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Block Implicit One-Step Methods *

By Daniel S. Watanabe

Abstract. A new class of block implicit one-step methods for ordinary differential
equations is presented. The methods are based on quadrature and generate function
values at nonmesh points through Hermite interpolation. A general convergence
theorem for block implicit methods is given, and the stability of the new class of
methods is analyzed. The class contains 4-stable, stiffly stable, strongly A-stable,
and strongly stiffly stable methods. Numerical results demonstrating the efficiency
and effectiveness of a particular block method are presented.

1. Introduction. Many physical systems are described by ordinary differential
equations whose solutions contain time constants differing greatly in magnitude. Such
equations are called stiff. When a classical numerical integration procedure is applied
to a stiff system of equations, the stepsize is generally determined by the component
of the solution with the largest decay rate, while the region of integration is deter-
mined by the component with the smallest rate. After the initial transient, the rapidly
decaying components are insignificant, but the stepsize must remain small to prevent
numerical instability. As a result, the time required to integrate a highly stiff system
can become excessive.

A-stable methods are often used to overcome this problem because the stepsize
of an A-stable method is governed only by the allowable discretization error. The
stepsize for A-stable linear multistep methods must remain small, however, because
the order of such methods cannot exceed two. Implicit one-step methods are free
from this restriction on order, and several classes of A-stable implicit one-step methods
of arbitrary order exist. Unfortunately, these implicit methods are relatively inefficient.
Their efficiency can be improved, however, by obtaining a block of new values simul-
taneously. These block implicit one-step methods have been studied by Rosser [10],
Shampine and Watts [11], [13], Andria, Byrne, and Hill [1], and Williams and de
Hoog [14]. We present in this paper a new class of block implicit methods which
appear to be competitive with linear multistep methods for stiff problems.

We shall restrict our discussion to a single equation for simplicity. The general-
ization to systems of equations will be obvious. We first describe general block im-
plicit methods and our new class of methods. We then present a convergence theorem
for general block implicit methods and discuss the stability of our methods. Finally,
we present two numerical examples comparing one of our methods with the well-know:
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code DIFSUB of Gear [7], one of the best codes currently available. In both cases,
the block method requires significantly fewer function evaluations than DIFSUB.

2. Block Implicit Methods. We wish to approximate the solution of
(1) Y =1 yx), y@=a,

on the interval [a, b]. Rather than make specific differentiability assumptions, we
shall assume y has continuous derivatives on [a, ] of any order required.

Letx, =a+nhforn=0,1,...and h > 0. We wish to generate a sequence
{»,} which approximates the sequence of exact values {y(x,)}. Let Yo =@ An
s-block method generates a block of s additional terms simultaneously and ultimately
produces values for all n € I, where I, = {n: 0 < n <ms} and m = [(b — a)/sh].

Each block of values {y,, . 15 +++ s Yn4st, where n is a multiple of s, satisfies equations
of the form

2) Ynai =V ThOX, Yy oo Vo B, i=1, .00, s

The increment functions ¢; are determined by f and are functions of x,,, Vs oo s Vntg

and & only. We shall assume they are defined in the region R of (x, z, &) space de-
fined by x € [a, b —sh], z; €E(—, ), k=0,...,s,and h € [0, hy], where by <
(b —a)/s. The local discretization errors are defined by

di(x,, ) = ho(xp, y(x,), oo Y04 ), ) = (Vx4 ) = ¥(x,),

i=1,...,s,

(€))

and the order of the ith formula (2) is defined to be the largest integer r such that
C)) di(x, h) = O(h™* 1)

in the region S of (x, #) space defined by x € [a, b —sh] and h € [0, hol.

We propose s-block methods where each increment function is an interpolatory
quadrature formula employing function values and possibly derivatives at nodes in the
interval [x,, x,, '], and values of y at nonmesh points are obtained from the Hermite
interpolation polynomial z(x) interpolating the first p; — 1 derivatives of y at x,  ;

fori=0,...,s. Each such method can be written in the form
5) Yoyi=y,th Zk wi]-khkf(k)(xn +04h 2(x, +0,h), i=1,...,s5,
I

and

s Pl (m)

