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On the p-Divisibility of the Fermat Quotients

By Wells Johnson*

Abstract. Upper bounds for the power of p which divides the Fermat quotient
q, = (ap_1 — 1)/p are obtained, and conditions are given which imply that
q, # 0 (mod p). The results are in terms of the number of steps in a simple
algorithm which determines the semiorder of a (mod p).

1. Introduction. If p is an odd prime and pta, the Fermat quotient is defined by
q,=4q,(p)=(@"" ! —1)/p. It is known that if the Fermat equation x? + yP = zP has a
solution in the first case (with p4xyz), then g, =0 (mod p) for 2 <z <31. Inan
earlier paper [2], we gave certain conditions on p and a which ensure that g, Z0
(mod p). In view of the importance of this for the first case of Fermat’s Last Theorem
it seems desirable to continue the study.

In this paper we present an elementary algorithm and derive from it an upper
bound for the power of p which divides g,. The algorithm is generally much less
efficient than the squaring algorithm normally used to determine computationally
whether g, =0 (mod p). For a discussion and summary of the extensive computation-
al results already known on this question, see Brillhart et al. [1]. We have not used th
present algorithm to obtain additional computational results, but rather, we show how
it can lead to some interesting theoretical consequences, particularly in cases where a
and the order of @ (mod p) are relatively small. The algorithm does have the advantage
that in order to determine whether g, = 0 (mod p), it is only necessary to do the
computations (mod p).

For simplicity, we restrict our attention to cases where 1 <a <p. For more
general cases, we can use the congruence q,,, =4, ~ a! (frlod p). For any integer
n=2,welet ep(n) denote the exponent of p in the prime factorization of n. If p’f' a, we
define the semiorder of a (mod p) to be the smallest positive integer d such that
a? =1 (mod p), and we denote it by sord, a. We always have that sord,, a <@-1)2,
and that sordp a is equal to either the order of @ (mod p) or one-half the order of
a (mod p), depending upon the parity of the latter. In any case, sord, p divides p — 1.
As usual, we denote the greatest integer function with square brackets.

2. The Algorithm. We begin with an odd prime p and an integer a, 1 <a <p.
Since g, _; =1 (mod p) (in fact (mod p?)), it is no loss of generality to assume that
a <p — 1. We define four sequences {a,}, {e,}, {b,}, and {Q, } inductively as follows:
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=1,
,, is the unique exponent satisfying a n~ a <p-1< a "a,,n =0,

= [a nan/p] ,n=>0

a4 =ae”a —bnp, n=0,

Qo =by, 0, = a "Q,_, +b,,n=>
Clearly, e, > 1 for all n > 0. We halt the algorlthm at step k if either a kak -1
orif @, ., = 1. We are simply looking at the least positive residues of successive
powers of a (mod p), and stopping when this power is equal to sord, a. The sequence
{a,} gives the least positive residues of ae°+el+ “*€n_and we have that

egte +--te = sordpa.

In the case that a®ka, = p — 1, we define b, = 1 (and Q; accordingly), so that at the
last step we always have ae"ak =+1+b,p. We call k the number of reductions of
a (mod p).

The final expression for Q, is

k—1
i teteg
Q= X a7 kb 4 b,
i=0
Starting with the equation aekak = #1 + b, p, and unravelling the algorithm by sub-
stituting for a,, @, _,, . . . , a; successively, we see that

eqgte,+-+e sord
a0 ! k= =1 + pQ,.

Since e, 2 1 and the definition of e, implies that b < a,.it follows. that ., is-nething
more than the a-adic expansion of the quotient @ dpe F1)/p.

THEOREM. ep(qa = ep(Qk).

Proof. 1f s = sord, a, then & =+1 +pQ,. Ifd = (p — 1)/s, then d is even
and @?~! = (21 + pQ,)? =1 % dpQ, + (§)p?Q% * - - -, implying that ¢, =
Q,(zd + (g)ka *+ - ++). Since p‘l’ d, the last term is relatively prime to p and the
result follows.

We note in passing that the actual value of g, (mod p) or (mod p™) can be
determined by the algorithm if that is desired.

To illustrate the algorithm and the Theorem, take p = 11, @ = 3. In this example,
k = 2 and the algorithm reads

33=5+2, Q,=2
3-5=4+p, g, =1+3-2=7,
3-4=1+p, Q,=1+4+3-7=2p.
In this case sord;; 3 =3+ 1+ 1=5,and 3% = 243 = 1 + 2p*. Hence 3'° =
(1 + 2p*)?, so that q; = 4p(1 + p?). We thus have ep(q3) = ep(Q2) = 1.
If k = 0, then Q) = b, < a <p, so that the Theorem implies that g, #0 (mod p),
and this is established with a minimum amount of computation. This is the case when

a =2 and p is a Fermat or Mersenne prime, giving a result of Mirimanoff [4] and
Perisastri [5]. Additional examples for which k¥ = 0 include p = 313,a = 5;p = 37,
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a=6;p=101,a = 10; and p = 1093, a = 3. Thus we easily establish that
g5 #0 (mod 1093), a fact which is not without significance for the first case of Fermat’s
Last Theorem, since p = 1093 is one of the rare primes for which g, = 0 (mod p).

