MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 142
APRIL 1978, PAGES 391-397

The Comparison of Numerical Methods
for Solving Polynomial Equations

By Aurél Galantai

Abstract. In this paper we compare the Turdnprocess [5]—[6] with the Lehmer-Schur
method [2]. We prove that the latter is better.

1. The Algorithms. We first describe the Turdn process [5] —[6] which can be
considered as an improvement of Graeffe’s method. For the complex polynomial

n .
(1.1) po(2) = Z aon] =0 (ajo €C, 4404, #0),
=0

the method can be formulated as follows.
Let

(1'2) pj(z) Epj_l(\/z‘)pj_l(_ \/Z_) = i aijj (] =1,2,...)
k=0

be the jth Graeffe transformation and let
#0/ k] -1

k=1
(1.4) 0 = likakm0 -3 a]-mook_]-]/ao,no k=1,...,n)
j=1

and my 2 1 is fixed.
Let the constants %2 I be defined by the inequalities

Ok

n

(1.3) Mpy(2), my] =|: max

1<k<n

where u, =270, 0, =0,

254+« !
05<a, <5 I>glacccos ——2| -1, m. >2.
mo 2+ 20, 0

Then with the notations

(1.5) MO = M[po(z), mo] s 50 = 0,

the dth step of the algorithm is the following:
1. Algorithm (T). (i) Let

(d+1) _ ¢(d) d . 2mi
S = 5@ + 0501 +a,, M)exp<l+ 1>,

where j=0,1,...,/and i =+/— 1.

Received January 14, 1976; revised August 18, 1976.
AMS (MOS) subject classifications (1970). Primary 65HO0S5.
Copyright © 1978, American Mathematical Society

391

392 AUREL GALANTAI

(ii) If there exists an index j such that p,(S¢@*+1)) = 0, then we get a root and
o0y
the process terminates.
(iii) Let us compute the quantities

MY = Mpy(z + 59 D), mg] (G=0,1,...,1)

and let
(d+1) — ionp(d+1) _ pp(d+1) (d+1) _ ¢(d+1)
M m}nMj M]-(d) , S S]-(d) .

Turdn [5] proved that $(?) tends to a root of Po(2), and the convergence is linear.
Turdn [5] also proved that the number of iterations needed to achieve an arbitrary
relative error € (> 0) is independent of py(z) and depends on degree Po(2) only.

Our purpose is to answer the remarks of the last section of [6]. For this reason
we compare the Turdn process with the Lehmer-Schur method which is often applied
in practice ([2], [3], [4]). This algorithm can be described as follows.

Let
n—1)
(1.6) T(po@] = ; (Eooajo ~ 08, 0)7
and =0
(1.7) T'[py(@)] = T{T ' [P} (G =2,...).
Let us compute the numbers ¢; = Tf[pO(O)] ,(G=1,...,k), where
(1.8) k = min{m € Nlc,, = 0}.

Here, N denotes the set of nonnegative integers. With the aid of the sequence {c]-};‘=l
we define the function N[p,(z)] as follows

1 if3ije{l,...,k—1} suchthatcj<0,
Nlpo@)] =40 ifc;>0(=1,...,k 1) and degree T* 1[py(2)] =0,
— 1 otherwise.

Lehmer [2] proved that if N[p,(z)] = 1 then the polynomial Po(2) has a root in
{z € Cllzl <1}, if N[py(2)] = 0 then p,(z) has no roots in this set. We shall return
to the case N[p,(z)] = — 1.
Let us introduce the notations
0.5y{®RE-D (5 =0),
(1.9) o) =
0.47§d)R(d—l) G=1,...,8),
and

29" (j=0),

1.10) 9= (d-1) i —
(1.10) 6 Ja-1) 4 OISR exp(zm(z 1)> G=1.....8)

T 8
COS 3

SOLVING POLYNOMIAL EQUATIONS 393

where the sequences {R@D} (@} and {7}‘1)} are defined by the dth step of the
Lehmer-Schur method (d =1, ...). Let pNO(z) =po(@)/¥ (Y >0) and

(1'11) z(o) = O, R(O) = 1 + max
/)

]

Then the dth step can be written as follows.

2. Algorithm (L). (i) If there exists an index j such that po(BI(d)) = 0, then
we get a root and the process terminates.

(ii) We choose the indexj € {0, 1, ..., 8} such that

N[po(@(@z + gD)] =1

and let
(@) = ﬁ,(-d), R@ — 0éd).