N m

(6) z(xn + eh) = IZ ZO hmwlm(o)yn+l‘

=0 m=

Here f®)(x, z(x)) is the kth total derivative of f(x, z(x)) with respect to x,

IO, z(x)) = (@/ax + 2 (x)a/02)*f (x, z(x)),

V1 (0) are the Hermite basis functions for the interval [0, 5], and yf,':’_)l is the mth
derivative of the local solution through (x,, b Vnt):
If we replace the derivatives yS,'Z), in the Hermite interpolation polynomial (6)

with the exact derivatives y(’")(xn +1)» then z(k )(x) differs from the exact derivative
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»®)(x) by a quantity of O(h?~*), where p = %.p;- Since f ®)(x, z(x)) contains a
term involving z(®)(x), it differs from the exact derivative F®(x, y(x)) by a quantity
of O(hP~%), and thus the error in the difference equation (5) due to interpolation is
of O(hP*1). If an increment function has a degree of precision at least ¢ — 1, then it
is easy to see that the corresponding formula has order ¥ = min|[p, q] at least. How-
ever, it is possible to achieve a higher order by careful choice of the abscissas and
weights (see Method 6).

The appearance of higher derivatives in Egs. (5) and (6) may cause concern to
some. However, quadrature formulas employing derivatives need not be used. Further-
more, work by Barton, Willers, and Zahar [2] demonstrates that the automatic genera-
tion of higher derivatives is not only possible but practical for a relatively wide class
of problems. Finally, our class of methods contains efficient and effective methods
which do not employ higher derivatives, and it is these methods that are of primary
interest.

Each particular method can be specified by the sets of parameters p = { p;}, 0;=
{0,.]-}, and w; = {Wijo; Wijps - }. Some methods are:

Method 1. A 1-block method with formula of order 4 given by p = {2, 2}, 0,=
{1/2}, and w; = {1;0; 1/24}.

Method 2. A 2-block method with formulas of order 4 given by p = {1, 1, 2},
0, = {0,1/2,1},6, = {0, 1,2}, w, = {1/6, 2/3, 1/6}, and w, = {1/3,4/3, 1/3}.

Method 3. A 2-block method with formulas of order 5 given by p = {1, 2, 2},
6, =0, =10,1/2,1,3/2,2}, w, = {29/180, 31/45, 2/15, 1/45, —1/180}, and w, =
{7/45, 32/45, 4/15, 32/45, 7/45}.

Method 4. A 2-block method with formulas of order 6 given by p = {2, 2, 2},
6, =0, =1{0,1-1A/3, 1,1 + 1A/3,2}, w, = {31/240, (24 + 15v/3)/80, 4/15,
(24 - 15/3)/80, 1/240}, and w, = {2/15, 3/5, 8/15, 3/5, 2/15}.

Method 5. A 2-block method with formulas of order 6 given by p = {1, 2, 3},
and the same abscissas and weights as in Method 4.

Method 6. A 2-block method with formulas of order S and 8 given by p =
{2,2,2},0, =0,={0,1-/3/7, 1,1 ++/3]7,2}, w; = {13/160, (392 + 735+/3]7)/1440,
16/45,(392 - 735\/3/7)/1440, 3/160}, and w, = {1/10, 49/90, 32/45, 49/90, 1/10}.
Note that 6, and w, are the 5-point Lobatto abscissas and weights.

Method 7. A 3-block method with formulas of order 6 given by p = {1, 1, 2, 2}
0, =0,=05=10,1/2,1,2,5/2,3}, w, = {287/1800, 52/75, 49/360, 1/40,
—4/225, 7/1800}, w, = {43/225, 112/225, 4/5, 31/45, — 16/75, 8/225}, and wy =
{39/200, 12/25, 33/40, 33/40, 12/25, 39/200}.

bl

3. Convergence. The following theorem gives sufficient conditions for the con-
vergence of an s-block method and indicates the order of the accumulated discretiza-
tion error. Our methods satisfy these conditions and hence are convergent.

THEOREM. Let there exist positive constants L, M, p, and q such that

N
(7) I¢,(x’ Zy h) - ¢l(x’ Z*a h)! < IL Zo ]Z] - z;'kl, l= 1, ceey s,
]:
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for (x, z, h) and (x, z*, h) €R, and
8) ld(x, bl <iMRP*!, i=1,...,5-1, ldy(x, h)| < sMRI™*1,

for (x, h) €S. Then for any h < min[h, 2/s(s + 1)L], the difference equations (2)
have a unique solution {y,}, defined on I, there is a constant N such that

ly, —yx)I<Nw, nel,

where r = min[p + 1, q), and the method is said to be of order r.

