MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 142
APRIL 1978, PAGES 391-397

The Comparison of Numerical Methods
for Solving Polynomial Equations

By Aurél Galantai

Abstract. In this paper we compare the Turdnprocess [5]—[6] with the Lehmer-Schur
method [2]. We prove that the latter is better.

1. The Algorithms. We first describe the Turdn process [5] —[6] which can be
considered as an improvement of Graeffe’s method. For the complex polynomial

n .
(1.1) po(2) = Z aon] =0 (ajo €C, 4404, #0),
=0

the method can be formulated as follows.
Let

(1'2) pj(z) Epj_l(\/z‘)pj_l(_ \/Z_) = i aijj (] =1,2,... )
k=0

be the jth Graeffe transformation and let
#0/ k] -1

k=1
(1.4) 0 = likakm0 -3 a]-mook_]-]/ao,no k=1,...,n)
j=1

and my 2 1 is fixed.
Let the constants %2 I be defined by the inequalities

Ok

n

(1.3) Mpy(2), my] =|: max

1<k<n

where u, =270, 0, =0,

254+« !
05<a, <5  I>glacccos ——2| -1, m. >2.
mo 2+ 20, 0

Then with the notations

(1.5) MO = M[po(z), mo] s 50 = 0,

the dth step of the algorithm is the following:
1. Algorithm (T). (i) Let

(d+1) _ ¢(d) d . 2mi
S = 5@ + 0501 +a,, M )exp<l+ 1>,

where j=0,1,...,/and i =+/— 1.
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(ii) If there exists an index j such that p,(S¢@*+1)) = 0, then we get a root and
o0y
the process terminates.
(iii) Let us compute the quantities

MY = Mpy(z + 59 D), mg]  (G=0,1,...,1)

and let
(d+1) — ionp(d+1) _ pp(d+1) (d+1) _ ¢(d+1)
M m}nMj M]-(d) , S S]-(d) .

Turdn [5] proved that $(?) tends to a root of Po(2), and the convergence is linear.
Turdn [5] also proved that the number of iterations needed to achieve an arbitrary
relative error € (> 0) is independent of py(z) and depends on degree Po(2) only.

Our purpose is to answer the remarks of the last section of [6]. For this reason
we compare the Turdn process with the Lehmer-Schur method which is often applied
in practice ([2], [3], [4]). This algorithm can be described as follows.

Let
n—1 )
(1.6) T(po@] = ; (Eooajo ~ 08, 0)7
and =0
(1.7) T'[py(@)] = T{T ' [P} (G =2,...).
Let us compute the numbers ¢; = Tf[pO(O)] ,(G=1,...,k), where
(1.8) k = min{m € Nlc,, = 0}.

Here, N denotes the set of nonnegative integers. With the aid of the sequence {c]-};‘=l
we define the function N[p,(z)] as follows

1 if3ije{l,...,k—1} suchthatcj<0,
Nlpo@)] =40 ifc;>0( =1,...,k 1) and degree T* 1[py(2)] =0,
— 1 otherwise.

Lehmer [2] proved that if N[p,(z)] = 1 then the polynomial Po(2) has a root in
{z € Cllzl <1}, if N[py(2)] = 0 then p,(z) has no roots in this set. We shall return
to the case N[p,(z)] = — 1.
Let us introduce the notations
0.5y{®RE-D (5 =0),
(1.9) o) =
0.47§d)R(d—l) G=1,...,8),
and

29" (j=0),

1.10) 9= (d-1) i —
(1.10) 6 Ja-1) 4 OISR exp(zm(z 1)> G=1.....8)

T 8
COS 3
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where the sequences {R@D} (@} and {7}‘1)} are defined by the dth step of the
Lehmer-Schur method (d =1, ...). Let pNO(z) =po(@)/¥ (Y >0) and

(1'11) z(o) = O, R(O) = 1 + max
/ )

]

Then the dth step can be written as follows.

2. Algorithm (L). (i) If there exists an index j such that po(BI(d)) = 0, then
we get a root and the process terminates.

(ii) We choose the indexj € {0, 1, ..., 8} such that

N[po(@(@z + gD)] =1

and let
(@) = ﬁ,(-d), R@ — 0éd).

The numbers 7§d)€ [1, 1+ 8], (6 < 0.5) are chosen such that N[ﬁ;)(a](.d)z +p](d))] >
0 will be satisfied (except in unusual circumstances 'y](-d) =1 can be chosen). Lehmer
[2] proved that process converges linearly. The number of iteration steps needed to
achieve an arbitrary absolute error € (> 0) depends on p,(z).

2. The Limitations of the Algorithms. Denote by Z the set of integers and let
P, be the set of complex polynomials of degree n.

A numerical method M (iterative process) for solving py(z) = 0 where p,(z) €
P, can be identified with the sequence {b; } C C which rises from the computation.
This sequence depends on p(z) and will be denoted by {Mpy} = {b, } . There
exists a subsequence {bkj} of {b; } such that

2.1) z* = lim bkj and p,(z*) = 0.
jroo

A digital computer can perform elementary (complex) operations only over the
finite set

(2.2) S[0,K] N G,
where S[0, K] = {z€C ||zl <K} and

(2.3) Cy ={zE€Clz=k8 +j8i: k,jEZ} (5§ >0).

If there exists an element bko in the sequence {b, } such that |bk0| > K, then the
algorithm M cannot continue to run because of overflow.
In order to study the overflow we introduce the class of polynomials

(24)  Pula K, K*) = {py(z) €P(a, K*)| {Mp,} C S[0, K], |{Mpy}| = o},

where
(2.5) P(a, K*) = {py(z) €P,10< |Z,~| <a(@=1,...,n),lp,@I <K*}

and
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(2.6) oIl = m?x |24l

Here |{Mp, }| denotes the cardinality of {6, }, and z; is the jth zero of py(2).