The numbers 7§d)€ [1, 1+ 8], (6 < 0.5) are chosen such that N[ﬁ;)(a](.d)z +p](d))] >
0 will be satisfied (except in unusual circumstances 'y](-d) =1 can be chosen). Lehmer
[2] proved that process converges linearly. The number of iteration steps needed to
achieve an arbitrary absolute error € (> 0) depends on p,(z).

2. The Limitations of the Algorithms. Denote by Z the set of integers and let
P, be the set of complex polynomials of degree n.

A numerical method M (iterative process) for solving py(z) = 0 where p,(z) €
P, can be identified with the sequence {b; } C C which rises from the computation.
This sequence depends on p(z) and will be denoted by {Mpy} = {b, } . There
exists a subsequence {bkj} of {b; } such that

2.1) z* = lim bkj and p,(z*) = 0.
jroo

A digital computer can perform elementary (complex) operations only over the
finite set

(2.2) S[0,K] N G,
where S[0, K] = {z€C ||zl <K} and

(2.3) Cy ={zE€Clz=k8 +j8i: k,jEZ} (5§ >0).

If there exists an element bko in the sequence {b, } such that |bk0| > K, then the
algorithm M cannot continue to run because of overflow.
In order to study the overflow we introduce the class of polynomials

(24) Pula K, K*) = {py(z) €P(a, K*)| {Mp,} C S[0, K], |{Mpy}| = o},

where
(2.5) P(a, K*) = {py(z) €P,10< |Z,~| <a(@=1,...,n),lp,@I <K*}

and

394 AUREL GALANTAI

(2.6) oIl = m?x |24l

Here |{Mp, }| denotes the cardinality of {6, }, and z; is the jth zero of py(2).

The set Py,(a, K, K*) represents the class of all polynomials which can be solved
by M in a bounded set.

The following statements are valid.

THEOREM 2.1. The set Pr(a, K, K*) defined by Algorithm 1 is empty for every
a, K, K* > 0.

Proof. If the roots of p,(z) are arranged so that

2.7) EAIPA S

then the estimate

—uq Iz, <1

238 S S Mipg@) mgl

is valid (see [S]—[6]). For this reason the convergence of Algorithm 1 is identical
with
(2.9) 2D <cqg? (¢>0,0<q< 1),

where zf,d) is the zero of py(z + $@), (d=0,1,...) of minimal absolute value.
Using the inequality (2.8), we have

n [1\4/rg n '
AN - ——< (d) | d>d
(2.10) = <q> S/ lok@@) @=>4d)
n
where k(d) € {1, ..., n} is the index of the maximal element in (1.3) and
n (1\d'/ug
- (= >1.
=)

Since Iai‘&)l = 0(w?), where w = (l/q)l/ ko, therefore for a large index d,,

(2.12) oyl > K (d>dy)

is satisfied. Thus the theorem is proved.
THEOREM 2.2. If K = K*2"t1(1 + &"2")**! + 1, then

(2.13) P, (¢, K, K*) = P(a, K*)

is satisfied for Algorithm 2. ,
Proof. 1t is easy to see that the quantities recurring in the algorithm satisfy the
inequalities
poli2"*t (@ <0.5),

(2.14) lpo (B9 <
o lpoli(1 + 2"a™)**! (@ >0.5),

(2.15) 1T [po @)1l < %Qlpe@NY G =1,...,n)

SOLVING POLYNOMIAL EQUATIONS 395

and
(2.16) IPo(@Dz + BN < lipe@II2 + 2" 1a™y* (j=0,1,...,8),
ford =0, 1,.... With the notation

8 = lipp@N(2 + 2"+ 1a")",
and by using (2.15)—(2.16), we have

(2.17) IT* [po@Dz + BN < W(267* (k=1,....n).

Since K is greater than the right side of (2.14) and (2.16), using ¥ > 28 we can get
§ < 0.5 which proves the theorem.

The difference between Algorithms 1 and 2 is caused by the fact that Algorithm
1 is based on the inequality (2.8) while Algorithm 2 is based on the characteristic
function N[p,(z)] which is invariant for the mapping py(2) = po(2)/¥, (¥ > 0).

