The Comparison of Numerical Methods for Solving Polynomial Equations

By Aurél Galántai

Abstract. In this paper we compare the Turán process [5]-[6] with the Lehmer-Schur method [2]. We prove that the latter is better.

1. The Algorithms. We first describe the Turán process [5]-[6] which can be considered as an improvement of Graeffe's method. For the complex polynomial

(1.1)
$$p_0(z) \equiv \sum_{j=0}^n a_{j0} z^j = 0 \qquad (a_{j0} \in \mathbb{C}, a_{00} a_{n0} \neq 0),$$

the method can be formulated as follows.

Let

(1.2)
$$p_{j}(z) \equiv p_{j-1}(\sqrt{z})p_{j-1}(-\sqrt{z}) \equiv \sum_{k=0}^{n} a_{kj}z^{j} \quad (j = 1, 2, \dots)$$

be the jth Graeffe transformation and let

(1.3)
$$M[p_0(z), m_0] = \left[\max_{1 \le k \le n} \left| \frac{\sigma_k}{n} \right|^{\mu_0/k} \right]^{-1},$$

where $\mu_0 = 2^{-m_0}$, $\sigma_0 = 0$,

(1.4)
$$\sigma_k = \left[ka_{km_0} - \sum_{j=1}^{k-1} a_{jm_0} \sigma_{k-j}\right] / a_{0m_0} \quad (k = 1, \dots, n)$$

and $m_0 \ge 1$ is fixed.

Let the constants α_{m_0} , l be defined by the inequalities

$$0.5 < \alpha_{m_0} < 5^{-\mu_0}, \qquad l > \pi \left[\arccos \frac{2.5 + \alpha_{m_0}}{2 + 2\alpha_{m_0}} \right]^{-1} - 1, \qquad m_0 \geqslant 2.$$

Then with the notations

(1.5)
$$M^{(0)} = M[p_0(z), m_0], \quad S^{(0)} = 0,$$

the dth step of the algorithm is the following:

1. Algorithm (T). (i) Let

$$S_j^{(d+1)} = S^{(d)} + 0.5(1 + \alpha_{m_0})M^{(d)} \exp\left(j\frac{2\pi i}{l+1}\right),$$

where j = 0, 1, ..., l and $i = \sqrt{-1}$.

Received January 14, 1976; revised August 18, 1976.

AMS (MOS) subject classifications (1970). Primary 65H05.

- (ii) If there exists an index j such that $p_0(S_j^{(d+1)}) = 0$, then we get a root and the process terminates.
 - (iii) Let us compute the quantities

$$M_j^{(d+1)} = M[p_0(z + S_j^{(d+1)}), m_0]$$
 $(j = 0, 1, ..., l)$

and let

$$M^{(d+1)} = \min_{j} M_{j}^{(d+1)} = M_{j(d)}^{(d+1)}, \quad S^{(d+1)} = S_{j(d)}^{(d+1)}.$$

Turán [5] proved that $S^{(d)}$ tends to a root of $p_0(z)$, and the convergence is linear. Turán [5] also proved that the number of iterations needed to achieve an arbitrary relative error $\epsilon > 0$ is independent of $p_0(z)$ and depends on degree $p_0(z)$ only.

Our purpose is to answer the remarks of the last section of [6]. For this reason we compare the Turán process with the Lehmer-Schur method which is often applied in practice ([2], [3], [4]). This algorithm can be described as follows.

Let

(1.6)
$$T[p_0(z)] = \sum_{j=0}^{n-1} (\overline{a}_{00} a_{j0} - a_{n0} \overline{a}_{n-j,0}) z^j$$

and

(1.7)
$$T^{j}[p_{0}(z)] = T\{T^{j-1}[p_{0}(z)]\} \qquad (j=2,\ldots).$$

Let us compute the numbers $c_j = T^j[p_0(0)], (j = 1, ..., k)$, where

(1.8)
$$k = \min\{m \in \mathbf{N} | c_m = 0\}.$$

Here, N denotes the set of nonnegative integers. With the aid of the sequence $\{c_j\}_{j=1}^k$ we define the function $N[p_0(z)]$ as follows

$$N[p_0(z)] = \begin{cases} 1 & \text{if } \exists j \in \{1, \dots, k-1\} \text{ such that } c_j < 0, \\ 0 & \text{if } c_j > 0 \ (j = 1, \dots, k-1) \text{ and degree } T^{k-1}[p_0(z)] = 0, \\ -1 & \text{otherwise.} \end{cases}$$

Lehmer [2] proved that if $N[p_0(z)] = 1$ then the polynomial $p_0(z)$ has a root in $\{z \in \mathbb{C} | |z| \le 1\}$, if $N[p_0(z)] = 0$ then $p_0(z)$ has no roots in this set. We shall return to the case $N[p_0(z)] = -1$.

