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Interpolation Error Estimates
for the Reduced Hsieh-Clough-Tocher Triangle

By Philippe G. Ciarlet

Abstract. We study the unisolvence and interpolation properties of the reduced
Hsieh-Clough-Tocher triangle. This finite element of class Cl, which has only nine

degrees of freedom, can be used in the numerical approximation of plate problems.

Introduction; Main Notation. The space R” is equipped with the Euclidean
norm | - | and inner-product { - , - ). If B is a subset of R”, we let

hg = diameter of B,

pg =sup{h B> B is a ball contained in B},

meas(B) = [ dx (assuming B to be measurable),

vlp = restriction of the function v to the set B,

Pk(B)= {plB;pEPk(Rn)}9 kEN’

where P, (R") denotes the space formed by all polynomials of degree < k in n vari-
ables.

Given a multi-index a = (a;, @y, . . . , @,) € N" with length |a| = Z]_ | o;, we
use the usual notation 8%w(a) for the partial derivatives of order |a| of a function v at
a point @ € R", while the Fréchet derivatives are denoted D™ w(a), or simply Du(a) if

m = 1. We write for brevity

D™ u(@)E™ ifg =& =---=¢§,=¢
D" @), &35 - - Em) =
D@ " k) i E =E = = = £
Following [3], [4], let us recall some general definitions pertaining to finite ele-
ments: A finite element in R" is a triple (K, P, Z), where:
(i) K is a subset of R” with a nonempty interior K and a Lipschitz-continuous
boundary in the sense of Necas [7],
(ii) P is a vector space of finite dimension N, whose elements are real-valued
functions defined over the set K,
(iii) Z is a set of NV linear forms ¢;, 1 <i <N, defined over the space P, and
the set X is P-unisolvent in the following sense: Given arbitrary real numbers o;, 1 <
i < N, there exists one and only one function p € P which satisfies

¢;P)=0a;, 1<i<N
The forms ¢; are called the degrees of freedom of the finite element. The basis
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function r; associated with the degree of freedom ¢; is defined by the relations
r; €EP and ¢;(r)) = 8y, 1<ij<N

Notice that the functions r; form indeed a basis in the space P since the identity

N
VpEP, p=73 ¢

j=1
holds.
Given a function v defined over the set K, the P-interpolant Ilv of the function
v is defined through the relations

[lveP and ¢(Ilv) = ¢,(v), 1<i<NMN
Equivalently, we have
M
=1

Of course, the above definition makes sense only if the function v is smooth enough
so that the degrees of freedom ¢,(v) are well defined. For finite elements for which
all the degrees of freedom are of the form 9%u(a) (as is the case in this paper), we shall
require, for definiteness, that the function v be s times continuously differentiable over
the set K, where s is the maximal order of partial derivatives found in the set . In
other words, for such finite elements, we can define a P-interpolation operator

i: dom I = C5(K) — P.

A reduced Hsieh-Clough-Tocher triangle is a triple (K, P, £) where the data K, P
and X are defined as follows.
(i) The set K is a triangle, with vertices a,, a,, a5.
(ii) Let a be any point in the interior of the triangle K. Denoting (cf. Figure 1)
by K; the triangle with vertices a4, 4; ;, 4;, 5 (the indices are counted modulo 3

FIGURE 1

whenever necessary), and by K,f the side opposite to the vertex 4;, the space P is given
by

1) P= {p € C'(K); plx; € P5(K}), 3,plx: € P (K}), 1 <i <3},
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where 0,p(x ; is the (outer) normal derivative of the function p| k; along the side K,f.
(iii) The set of degrees of freedom is

) T = {0%(g;), 1 <i<3,l|al <1}.

This finite element is derived from the standard Hsieh-Clough-Tocher triangle by
a device common to triangular finite elements of class C!, which consists in constrain-
ing the normal derivative on the exterior sides to be polynomials of lower degree. The
Hsieh-Clough-Tocher triangle (which is described later in this paper, cf. (6)) is named
after Clough and Tocher [6], and also after Hsieh, who was the first to conceive in
1962 the idea of matching three polynomials so as to get a finite element of class C!.
We recall that a finite element is said to be of class C! if, whenever it is assembled in
a triangulation, the resulting functions and their partial derivatives of order one are
continuous across the sides common to adjacent triangles. Since this is the case of
the reduced Hsieh-Clough-Tocher triangle, and since its interpolation properties make
it amenable for solving fourth-order problems (cf. (5)), this finite element is optimal
in the sense that it has the lowest possible number of degrees of freedom, that is, nine,
compatible with a cubic variation of the function and a linear variation of the normal
derivative along the exterior sides. In particular, we obtain a finite element of class
C! for which the dimension of the space P is quite small, compared to more traditional
triangular finite elements of class C' where only “pure” polynomials are used. We re-
call that for such elements, Zenfsek [11] has shown that the dimension of the space
P is at least 18. Notice, however, that this decrease in the dimension, an obvious com-
putational advantage as regards the dimension of the resulting linear system, is obtained
at the expense of an increased complexity in the structure of the space P. As expected,
the basis functions are harder to compute explicitly.

