MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 142
APRIL 1978, PAGES 399—-404

Improved Error Estimates for Numerical Solutions
of Symmetric Integral Equations

By E. Rakotch

Abstract. The most widely employed method for a numerical sclution of a symmetric
integral equation with kernel K(x, ¢) in interval I = [q, b] is the replacement of the
original problem by the sequence of eigenproblems

K (n)yl(n) = i yl(n)’ K™ = {”inK(xin’ xin)}’ i=1,...,n,

with Win > 0 and Xjn €I j=1,...,n. The eigenvectors yt(n) are further used to
obtain an approximation, with improved error estimates, of the numerical eigensolu-
tion for some N > n, with no necessity of computing K;py and yt(N), i=1,...,N,

and of constructing another matrix.

1. Introduction. Let K(x, ¢) be a Hermitian kernel defined in 7 x I, where I =
[a, b], i.e. K(t, x) = K(x, t), such that

— b 2 . .
Fix)= fa |K(x, £)I* dt is bounded in L.

It is known that all the characteristic values y; of K(x, t) are real and there exists an
orthonormal set {y;(x)} of characteristic functions [2], i.e.

) |2 K@, oy de = wyio, [y @y dx =5,

The first attempt to obtain a numerical solution for (1) with an error estimate
for the characteristic values was made by Wielandt [4], which replaced the original
problem by the sequence of eigenproblems

@ KWy =,y ™, K™ = (K, x)h i= 1w

Wip >0 and Xy € Lj=1,...,n,are, respectively, the weights and the nodes of an
integration rule S by which the approximation

n
[7 ey de = 3wy fxi)
i=1
is made. The eigenvalues y;,, k = 1, ..., n, which are all real, are then taken by
Wielandt as approximations to the corresponding characteristic values of K(x, ¢), where
the correspondence is specified by the following assumptions:

Let V = {a;, ... , @, } be a subset of the set R of all eigenvalues of a square
matrix A or of all characteristic values of a kernel F(x, ) defined in I x I, and let
W= {z? |z € V}; then,

(@) ifa,, ..., a, are the m largest (smallest) real elements of R such that
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g Za, =2, (@ Soy S-S ,,), then every o; # @, with multiplicity
r; 2 1 occurs 7; times in V,

() ifa,, ..., q,, are the m real elements of R of the largest modulus such
that |, | = loy| =00 2 e, | and there are 7; real elements of R of modulus |a,],
then every af * af" occurs 7; times in W.

Wielandt obtained the error estimates and the convergence properties for the
eigenvalues with integration rules S such that

?3) N, 1) = i W, K(x, x;,)K(x;,, 1) = f bK(x, 2)K(z, t)dz
i=1 a

converges to 0, as n — oo, uniformly in I x I, and they were further improved
and extended to every integration rule satisfying (3) [3], together with an error
estimate for the numerical solutions generated by the eigenvectors of (2), as
defined in [3, Section 3]. The purpose of this paper is to obtain new numerical
solutions for (1) with improved error estimates for those ones corresponding to
simple characteristic values in terms of the error estimates, obtainable either by
[4] or [3], for the eigensolution of (2) with n replaced by some N > n. This
approach is due originally to Linz [1].

2. Error Estimation. The following theorem is first applied for the new error
estimation [5, pp. 139—140] :

THEOREM 1. Let A be a Hermitian matrix of order m with eigenvalues A\, \,,
ey Ny and y = (¥4, ¥y, -+ » V) € C, —the m-dimensional complex Euclidean

m %
IyIE[Z ly,-lz] =1;
i=1

space—with

then for every number
minju — Al < Ay — wyl.
1l

The smallest value of |dy — uy| with |y| = 1 is attained for u = (4y, y), which
by Theorem 1 yields:
THEOREM 2. Let A be a Hermitian matrix of order m with eigenvqlues \,, \,,
, N, then for every y € C,, such that |y| = 1 and for every u

min|(4y, y) — A < Ay —wyl.
]

Define now a new scalar product (&, v),, of 4, v € C,, and a new norm |u|,, by
m
[eY) @ V), =Y Wi, lul, =V, w),,.
i=1

To obtain a numerical solution for a characteristic function, the eigenvectors y(k") of
(2) were assumed to satisfy | yfc")ln =1 [3, Section 3]. Now, given an approximate
eigensolution 1 ,, ?}c") of (2), the numerical solution ¥, (x) for a characteristic
function generated by 7,?') can be defined, as in [3, Section 3], by
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ykn(x) l“l'kn Z yk] K(x x]n)

j=
Further, take V > n and, using (4), obtain approx1mat1ons }'(N ) for y(N ) and U My for
Mgy and a numerical solution ¥, »(x) for the characteristic function as

FM = YMZ Y™ where Y =% ), i=1,...,N,
By = KO0, 500),,
~ ~_1 N ~(N)
Vin®x) = My Z WjNJ’;cj K(x, xjN);
j=1
then for a simple characteristic value u, it can be shown that the error estimate for

W is of better order of magnitude than that obtained for Mg, by [3, Theorem 1],
provided that [3{") — y}c")ln and [Uy,, — My, are sufficiently small. Indeed,

®) en = el < Ty = by + gy = wel,
and by [3, Theorem 1],
gy — Mgl = O(oy), where 0, = r}g}(lnm(x, nl;

therefore, it remains to prove that
(6) Hen — My = OCa + 770 = 2 + (e = 1en)?),
for which it will be shown below that
@) =3Iy = 00, + 17 =yl + Wi = ten):
The error estimate for 3, ,/(x) will be deduced from