3. Upper Bounds for ep(qa). The Theorem enables us to obtain upper bounds
on ep(qa) in terms of k.

COROLLARY 1. Let p be a prime and suppose 1 < a <p — 1. If k represents
the number of reductions of a (mod p) and N, = [(k + 1)/[log, p]], then

€,(q,) <Min{2k, k + N, }.
In the case that k 21 and by = b, = -+ = b,

ep(qa) SMin{2k - 1, k + N}

Proof For1<j<k, a5 "

1 <j <k, it follows that

<di” lai < p, so that a°7 < ap. Since b; <a for

eyteyttept+1

Qk<a <ak+1pk <p2k+1‘

Hence by the Theorem, e,(q,) = ¢,(Qy) < 2k.

The bound k + N, is an improvement over the bound 2k if kK > 1 and a? <p,
orifk=1anda® <p. Fork>1, P < p <4°0, so that eo — 1 = [log,p]. By
the definition of N, we have that a**1 < PV KT 5o that 0, < p Ve and
ep(d,) = €p(Qy) <k + N

k—1 €jrqt+te .

Ifbg=b, =:--=b, =b,then @ = b(1 + Z;ja '+! k). Since b < q,

we have that p{'b and hence ep(qa) = ep(Qk/b). But

0,/b <@ TR _ - 1) < @K - D@ - 1)

Hence, to establish the bound ep(qa) < 2k — 1, it suffices to show that, for k > 1,

dHpk <p? @ -1) or FT' <pF@-1).

Since @ < p, it is enough to consider the case ¥ = 1 and prove that a*> < p(a — 1) for
1<a<p-1. For fixed p, we see that the function f{e) = a®> — pa + p is a parabola
whose minimum occurs at ¢ = p/2. Since we may exclude the case p = 3, we have
that 2) = Ap —2) =4 —p <0, so that Aa) <0 for 2 <a < p — 2, as desired.

If @ = 2, then we always have the added restriction that by=b,="""=b, =1
In this case, however, stronger bounds for ep(qz) can be obtained as follows.

COROLLARY 2. Let p be a prime and let k denote the number of reductions of
2 (mod p). Then

ep(q2) <k-1 fork=>3,and
ey(q,) =0 for 0 <

Proof. Fork>1and 0 <j<k, we have that Ze"a]-=al._,_1 +p<2p-1<2
so that 257 < 2°0*! /a;. Hence,

3
k<2.
ept1

k 1)+1
0, <2e1+ +ep+1 <2 (eg+1) /a1a2 .



300 WELLS JOHNSON

But none of the distinct, odd, positive integers a,, . . . , @; can be 1. Thus,

Q, <22k*+1pkj3.5.7 ... (2k + 1).

For k > 4, Qk < p* so that e (q2) =e (Qk) — 1, as desired. If k=3 anda, 29,
then Q) < p¥ also. Hence, we may assume that k 3 and ¢, <7, in which case
2°0 < p 4 7, so that 20071 ¢ (p + 7)/2. Hence,

0, <2+ 7N2)3/3-5-7<p® forp=1l.

For p <11, k is never 3.
If k=0, thene (q?) = 0by Corollary 1. If k=1,then Q, =1 + 2°1. Since
21 <20ty <2 #0+113 < 2%, we have that e, <e0 1. Hence,

0, =1+2°1<1+2%7 " <p,

so that e,(q,) = e 2(Qx) =

Finally, suppose k = 2 so that 0, =1 + 22 4 2°17€2 Then if plq,, we have
by the Theorem that 2°2(1 + 2°1) = -1 (mod p). But 262a2 = +1 (mod p), so that
a+2°ny = ¥a, (mod p). As above, 1 + 2°1 < p and hence 1 + 2°1 = a, orp —a,.
Since ¢; = 1 and a2 is odd, the latter choice cannot hold. The algorithm gives
2°0 =g, +pand 2°la, = a, + p. Combining these with 1 + 2°1 = a,, we have
2°0%€1 = ,(@ + 1), and hence a, must be a power of 2, a contradiction.

Thus g, #0 (mod p) for primes p of the form (2" * 1)/D where D = 1 (k = 0),
D=1+2(k=1),or D=1+2+25%" (k = 2). By the Wieferich criterion, this
establishes the first case of Fermat’s Last Theorem for such primes. The cases k = 0, 1
are included in the results of [2]. The case k¥ = O corresponds to the Mersenne and
Fermat primes. We have k = 1 for p = 11, 13, 43, 241, 683, 2731, 43691, 61681 and
174763, and k = 2 for p = 41, 73, and 113.