After we have shown (Theorem 1) that the set ¥ is P-unisolvent, with P and X
given as in (1) and (2), we turn to the main object of this paper, which is to estimate
the interpolation errors |v — Ilvl,,, x, where the standard notation

1/2

Whna = ([ X 10%Pax )
A lal=m

is used, and where, according to the general definition given above, the P-interpolant

ITv is uniquely determined by the conditions

3) MvEP and 8*(Iv)(g;) = 8%(g;), 1<i<3,|al<]1.
We are then able to show that (Theorem 2), given a family of reduced Hsieh-Clough-

Tocher triangles which is regular in a sense to be defined below, and given a function
v € H*(K) C C'(K) = dom II, one has

4) b = Mol, x = O(hg™), m=0,1,2,

i.e., the order of convergence is the same as one would expect from the inclusion
P,(K) C Py for an affine family in the sense of [S] (this is thus another instance of
an almost-affine family of finite elements, according to the terminology of [4, Chap-
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ter 6]). It appeared, however, that the standard techniques for getting interpolation
error estimates for finite elements of class C' (cf. Bramble and Zldmal [1], the author
[31, [4], Raviart [9], ZeniSek [10], Zldmal [13]) did not directly apply to this ele-
ment, and this observation led to the present paper.

Let us then assume that we are using this finite element for solving a fourth-
order problem (such as a plate problem) posed over some open set £ C R2. If we let
u and u,, denote, respectively, the exact and approximate solution, then we get from

4,
(5) [l — uh"HZ(Q) < Ch|u|3,ﬂ’
where i denotes the greatest diameters of the triangles found in the finite element
space where the discrete solution u,, is found. Notice that the above error estimate
requires that the solution u be in the space H3(Q), but this is a mild regularity assump-
tion, satisfied if & is a convex polygon for a plate problem.

The reader interested in finite element methods for fourth-order problems in
general may consult Zienkiewicz [12, Chapter 10] for a discussion from an engineer-

ing viewpoint, while a fairly complete description and a study of their convergence
properties are given in [3, Sections 13 and 14] and [4, Chapters 6 and 7].

Unisolvence.

THEOREM 1. The set T of (2) is P-unisolvent, the space P being defined as in (1).

Proof. Since the number of degrees of freedom is equal to the dimension of the
space P, it suffices to prove that a function p which satisfies

pE€P and 0%p(q;) =0, 1<i<3,|lal <1,
is identically zero. The conjunction of these relations and the relations
3,plk; €P1(K;) and  3,plk;(@;4 ) = 3,plk}(@4,) =0,
obtained from the definition of the space P, implies that
o,plk; = 0, 1<i<3.

The unisolvence is then a consequence of the unisolvence established in [2] (see
also Percell [8] for another proof) for the Hsieh-Clough-Tocher triangle: This finite
element is a triple (K, P*, £*), with

K = a triangle subdivided as in Figure 1,
©) P* = {p € C'(K), plk; € P5(K;), 1 <i <3},
* = {0%(a;), lal < 1,9,p(by), 1 <i<3},

where 8,p(b;) denotes the normal derivative at the midpoint b; of the side K. O

Interpolation Error Estimates. Our first objective is to appropriately describe a
family of reduced Hsieh-Clough-Tocher triangles. Let K be a fixed triangle with
vertices 4;. Given an arbitrary triangle K with vertices a; g (cf. Figure 2), we let F
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FIGURE 2

denote the affine mapping from R? into R? uniquely determined by the conditions
a,-'K =FK(a,), 1<i<3.
Given a point 4 interior to the triangle R, let,fori=1,2,3, K;(@) denote the

triangle with vertices Fy(4), a;1 | g» @;44 g (cf. Figure 2). Then we need the follow-
ing definitions:

(K, P (@), Z) = reduced Hsieh-Clough-Tocher triangle constructed on the
triangle K subdivided into the three triangles K (@), 1 <i <3,

Q)

®) Il (@) = Py (@)-interpolation operator associated
with the finite element (K, Pg (@), Zg ),

©) Qx(@) = {p € C'(K); plk;@) € P3(K;@)), 1 <i <3},

(10) Ex(@ = {8%p(a; k), lal < 1, Dp(b; x Y Fx @) — b; ), 1 <i<3},
where b; ;- is the midpoint of the side opposite to the vertex g; g,

Ag (@) = Qg (@)-interpolation operator associated with the finite
1 element (K, Qg (@), Z (2)) (the proof of the Q (@)-unisolvence of
the set Z(@) is the same as for the Hsieh-Clough-Tocher triangle).