P () = ¥ G < [Fpen () = B bt Pien @ + By (e — Bien) Vien )
® F i) = 7 Gl

Tobound [H , — 1y !, Observe that for sufficiently large n and N it follows by (6)
and [3, Theorem 2] that p,  is a well-separated eigenvalue of K®¥) such that

rﬁkN _IikNl = m'm lﬁkN _lJv,'NI’
which by Theorem 2 implies
ey = then| < ey = Wy, — Ty Zicl = KT =Ty 51y,
©) .
where H =K, ]N)\/WIN iN and 7, Zy; = ygty)\/wiN,z, ji=1,...,N
Further, to obtain a bound for [y} ) — y(N ) lv» let y(N ) have the expansion

N
M = gy, e >0,
J=1

with { y](N )} forming a set satisfying (see Definition (4) and [3, Section 3])
(y(N)’y(N)) =6pq’ p’q=l"",N;



402 E. RAKOTCH

then
N
TV1=3 I =1,
J=1
and by a procedure similar to that applied in [6, pp. 172—173]
567 =iV <880 +80), Wy ~ | < dien 80 - 8,
(10)

where d, ,, = gl&l;cl [T — iyl and 8 = e2ydy 2 with €, 5 defined in (9),
provided that 89’ ) < 1. To establish (7), observe that
P -0 = + )+,
where
d¥ =T -y i), AP =y, () - Yl df) =y = i oy)-
Now

~(N) _
yl(ci)_

N Y
[aﬁ(’;kn)] —l?kn(xi]v), where o} (u) = I:Z Win l“(xiN)lz] ,
i=1

~ 1~ ~ ~
VienXin) = Yien Cezy) = “knl“kn (Mign = Mign)VienCein)

+ l“l'l:nl Z w]u [y(n) _y§c7)]K(xiN: xi;;)&
7=

n Y
a]"\:](ykn) = [1 + “]:)12 Z wpann [nN(xpn: qn) nn(xpn’ an)] y(n) (np)] ’
p,q=1

i,j=1

Hence
0% Fren) = 1 < 105 i) = 05(Vien)| + 105 (Vie) = 11
< lola{’(’ikn _ykn)l + Io}'{,(ykn) - 1]

= O(Ify, — tgn ) + O(F = yM|) + O(ay) + O(a,,),
d® = 07 =y, + [Wen — Hienl + ),

and by [1, Theorem 3], [1, Eq. (10)] and (11),

d® =0(s,), d® = O(ay),

which establishes (7).
For the sake of error estimation of 3'7k (%), apply the Cauchy-Schwarz inequality
to the first two terms at the right-hand of (8) to obtain
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I’j;kN(x) - ﬁ;&NkNykN(x)l + lﬁyz]\l/(ﬂkjv_ ﬁkN)ykN(x)l
kaNI[IN(N) _y(N)IN + I# (“kN NkN)I]V N(x

where
N

Gyl = 3

WJNIK(x: xjN)Izy
=1

with bounds for Iy (V) —y )IN (e — My | and wy p obtained from (10); the
bound for the last term of the right-hand of (8) is obtained by application of [3,Theo
rem 3] or of the remark in [3, Section 4] with

1 < IFEO1+ 15 =y < DI+ wik B -yl

and [FV) — yM |, bounded by (10).

3. Numerical Results. To illustrate the superiority of the new numerical solution
and of the new error estimates, the first example presented in [3, Section 2] is taken
for comparison. The error estimates for the 1, 5 presented in the following table are
those obtained, using the triangle inequality in (5), with the estimate (10) for (B —
Mgy |- The bounds for |u, n — m; | and the Min and the best error estimate for u,, are
obtained in [3, Section 5], using the fact that u, is the nearest characteristic value to
My, and py p, and

3t4,,(x)B,, (x) + F, (), x<t,

S S
Mm%, ) = 6(m — 1)2

3x4,,()B,, () + F,(x), x=>t,
where (the formula for F,, in [3, Section 2, Example 1] is in error)
A4,@)=m-1z~-[(m-1z], B,()=1-4,,0),

24, (2) -1 >

F (2)=1-z+A4,(2)B,,(2) <3z -
m—1

The numerical solution for ¥, »(x) is the function defined by (8) generated by the
approximate eigenvector y ym corresponding to the kth negative eigenvalue y,,.

Actual maxi-
Best erro; Error Actual Error mal error for
estimate for estimate error estimate ~
~ ~ ~ ykN(l/m),
Case Byn by [3] for Wy for 1y for yn®) 1=0,1,....m
n=101 9.074+10-5 9.126-10-7 | 1.25-10-7 0.001552 1.75-10—4
= 1000 4.342-10-4 | 5.046-10-6 |9.11-10-8 | 0.0745 9.167-10—4
m = 3000 1.006-10-3 1.137-10-5 | 8.53-10—8 0.721 2.15-10-3
n =201 227-10-5 2.274+10-7 | 3.14-10-8 0.0004524 | 5.177-10-5
N = 2001 1.09-10—4 1.26-10—6 2.3-10—-8 0.0163 2.085-10—4
m = 6000 2.52-10—4 2.9-10-6 2.167-10—8 0.165 5.652-10—4
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