The example p = 11, @ = 3 provides an instance where k¥ = 2 and g, = 0 (mod p).
The final result of Corollary 2 and its proof can be generalized to the case of arbitrary
a, however, under certain restrictions.

COROLLARY 3. Let p be a prime and suppose 1 <a <p — 1. Let k denote the
number of reductions of a (mod p). Then q, #0 (mod p) under any one of the follow-
ing conditions:

(@ k=0,

(b) k=1and by =b,,

(c) k=2,by=b, =b,,and atp - 2.

Proof. (a) if k = 0, the result follows from Corollary 1. Directly, we have that
0, =by, <a<p,so that p*{’Qk and hence p*qa by the Theorem.

(b) Ifk=1and by = b, = b, then @, = b(1 + a°!). Since p1b, it suffices
to prove that p ‘|’(1 +4° l) We have that a l—la1 <p - 1< 4%, 50 that e, <e,.

If e, <eq, thena ‘1 g0 < p = 1so that 1 + a°! < p, which is sufﬁc1ent Hence
it remains to exclude the case e, =e,. Since k = 1, e; = ¢, implies that 20 = +]
(mod p) and sord, @ = 2e,. If the top sign holds, then a €0 = 1] (mod p), contradicting
the definition of sord a. Hence a*0 = -1 (mod p), and a 20 41 = pb(a°0 + 1).
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But then a°© + 11420 # 1, so that °© + 12, a contradiction.
() I k=2and by =b, =b, = b, then Q) = b(1 +a°2 +4a°17°2). If
4, =0 (mod p), then, by the Theorem,

221 +4d1)=-1 (mod p).

Since aeza2 = ] (mod p), it follows that (1 + a“1) = Fa, (mod p). As in the proof
of (b), we have that e, <e,. If e; = e, the first two steps of the algorithm imply
that

A0 = a, + bp(@® + 1).
Since a°© + 1 Ia2e° — 1, it follows that a°© + 1 la, = 1. Buta, <p<l1+ a0, so
that @, = 1. But this means that k = 1, a contradiction.

Thus e, <e, and hence 1 + a1 <p. We thus have that 1 + 1= a, orp—a,.
If1+4°1 = a,, then the first two steps of the algorithm give that a, lafoter,
Butganda, =1+ a®1 > 1 are relatively prime, which gives a contradiction. If
1+4d°t =p—a,,a, =p—1(moda). The three steps of the algorithm show that
a, =a, =1 (mod a), so that p = 2 (mod @), concluding the proof.

We have already given examples for (a) with a > 2 at the end of the previous
section. The examples ¢ = 3 and p = 61 and p = 73 illustrate (b).

We can also prove an old theorem originally due to Meissner [3] using these
techniques.

COROLLARY 4 (MEISSNER). If p is a prime, 1 <a <p, and the order of a (mod p)
is 2,3, 4, or 6, then q, #0 (mod p).

Proof. The hypothesis implies that sord,a < 3. Since ¢, > 2 and
eg +e, + - +e <3, we must have that k =0 or k = 1. If k = 0, use Corollary
1. In the remaining case, we have k = 1, ¢y = 2, e, = 1, so that

Q, =aby +b, =(@% )by t by +b,.

Since a® = *1 + pQ,, we have that (a ¥ 1)|(¥b, + b,). If the bottom signs
hold, then since 1 < by, b; < a, we must have that b, = b,, and we can apply
Corollary 3. Otherwise,a — 11b, + b, and Q, = (a — 1)(b, + u), where 1 <u <2
since by + b; < 2a. Butpta— 1 and by + u <a+ 2 <p implies that pt Q,, so
that pt q,, by the Theorem.

Department of Mathematics
Bowdoin College
Brunswick, Maine 04011

1. J. BRILLHART, J. TONASCIA & P. WEINBERGER, ‘“On the Fermat quotient,” Com-
puters in Number Theory (A. O. L. Atkin & B. J. Birch, Editors), Academic Press, New York, 1971,
pp. 213-222. MR 47 #3288.

2. W. JOHNSON, “On the nonvanishing of Fermat quotients (mod p),” J. Reine Angew.
Math., v. 292, 1977, pp. 196—200.

3. W. MEISSNER, ‘“Uber die Losungen der Kongruenz xP~1 =1 mod p™ und ihre
Verwertung zur Periodenbestimmung mod p*,” Sitzungsber. Berlin Math. Gesell., v. 13, 1914,
pPp. 96-—107.

4. D. MIRIMANOFF, Comptes Rendus Paris, v. 150, 1910, pp. 204—206.

5. M. PERISASTRI, “On Fermat’s Last Theorem. I1,” J. Reine Angew. Math., v. 265, 1974,
pp. 142—-144. MR 49 #2531.