Following [2], we are then naturally led to define a regular family of reduced
Hsieh-Clough-Tocher triangles as a family

(K, Px(a), Zx)kek,aea

for which:
(i) There exists a constant ¢ independent of K € K such that

12) VK€K, hy <opg,

(ii) Zero is the only point adherent to the set {hx € R; K € K},
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FIGURE 3

(iii) The set A is a compact subset of the interior of the triangle K (cf. Figure 2).

To begin with, we establish a result of a purely geometrical nature.

LEMMA 1. Let there be given a regular family of reduced Hsieh-Clough-Tocher
triangles. Then there exists a constant v such that

(13) VKEK, VaE€EA, hg<wpguay, 1<i<3.

Proof. Tt suffices to show that an angle such as a; (@) (cf. Figure 2) is bounded
below by a strictly positive constant independently of K € K and @ € 4. Equivalently,
we shall show that

inf a; ¢ >0,
KeK

where, for each K € K (cf. Figure 3),

o = _inf _ {angle(a —a; g, a;4 1 g —-a; g)}-
aEFK 4)

Let us assume the contrary. With the notation of Figure 3, the ratio
le; k — @41 k(842 x — a,.JrlyKl)_l is a constant independent of K € K, since it is
equal to the ratio |¢; —@;4 1 1(18;1, — @;4 ~!. Therefore, the equality infgc o; =0
would imply that the ratio la; k =i 1 k(842 xk 411k l)_1 approaches infinity
or that the ratio |d; ¢ —a; (8,45 x — ;41 x ™! approaches zero, where (d; x —a; k)
is the height issued from a; x (cf. Figure 3). But neither implication is compatible
with assumption (12); and, therefore, we have reached a contradiction. [J

We are then in a position to prove our main result.

THEOREM 2. Given a regular family of reduced Hsieh-Clough-Tocher triangles,
there exists a constant C such that

VK €K, Va€A, Yv€HK),
(14)
b = M@l x < Chg ™lyx, m=0,1,2.

Proof. There are two reasons that prevent us from using the “affine” interpola-

tion theory:
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(a) The points @ may vary inside K: This possibility will require the use of a
compactness argument, as in [2].

(b) Given a subfamily corresponding to a fixed point 4, the spaces Py (@) are
not in an affine correspondence (since the sets £ are in such a correspondence, we
are therefore in a situation opposite to that corresponding to the Hsieh-Clough-Tocher
triangle; cf. [2]).

In what follows, the letter C stands for any constant (not necessarily the same
in its various occurrences) independent of K € K, @ € A4, and of the functions occur-
ring in the inequality where C appears.

The proof is subdivided into several steps.

(i) We first notice that the inclusion

H3(K) € C'(K) = dom [ (@) = dom Ag(@)

holds (cf. definitions (8) and (11)). Next the same argument as in [2, Eq. (3.4)] or
[4, Eq. (6.1-31)] shows that there exists a constant C such that
15) VK€K, Va€A, VYveEHK),
= Ag@l, x <Chg ™Pl3x, m=0,1,2.
(i) In view of estimating the seminorms |Ag (@) — Hg(@)l,, k. let us expand
the difference (Ag(@)v — Mg (@)v) over the basis functions of the finite element
(K, Qg (@), Z¢ (@) (cf. definitions (9), (10)). This is indeed possible since the inclu-
sion Py (@) C Qx (@) holds. Denoting by r; (@) the basis function associated with the
degree of freedom Dp(b,-’ x)Fx (@) — b; ) and using the respective interpolation prop-
erties of the functions Ay (@)v and T, (@)v, we obtain:
3

(16) Ag(@ - Tg@p = 3 {D(Ag@p — Ng@w)b; g NFx @) = b; x)}r; k@)

=

1

Let us introduce the unit vector v; ;- normal to the side K, opposite to the vertex a; ks

as indicated in Figure 2. The equality of the functions A, (@)v and Il (@)v along the
side K; implies that

D(Ag (@) — Hg@w)b; x XFx @) — b; )

= 9,(Ag@w - HK(é)v)(bi,K)(FK(ﬁ) = bik>Vik)
and thus we get from (16):

3
a7 1Ag@p — Tg@)pl,, ¢ < hg Z 18, (Ag @) = T @))(b; I Ir; k@)l k-

i=1

(iii) Let us next transform the expressions
3,(Ag (@ — Mg @), k)-

To do this, we shall use the following result: Given a (smooth enough) function w
whose restriction to the side K; belongs to the space P,(K;), we have