Let us introduce the notations

(1.9)
$$\alpha_j^{(d)} = \begin{cases} 0.5\gamma_0^{(d)}R^{(d-1)} & (j=0), \\ 0.4\gamma_j^{(d)}R^{(d-1)} & (j=1,\ldots,8), \end{cases}$$

and

$$(1.10) \quad \beta_j^{(d)} = \begin{cases} z^{(d-1)} & (j=0), \\ z^{(d-1)} + \frac{0.75R^{(d-1)}}{\cos\frac{\pi}{8}} \exp\left(\frac{2\pi i(j-1)}{8}\right) & (j=1,\ldots,8), \end{cases}$$

where the sequences $\{R^{(d)}\}$, $\{z^{(d)}\}$ and $\{\gamma_j^{(d)}\}$ are defined by the dth step of the Lehmer-Schur method $(d=1,\ldots)$. Let $p_0(z)=p_0(z)/\psi$ $(\psi>0)$ and

(1.11)
$$z^{(0)} = 0; \qquad R^{(0)} = 1 + \max_{j} \left| \frac{a_{j0}}{a_{n0}} \right|.$$

Then the dth step can be written as follows.

- 2. Algorithm (L). (i) If there exists an index j such that $p_0(\beta_j^{(d)}) = 0$, then we get a root and the process terminates.
 - (ii) We choose the index $j \in \{0, 1, ..., 8\}$ such that

$$N[\widetilde{p}_0(\alpha_i^{(d)}z + \beta_i^{(d)})] = 1$$

and let

$$z^{(d)} = \beta_i^{(d)}, \qquad R^{(d)} = \alpha_i^{(d)}.$$

The numbers $\gamma_j^{(d)} \in [1, 1+\delta]$, $(\delta \le 0.5)$ are chosen such that $N[\widetilde{p_0}(\alpha_j^{(d)}z + p_j^{(d)})] \ge 0$ will be satisfied (except in unusual circumstances $\gamma_j^{(d)} = 1$ can be chosen). Lehmer [2] proved that process converges linearly. The number of iteration steps needed to achieve an arbitrary absolute error ϵ (>0) depends on $p_0(z)$.

2. The Limitations of the Algorithms. Denote by Z the set of integers and let P_n be the set of complex polynomials of degree n.

A numerical method M (iterative process) for solving $p_0(z)=0$ where $p_0(z)\in \mathbf{P}_n$ can be identified with the sequence $\{b_k\}\subset \mathbf{C}$ which rises from the computation. This sequence depends on $p_0(z)$ and will be denoted by $\{Mp_0\}=\{b_k\}$. There exists a subsequence $\{b_{k_i}\}$ of $\{b_k\}$ such that

(2.1)
$$z^* = \lim_{j \to \infty} b_{k_j}$$
 and $p_0(z^*) = 0$.

A digital computer can perform elementary (complex) operations only over the finite set

$$(2.2) S[0,K] \cap \mathbf{C}_{\delta},$$

where $S[0, K] = \{z \in \mathbb{C} \mid |z| \leq K\}$ and

(2.3)
$$C_{\delta} = \{ z \in \mathbb{C} | z = k\delta + j\delta i \colon k, j \in \mathbb{Z} \} \quad (\delta > 0).$$

If there exists an element b_{k_0} in the sequence $\{b_k\}$ such that $|b_{k_0}| > K$, then the algorithm M cannot continue to run because of overflow.

In order to study the overflow we introduce the class of polynomials

$$(2.4) P_{M}(a, K, K^{*}) = \{p_{0}(z) \in P(a, K^{*}) \mid \{Mp_{0}\} \subset S[0, K], \mid \{Mp_{0}\} \mid = \infty\},$$

where

(2.5)
$$\mathbf{P}(a, K^*) = \{ p_0(z) \in \mathbf{P}_n \mid 0 < |z_j| \le a \ (j = 1, \dots, n), \ \|p_0(z)\| \le K^* \}$$
 and

(2.6)
$$||p_0(z)|| = \max_i |a_{j0}|.$$

Here $|\{Mp_0\}|$ denotes the cardinality of $\{b_k\}$, and z_i is the jth zero of $p_0(z)$.

The set $P_M(a, K, K^*)$ represents the class of all polynomials which can be solved by M in a bounded set.