We remark that Algorithm 1 modified by the mappings

po(z) - po(z)/d/, po(z) - po(z/‘l/) 0<y<K)
also has a P(a, K, K*) empty for every 4, K, K* > 0.

3. The Study of Cost Functions. In the previous section it was proved that
Algorithm 1 is unapplicable. Since an approximate solution with a given error € > 0
can be computed in the bounded set S[O, k] , where K depends on p,(2), €, and the
method M, further analysis of the algorithms is necessary.

The cost function of the jth algorithm (j = 1, 2) is defined by the number of
additions and multiplications per step and denoted by K"; and KZn.

Assuming that the computing time of the kth root can be characterized by three
additions and three multiplications (which is a rough underestimate), the cost function
of Algorithm 1 is

(3.1) KL =@+ 1)(m, + 4)”—2 + 1+ D)(m, +8)% + 0(1),
m 0 2 0 4
2
(3.2) K2 =+ 1)(my + 4)% + (21 + 3)n + 0(1).

For the cost function of Algorithm 2 the inequalities

(3:3) K2 <27n* — 18n,
(34 K2 <9n® + 36n,
hold.

If we identify the bounds (3.3)—(3.4) with the cost of one step, then the speed
of Algorithm 2 is

(3.5) 2@ — 2% 1<, (2/5)¢ (@=0,1,...).
The speed of Algorithm 1 is

(3.6) IS —z¢I< ¢, [4(a,, , mo» D¢ @=0,1,...),

396 AUREL GALANTAI

where

T /2 _,
3.7 q(amo, my, 1) = [1 +0.25(1 + ozmo)2 -1+ amo)cos I—I—I] %o

If 8 =(my, +4)(+1)/54> 1 and n >n', then
(3.8) K} >68K2, and K!>5K2.
THEOREM 3.1. If1 =1, then
(3.9) 4@y, o Mo, 1) > (2/5)°.
Proof. For alarge I'

—2
L= (cosm/@+ 1) %o

(3.10) (e, . m, n? > 2 =0
Xino I+ 1)

and

(3.11) (52 >1+1.

From this fact the theorem immediately follows.
If 1 >1', then the cost of d steps of Algorithm 1 gives [6d] steps using the Lehmer-
Schur method. By Theorem 3.1 we have

(3.12) c*la(@,, , m, D14 > 2/5)1%9) (c*>0,d>dy),

which proves that the Lehmer-Schur process is faster than the Turan process. For the
parameters my, = 4, a, = 0.9, 1 = 11, (see [5]—[6]) the relation (3.12) is also satis-
fied. This can be verified easily by (3.10) and (3.11).

In the paper [6] there is a reference to the infinite precision integer arithmetics

[1] for the sake of application of Algorithm 1. It is known [1] that the computing
time of the multiplication is at most

(3.13))Y (1=27>0)

units of time (/(x) denotes the length of x in the binary system). Since Algorithm 1
has to use numbers of length at least 2™072/(x) where /(x) is needed by Algorithm
2, for the cost functions in the measure of computing time,

ma—2

(3.14) K} = (52 WK (1)

is satisfied. As a simple corollary, in (3.12) we can write 62072 instead of §. This
fact increases the relative convergence speed of the Lehmer-Schur process.

Department for Numerical Mathematics and Computing
EGtvds Lorand University
Budapest, Hungary

1. G. COLLINS, “Computer algebra of polynomials and rational functions,”’ Amer. Math.
Monthly, v. 80, 1973, pp. 725—755.

2. D. H. LEHMER, ‘“A machine method for solving polynomial equations,” J. Assoc. Comput.
Mach., v. 8, 1961, pp. 151—163.

SOLVING POLYNOMIAL EQUATIONS 397

3. A. RALSTON, A First Course in Numerical Analysis, McGraw-Hill, New York, 1965.

4. F. SZIDAROVSZKY, Introduction to Numerical Methods (in Hungarian), Kozgazddsagi
és Jogi Konyvkiado, Budapest, 1974.

5. P. TUR;\N, “On the numerical solution of algebraic equations” (in Hungarian), MTA
111, Osztdly Kozleményei, v. 18, 1968, pp. 223—235.

6. P. TUR;\N, “Power sum method and the approximative solution of algebraic equations,”
Math, Comp., v. 29, 1975, pp. 311-318.