1 1
(18) wlb; ) = 5 {wla; k) + Wiy k) — 3 D*w(b; k@42 ~ @41 k)
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Applying identity (18) to the functions
3,Ag (@)W € Py(K/)) and 3,Ix@w € P (K))

and taking into account the respective interpolation properties of the functions
Ay (@) and Mg (@) at the points a;, | g and a;, , g, we obtain

o ~ 1 ~
3,(Ag(@w ~ g @V)b;x) == g D> (Ag@W)bs kX125 =~ 84 1,6)" Vi)
Therefore,
(19) R, (Ag@)w — M@W)B; I < Ch}lAK(&)vl3’w’Ki(3), 1<i<3,

where

—_ o
Wl 0,8 = mnax 10%wll (-

Notice in passing that in the right-hand side of inequality (19), we cannot use the
seminorm | - |3 ,, g, since the space Py (@) is not contained in the space w3 (K) (it
is only contained in the space W?'*(K)).

(iv) We now estimate the seminorms [Ag(@)vl3,= k(@) in terms of the semi-
norms IAK(ﬁ)vl3’w, R @) where, fori =1, 2, 3, 12',.(&) denotes the triangles with ver-
tices @, a;, ¢, d;, , (cf. Figure 2), and where, given a function w: K — R, we define
the function w = K — R by letting

(20) Vi €ER, WR®) = wFgX)).
Using the standard formulas for transforming Sobolev seminorms (see e.g. [3,
Section 6] or [4, Theorems 3.1-2 and 3.1-3]), we get
S 3 -3 /A\ N
Ak @Wl3 o x @) < O (@) (P @) Wk @3 e, R ()
Combining this inequality with inequality (13) of Lemma 1, we obtain
S

1) max [Ag@Wls w k. < Chg® max |Ag@Wl3 w 2 (a)-
1<icy KO3 K@) Ko cicy KV K@)

(v) Given an arbitrary function p in the space Qg (@) and a multi-index « with
lal = 3, we have
0°Plo,, & (@) = {meas K@) 10%Plo & 4y

since a“p|,gi(a) is a constant function. Consequently,

o . 2 ai—1/2(50 A
max |pl3 o gz S mMax {meas K (@)} / |p|3’K'(a)
1<i<3 : 1<i<3 i

3 ) 1/2

<C<Zl |p|3’12'(a) )
=

since

inf meas K@) >0, 1<i<3
acA
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(to prove this last property, observe that an angle such as & (cf. Figure 2) is > 0).
Applying this to the function p = Ax(4@)v, we obtain

T 3 /\2 \1/2
(22)  max IAg@Wl3,0,2 ) < C iz:.:l A @W15 £ (a)
(vi) Using the correspondence (20), we notice that
S N
(23) A @V = A@)D,

where A(4) is the QO (@)-interpolation operator associated with the finite element

K, Qz(d), Zp(a)). Because this interpolation operator leaves the space P2(f<) invari-
ant, an easy adaptation of the compactness argument used in [2] or in [4, Theorem
6.1-3] shows that

3 o 1/2 R
(24) sup ( 2 - A(ﬁ)l"a,l?i(a)) < Chly -
aca\i=1
By combining (23), (24) and the triangular inequality, we obtain
3 2 1/2 R
(25) 21 IAg@wl3 £ (2 < Cloly -
i=

(vii) Using again the inequalities for transforming Sobolev seminorms, we have
(26) 0l3 g < Chilvls -

(viii) Another compactness argument, as in [2] or [4, Theorem 6.1-3] shows
that

S
sup |r; k@l g <, m=0,1,2,
acA
and consequently,
27 sup |r; k@l x <SChg ™, m=0,1,2.
acA

(ix) To finish the proof, it suffices to combine inequalities (15), (17), (19),
(21), (22), (25), (26), (27), established in the previous steps. [

Remarks. (i) The same type of proof applies to the 18-degree of freedom tri-
angle, with a double simplification in that the corresponding space P consists of pure
polynomials (there are no assembled subtriangles), and there is no variable point such
as a. Thus, for this finite element, the present approach provides an alternate proof
to that given by Bramble and Zldmal [1].

(ii) The interpolation error estimates (14) of Theorem 2 can be generalized. In
particular, one can establish under the same assumptions that

3 " 1/2
2 o = Mg @3 k@) < Chly
i=

(we cannot let m = 3 in (14) because the space Py (d) is not contained in the space
H3(K); it is only contained in the space H2(K)). Another generalization would consist
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as in [4, Chapter 6], in considering more general Sobolev seminorms in both sides of
the interpolation error estimates.
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