The following statements are valid.

THEOREM 2.1. The set $P_T(a, K, K^*)$ defined by Algorithm 1 is empty for every $a, K, K^* > 0$.

Proof. If the roots of $p_0(z)$ are arranged so that

$$|z_1| \geqslant |z_2| \geqslant \ldots \geqslant |z_n|,$$

then the estimate

(2.8)
$$5^{-\mu_0} \le \frac{|z_n|}{M[p_0(z), m_0]} \le 1$$

is valid (see [5]-[6]). For this reason the convergence of Algorithm 1 is identical with

$$|z_n^{(d)}| \le cq^d \qquad (c > 0, \, 0 < q < 1),$$

where $z_n^{(d)}$ is the zero of $p_0(z + S^{(d)})$, (d = 0, 1, ...) of minimal absolute value. Using the inequality (2.8), we have

(2.10)
$$\frac{n}{5c'} \left(\frac{1}{q}\right)^{d/\mu_0} \leqslant \frac{n}{5|z_n^{(d)}|^{1/\mu_0}} \leqslant |\sigma_{k(d)}^{(d)}| \qquad (d \geqslant d')$$

where $k(d) \in \{1, \ldots, n\}$ is the index of the maximal element in (1.3) and

(2.11)
$$\frac{n}{5c'} \left(\frac{1}{q}\right)^{d'/\mu_0} > 1.$$

Since $|\sigma_{k(d)}^{(d)}| = O(w^d)$, where $w = (1/q)^{1/\mu_0}$, therefore for a large index d_0

$$(2.12) |\sigma_{k(d)}^{(d)}| > K (d \ge d_0)$$

is satisfied. Thus the theorem is proved.

THEOREM 2.2. If $K \ge K^* 2^{n+1} (1 + a^n 2^n)^{n+1} + 1$, then

(2.13)
$$\mathbf{P}_{L}(a, K, K^{*}) = \mathbf{P}(a, K^{*})$$

is satisfied for Algorithm 2.

Proof. It is easy to see that the quantities recurring in the algorithm satisfy the inequalities

$$|p_0(\beta_j^{(d)})| \le \begin{cases} ||p_0|| 2^{n+1} & (a < 0.5), \\ ||p_0|| (1 + 2^n a^n)^{n+1} & (a \ge 0.5), \end{cases}$$

(2.15)
$$||T^{j}[p_{0}(z)]|| \leq \frac{1}{2}(2||p_{0}(z)||)^{2^{j}} (j = 1, \dots, n)$$

and

(2.16)
$$||p_0(\alpha_j^{(d)}z + \beta_j^{(d)})|| \le ||p_0(z)|| (2 + 2^{n+1}a^n)^n$$
 $(j = 0, 1, ..., 8),$ for $d = 0, 1, ...$ With the notation

$$\delta = ||p_0(z)||(2 + 2^{n+1}a^n)^n.$$

and by using (2.15)-(2.16), we have

(2.17)
$$||T^{k}[p_{0}(\alpha_{j}^{(d)}z + \beta_{j}^{(d)})]|| \leq \frac{1}{2}(2\delta)^{2^{k}} (k = 1, ..., n).$$

Since K is greater than the right side of (2.14) and (2.16), using $\psi > 2\delta$ we can get $\delta < 0.5$ which proves the theorem.

The difference between Algorithms 1 and 2 is caused by the fact that Algorithm 1 is based on the inequality (2.8) while Algorithm 2 is based on the characteristic function $N[p_0(z)]$ which is invariant for the mapping $p_0(z) \rightarrow p_0(z)/\psi$, $(\psi > 0)$.

We remark that Algorithm 1 modified by the mappings

$$p_0(z) \rightarrow p_0(z)/\psi, \qquad p_0(z) \rightarrow p_0(z/\psi) \qquad (0 < \psi \le K)$$

also has a $P_T(a, K, K^*)$ empty for every $a, K, K^* > 0$.

3. The Study of Cost Functions. In the previous section it was proved that Algorithm 1 is unapplicable. Since an approximate solution with a given error $\epsilon > 0$ can be computed in the bounded set $S[0, \widetilde{K}]$, where \widetilde{K} depends on $p_0(z)$, ϵ , and the method M, further analysis of the algorithms is necessary.

The cost function of the jth algorithm (j = 1, 2) is defined by the number of additions and multiplications per step and denoted by K_a^j and K_m^j .