The form of the Lipschitz condition (7) and the discretization error bound (8)
is motivated by the fact that the increment function ¢; is often a sum of i quadrature
formulas over intervals of length h. Note the increase in the order which results from
using a formula at the end of the block of higher order than those used in the interior.
The proof is a straightforward generalization of the classical one, the only novel feature
being the grouping of the errors into blocks, and hence is omitted.

4. Stability. We shall examine the stability of our methods by applying them
to the differential equation y’ = Ay, where X is a complex constant with Re(A) < 0.
The method (5) can be interpreted as an implicit one-step method with stepsize sh.
Substituting y* = Ay in Egs. (5) and (6), we obtain

© Vnts = RNy,

where R(u) is a rational approximation to eS#. If the degrees of precision of the incre-
ment functions are greater than or equal to the degree of the Hermite polynomial (6),
then R depends only on the orders of collocation p; of the Hermite polynomial. Hence
the stability of entire classes of methods can be analyzed simultaneously. Let
[pys --- > Pg] denote the class of methods of the form (5) whose increment functions
have degrees of precision at least £,p; — 1. We shall characterize the stability of such
classes in terms of the following concepts.

Definition. The class [py, ... , py] is A-stable if |R(u)| < 1 for Re(u) < 0.

Definition. The class [py, ..., p,] is stiffly stable if [R(u)| < 1 for Re(u) <D
< 0 and R(u) is accurate in the neighborhood of the origin.

Definition. The class [p, ..., p,] is strongly A- or strongly stiffly stable if it
is A- or stiffly stable and |[R(u)l — 0 as Re(u) — — oo,

We first consider the class [p, q] of 1-block methods employing higher deriva-
tives. A simple calculation shows that

R(w) = P, (1)/Qq(W),

where Pp(u) and Qq(u) are polynomials of degree p and q in u. Since R(u) must be an
approximation to e of order p + g, it follows that R(u) must be the (p, q) entry
qu(u) in the Padé table for e. As an immediate consequence of the well-known
properties of the Padé approximations to e* [6], we have the following result.

THEOREM. The class [p, p] is A-stable and the classes [p, p + 1] and [p, p + 2]
are strongly A-stable forp = 1.
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There are implicit one-step methods possessing similar stability properties. These
include the method of Hermite [8]

p
(10) yn+1 =yn+;hl zyfxl)_zhl zyn+1’

i=1

where a,; and B, are the ith coefficients in the numerator and denominator of qu,
and the 1mphc1t Runge-Kutta processes developed by Butcher [4], Ehle [6], Chipman
[5], and Hulme [9]. However, the methods in the class [p, g] enjoy certain advan-
tages. They attain the same order of accuracy as the scheme (10) while employing
derivatives of lower order, and, unlike the Runge-Kutta processes, they require the
solution of only one, albeit complicated, nonlinear equation at each time step. For
problems where the higher derivatives are easy to compute, it may be easier to solve
a single complicated nonlinear equation rather than a system of simpler nonlinear
equations. This potential advantage would be more pronounced for a system of dif-
ferential equations.

We turn now to s-block methods. Consider the class [Pg, ---» Pl where p, =
pg_;fori=0,..., [s/2]. A straightforward but tedious calculation shows that

R(u) = P, (u)/P,(~ 1),

where P, (i) is a polynomial of degree p = 2, p;, in p. It follows that |R(iw)| =

for w € (=, ) and |R(u)| — 1 as u —> oo, Hence if all the zeros of P (1) have
negative real parts, then R(u) is regular for Re(u) < 0 and it follows that the class is
A -stable. We computed the coefficients of Pp (1) and applied the Routh-Hurwitz
conditions to P,(u) using a FORMAC program with exact rational arithmetic to estab-
lish the following result which we conjecture is true for all p > 1.

THEOREM. The class [p, p, p] is A-stable for p < 10.

There are other A-stable classes with symmetric p,. For example, the classes
[1,2,1] and [2, 1, 2] are A-stable.