The set Py,(a, K, K*) represents the class of all polynomials which can be solved
by M in a bounded set.

The following statements are valid.

THEOREM 2.1. The set Pr(a, K, K*) defined by Algorithm 1 is empty for every
a, K, K* > 0.

Proof. If the roots of p,(z) are arranged so that

2.7) EAIPA S

then the estimate

—uq Iz, <1

238 S S Mipg@) mgl

is valid (see [S]—[6]). For this reason the convergence of Algorithm 1 is identical
with
(2.9) 2D <cqg?  (¢>0,0<q< 1),

where zf,d) is the zero of py(z + $@), (d=0,1,...) of minimal absolute value.
Using the inequality (2.8), we have

n [1\4/rg n '
AN -  ——< (d) | d>d
(2.10) = <q> S/ lok@@) @=>4d)
n
where k(d) € {1, ..., n} is the index of the maximal element in (1.3) and
n (1\d'/ug
- (= >1.
=)

Since Iai‘&)l = 0(w?), where w = (l/q)l/ ko, therefore for a large index d,,

(2.12) oyl > K (d>dy)

is satisfied. Thus the theorem is proved.
THEOREM 2.2. If K = K*2"t1(1 + &"2")**! + 1, then

(2.13) P, (¢, K, K*) = P(a, K*)

is satisfied for Algorithm 2. ,
Proof. 1t is easy to see that the quantities recurring in the algorithm satisfy the
inequalities
poli2"*t (@ <0.5),

(2.14) lpo (B9 <
o lpoli(1 + 2"a™)**! (@ >0.5),

(2.15) 1T [po @)1l < %Qlpe@NY G =1,...,n)
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and
(2.16) IPo(@Dz + BN < lipe@II2 + 2" 1a™y*  (j=0,1,...,8),
ford =0, 1,.... With the notation

8 = lipp@N(2 + 2"+ 1a")",
and by using (2.15)—(2.16), we have

(2.17) IT* [po@Dz + BN < W(267*  (k=1,....n).

Since K is greater than the right side of (2.14) and (2.16), using ¥ > 28 we can get
§ < 0.5 which proves the theorem.

The difference between Algorithms 1 and 2 is caused by the fact that Algorithm
1 is based on the inequality (2.8) while Algorithm 2 is based on the characteristic
function N[p,(z)] which is invariant for the mapping py(2) = po(2)/¥, (¥ > 0).

We remark that Algorithm 1 modified by the mappings

po(z) - po(z)/d/, po(z) - po(z/‘l/) 0<y<K)
also has a P(a, K, K*) empty for every 4, K, K* > 0.

3. The Study of Cost Functions. In the previous section it was proved that
Algorithm 1 is unapplicable. Since an approximate solution with a given error € > 0
can be computed in the bounded set S[O, k] , where K depends on p,(2), €, and the
method M, further analysis of the algorithms is necessary.

The cost function of the jth algorithm (j = 1, 2) is defined by the number of
additions and multiplications per step and denoted by K"; and KZn.

Assuming that the computing time of the kth root can be characterized by three
additions and three multiplications (which is a rough underestimate), the cost function
of Algorithm 1 is

(3.1) KL =@+ 1)(m, + 4)”—2 + 1+ D)(m, +8)% + 0(1),
m 0 2 0 4
2
(3.2) K2 =+ 1)(my + 4)% + (21 + 3)n + 0(1).

For the cost function of Algorithm 2 the inequalities

(3:3) K2 <27n* — 18n,
(34 K2 <9n® + 36n,
hold.

If we identify the bounds (3.3)—(3.4) with the cost of one step, then the speed
of Algorithm 2 is

(3.5) 2@ — 2% 1<, (2/5)¢  (@=0,1,...).
The speed of Algorithm 1 is

(3.6) IS —z¢I< ¢, [4(a,, , mo» D¢ @=0,1,...),
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where

T /2 _,
3.7 q(amo, my, 1) = [1 +0.25(1 + ozmo)2 -1+ amo)cos I—I—I] %o

If 8 =(my, +4)( +1)/54> 1 and n >n', then
(3.8) K} >68K2, and K!>5K2.
THEOREM 3.1. If1 =1, then
(3.9) 4@y, o Mo, 1) > (2/5)°.
Proof. For alarge I'

—2
L= (cosm/@+ 1) %o

(3.10) (e, . m, n? > 2 =0
Xino I+ 1)

and

(3.11) (52 >1+1.

From this fact the theorem immediately follows.
If 1 >1', then the cost of d steps of Algorithm 1 gives [6d] steps using the Lehmer-
Schur method. By Theorem 3.1 we have

(3.12) c*la(@,, , m, D14 > 2/5)1%9) (c*>0,d>dy),

which proves that the Lehmer-Schur process is faster than the Turan process. For the
parameters my, = 4, a, = 0.9, 1 = 11, (see [5]—[6]) the relation (3.12) is also satis-
fied. This can be verified easily by (3.10) and (3.11).

In the paper [6] there is a reference to the infinite precision integer arithmetics

[1] for the sake of application of Algorithm 1. It is known [1] that the computing
time of the multiplication is at most

(3.13) )Y (1=27>0)

units of time (/(x) denotes the length of x in the binary system). Since Algorithm 1
has to use numbers of length at least 2™072/(x) where /(x) is needed by Algorithm
2, for the cost functions in the measure of computing time,

ma—2

(3.14) K} = (52 WK (1)

is satisfied. As a simple corollary, in (3.12) we can write 62072 instead of §. This
fact increases the relative convergence speed of the Lehmer-Schur process.
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