Assuming that the computing time of the kth root can be characterized by three additions and three multiplications (which is a rough underestimate), the cost function of Algorithm 1 is

(3.1)
$$K_m^1 = (l+1)(m_0+4)\frac{n^2}{2} + (l+1)(m_0+8)\frac{n}{4} + \mathcal{O}(1),$$

(3.2)
$$K_a^2 = (l+1)(m_0+4)\frac{n^2}{4} + (2l+3)n + O(1).$$

For the cost function of Algorithm 2 the inequalities

$$(3.3) K_m^2 \le 27n^2 - 18n,$$

$$(3.4) K_a^2 \le 9n^2 + 36n,$$

hold.

If we identify the bounds (3.3)—(3.4) with the cost of one step, then the speed of Algorithm 2 is

$$|z^{(d)} - z^*| \le c_2 (2/5)^d \qquad (d = 0, 1, \dots).$$

The speed of Algorithm 1 is

(3.6)
$$|S^{(d)} - z^*| \le c_1 [q(\alpha_{m_0}, m_0, l)]^d \quad (d = 0, 1, ...),$$

where

(3.7)
$$q(\alpha_{m_0}, m_0, l) = \left[1 + 0.25(1 + \alpha_{m_0})^2 - (1 + \alpha_{m_0})\cos\frac{\pi}{l+1}\right]^{1/2}\alpha_{m_0}^{-1}.$$

If
$$\delta = (m_0 + 4)(l + 1)/54 > 1$$
 and $n \ge n'$, then

(3.8)
$$K_m^1 \ge \delta K_m^2 \quad \text{and} \quad K_a^1 > \delta K_a^2.$$

THEOREM 3.1. If $l \ge l'$, then

(3.9)
$$q(\alpha_{m_0}, m_0, l) > (2/5)^{\delta}.$$

Proof. For a large l'

(3.10)
$$q(\alpha_{m_0}, m_0, l)^2 \geqslant \frac{1 - (\cos \pi/(l+1))^2}{\alpha_{m_0}^2} > \frac{9\alpha_{m_0}^{-2}}{(l+1)^2} (l \geqslant l')$$

and

$$(3.11) (5/2)^{\delta} > l + 1.$$

From this fact the theorem immediately follows.

If $l \ge l'$, then the cost of d steps of Algorithm 1 gives $[\delta d]$ steps using the Lehmer-Schur method. By Theorem 3.1 we have

(3.12)
$$c^*[q(\alpha_{m_0}, m_0, l)]^d > (2/5)^{[\delta d]} \qquad (c^* > 0, d \ge d_0),$$

which proves that the Lehmer-Schur process is faster than the Turán process. For the parameters $m_0 = 4$, $\alpha_4 = 0.9$, l = 11, (see [5] -[6]) the relation (3.12) is also satisfied. This can be verified easily by (3.10) and (3.11).

In the paper [6] there is a reference to the infinite precision integer arithmetics [1] for the sake of application of Algorithm 1. It is known [1] that the computing time of the multiplication is at most

(3.13)
$$l(x)^{1+\tau} \quad (1 \ge \tau > 0)$$

units of time (l(x)) denotes the length of x in the binary system). Since Algorithm 1 has to use numbers of length at least $2^{m_0-2}l(x)$ where l(x) is needed by Algorithm 2, for the cost functions in the measure of computing time,

(3.14)
$$K_m^1(t) \ge (\delta 2^{m_0-2})^{1+\tau} K_m^2(t)$$

is satisfied. As a simple corollary, in (3.12) we can write $\delta 2^{m_0-2}$ instead of δ . This fact increases the relative convergence speed of the Lehmer-Schur process.

Department for Numerical Mathematics and Computing Eötvös Lorand University Budapest, Hungary

- 1. G. COLLINS, "Computer algebra of polynomials and rational functions," Amer. Math. Monthly, v. 80, 1973, pp. 725-755.
- 2. D. H. LEHMER, "A machine method for solving polynomial equations," J. Assoc. Comput. Mach., v. 8, 1961, pp. 151-163.

- 3. A. RALSTON, A First Course in Numerical Analysis, McGraw-Hill, New York, 1965.
- 4. F. SZIDAROVSZKY, Introduction to Numerical Methods (in Hungarian), Közgazdásági és Jogi Könyvkiadó, Budapest, 1974.
- 5. P. TURÁN, "On the numerical solution of algebraic equations" (in Hungarian), MTA III, Osztály Közleményei, v. 18, 1968, pp. 223-235.
- 6. P. TURAN, "Power sum method and the approximative solution of algebraic equations," Math. Comp., v. 29, 1975, pp. 311-318.