcd(u, v). We have the following algorithm to decide whether the ideal
uR + uR is principal and to exhibit a generator w in case there is one.

(1) If v = 1, then there always is a gcd(u, v) generating uR + vR which is ob-
tained by the standard Euclidean division algorithm for polynomials over the field of
p elements.

(2) The ged(u, v) exists if and only if gcd(v, u) exists and both are equal. We
have 4R + vR = wR if and only if uR + uR = wR.

(3) The ged(0, v) = v = 0.0 + 1.v generates uR + uR = vR.

(4) Ifv>p>0and p*llu, p*lv so that u = pu,, v = p*v, (mod p”Z[t])
with u,, v, in Z[¢] and ptu,, then ged(u, v) exists if and only if ged(uy 1 ZV7#[z],
v, /Z77#[t]) = w,/Z"7#[¢] exists with w, some polynomial of Z[¢] that is not divis-
ible by p. Moreover, w = gcd(u, v) = p#w,/Z”[t] and w generates uR + vR if and
only if uy Z"7#[¢t] + v, Z"7*[t] = w,Z"7#[f]. Indeed, a presentation u,a + v b=
w, with @, b in Z[t] implies the presentation w = ua/p”Z[t] + vb/p"Z[t].

(5) Ifv>1andu=pttlyy i+t + u;p*u, (mod p”Z[t]), (0 < u <w; u,,
uy € 2[t]; [u,] <«k;p+tu, € 7), then determine a rational integer u, satisfying the
congruence condition #,u; =1 (mod p*™*) and set

u' =p*tlugu tt + phrc + pluyu, (mod p”Z[1]).
It follows that gcd(u, v) exists if and only if ged(u’, v) exists. Moreover, uR + vR =

'R +vR. Ifu'a’ + vb =w, wR = uR + uR, then u(uya’) + vb = w.
(6) Ifv>1 and

W= PR+ RS 4 i, (mod pZIE)
(0</_¢<p.+7\<1);uo,u2 € Z[1]; [u2] <k),
then let
Wy =1-prug +p N — -+ (- D***ug  (mod p”*2[1])
(@ = [(m-»/])

and set u = uju (mod p”Z[¢]) so that u’ = pP(t* + u}y) (mod p*Z[t]) u, € 7[¢],
[uz] <k.

It follows that gcd(u, v) exists if and only if ged(u', v) exists. Moreover, uR +
UR =uR +vR. If u'a’ + vb = w, wR = uR + R, then u(u'a’) + vb = w.

(7) Ifv>1 and

usr+u,, valt"+v2 (mod p*Z[t])

O <k <Nu,,v, €71]; [uy] <k, [v,] <N\sv; € 2),

then let v’ = v — **v,u so that gcd(y, v) exists if and only if ged(u, v') exists and
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uR + vR = uR + wR. If ua' + vb = w generates uR + vR, then w = ua + vb with
a=4d - t"""bvl. By a finite number of applications of (1)—(7) either we find a
presentation ua + vb = ged(u, v) or else we find that uR + vR = p*(u'R + p™v'R)
where 0 < pu <u+ A <vand «, v' are congruent to monic polynomials P, Q of
Z[t] modulo p*~*Z[¢t] with [P] > [Q]. In this case uR + uR is not principal.

In the situation of (9f) it was shown in Zassenhaus (1969) that
ged(E, /p"* Z[t], flp”* Z[¢]) exists and is representable by a monic polynomial f; .
of Z[t]. In fact, by carrying out (10a) we obtain a polynomial f,, with highest
coefficient \ not divisible by p. Now solve the congruence AX' = 1 (mod p“¥) so as
to satisfy both (10a) and (10b).

Let us point out that the Berlekamp algorithm directly for p = 2 and by an
easy computation for p > 2 provides a system of f, p-reduced polynomials e, ,

. , €q, representing modulo f(£)Z[¢] + pZ[t].

By the method given above we obtain for any given natural number » poly-
nomials e, . . . , e, that are f, p”-reduced and represent the primitive idempotents
modulo f(£)Z[t] + p*Z]¢].

According to Zassenhaus (1969), their existence is tantamount to the existence
of a congruence factorization

fEflfz te f; (mOdeZ[t])

with monic polynomials f,, . . ., f, of Z[¢] that are mutually prime modulo p; and
each of them is congruent to a power of some monic polynomial mod p which stays
irreducible modulo p. The numbering can be done in such a way that fie, =0
(mod(f Z[t] + p”Z[¢])), and we obtain the monic polynomials f;, . . . , f, in the
form

fi = R(ged(f/p" Z[t], (e, + - - - + ¢,)/p"Z[1]), P"),
fi = RQUIP* A, £, Ip* 2D, P°),
f, = R(ged(f, Ip" 1], (e5 + - - - + €)p" Z[t]), P°),

f, = RQ(f,_, Ip" 211, f,_, [p" Z12)), PV).

Example.
fO=3-52 -1t +6,
W) = max(f13, v/7/3, 96 < 8(/2 ~1).

If f = f,f, with monic rational polynomials f;, f, of degrees 1, 2, then o(fp) <
8(\3’/5 - 1)/(\3/5— 1) = 8. Let p = 2. Hence v = 4. By Berlekamp 12 =1, (¢)? =
£2,(*)? =t (mod(fZ[t] + 2Z[¢t])), basic idempotents 1, > + 7. Set E o=+
t,Ng =R(E}g ~Ey, ) =422 + 42— 42,vy=1,E;, =—1> —t+2,N, =
4012 + 40t — 40, v = 3. E\, =E;; + N, =7* + 7t — 6 (mod 16Z[t])
ged(f/16Z[t], (76 + Tt - 6)/(62[1])) = (¢t — 6)/16Z[t], f(£) = (¢ — 6)(£* + ¢ — 1).
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Obviously three linear Hensel approximations would be slower.
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