There are strongly A-stable and strongly stiffly stable block methods. For ex-
ample, the class [1, 1, 2] is strongly A-stable, and the classes [1, 1, 3], [1, 2, 2],
[1,2,3],12,2,3],[1,1,1,2],and [1, 1, 2, 2] are strongly stiffly stable. Figure 1
shows the loci in the A\ plane where [R| = 1 for these classes of methods. Since the
loci are symmetric with respect to the real axis, only half of each locus is plotted. The
regions of absolute stability lie to the left of the loci. The regions of instability in the
left-half plane are remarkably small. The corresponding regions of instability for
Gear’s stiffly stable backward difference multistep methods are larger by several orders
of magnitude. Hence the block methods are better suited to problems where the
Jacobian has complex eigenvalues near the imaginary axis.

This discussion shows that Methods 1 and 4 are A4-stable, Method 2 is strongly
A-stable, and Methods 3, 5, and 7 are strongly stiffly stable. The discussion does not
apply to Method 6 because the degree of precision of its first formula is too low, but
it is simple to show that R(u) for this method is the (4, 4) entry in the Padé table
for e2#. Thus Method 6 is A-stable.
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FIGURE 1

Stability regions for 2- and 3-block methods

5. Numerical Examples. Krogh [7] has proposed the following nonlinear stiff
test problem. The nonlinear differential equations
zi==Pz;+z2, i=1,...,4,
have the solutions
z; = B8;/(1 + c;exp(B;x)).

If the initial value z(0) = —1, then ¢; = —1 — ;. If we set y = Uz, where z = (zi)T

and U is a unitary matrix, then the differential equation for y is
(11) y =-By+ Uw
where B = U diag(B,)U*, and w = (z,-z)T. The eigenvalues A; of the Jacobian are
2z, = B; If y(0) = z(0), then \; — — |B;] as x —> oo,

We solved the nonlinear problem (11) on an IBM 360/75 using the 2-block
Method 4 and the newest version of DIFSUB. We chose Method 4 because it is of

order 6, is A-stable, and does not use higher derivatives. The difference equations to
be solved are

Ynti = Yn T HIWiof(y,) + w; f(zCx,, + 0,) + wi,f(y, )

+ WiSf(Z(xn + 63h)) + Wi4f(Yn+2)] ’ 1= 1, 25

(12)

where f(y) = —By + Uw,
2x, +0h) = Y00y, + Y160 Yni1 T ¥300)Yntr

+ h[lpo](e)f(yn) + l,l/ll(e)f(yn_'_l) + \bzl(e)f(yn+2)]s

0,=1-1A/3,0, =1 + 1/3, w, = {31/240, (24 + 15\/3)/80, 4/15,
(24 — 15v/3)/80, 1/240}, w, = {2/15, 3/5, 8/15, 3/5, 2/15}, and the ¥, (0) are
the Hermite basis functions for the interval [0, 2].
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The program implementing Method 4 employs Broyden’s quasi-Newton method
[3] to solve the nonlinear difference equations (12). Each iteration requires four deriva-
tive evaluations, f(y,, , ;), (v, 4,), f(z(x,, + 0,h)), and f(z(x,, + 034)). Thus only
two derivative evaluations are required per iteration per mesh point. Note that any
implicit Runge-Kutta method of order 6 would require at least three derivative evalua-
tions per iteration per mesh point. The special structure of the test problem is not
used to simplify the iterative process as is sometimes done in such tests. The Jacobian
of the difference equations is computed by numerical differentiation and is recomputed
whenever the stepsize is changed. The initial approximation to the solution is obtained
through rational extrapolation.

The program varies the stepsize to keep the maximum norm of the scaled local
error per step less than €, where € is a prescribed tolerance. As in DIFSUB each com-
ponent of the local error is scaled by the maximum modulus of the corresponding
component of the solution observed up to that point. The local error is estimated
using an idea proposed by Zadunaisky and analyzed by Stetter [12]. Starting at the
point x,,, the solution is first computed for two blocks. The method is then applied
to the perturbed problem

u'(x) = f(u(x) +v'e) —f(v(x)),  UEn4y) = Ynag

where v(x) is the Hermite interpolant matching y, , ; and yfll+)i fori=0,...,4.
Obviously, the exact solution of the perturbed problem is v(x). The solution of the
perturbed problem is computed for one block, and the difference between the exact
and computed values at x,,, 5 is used to estimate the average local error over the two
blocks.

Example 1. Here as in [7] we set 8, = 1000, g, = 800, 8; = —10, 8, =
0.001, and

-1 1 11
- 11
v=09 -1

1 1 1 -1
The problem was solved with ¢ = 10~ fori=2,4,6,and 8. Table 1 presents for
€ = 107° the total number of derivative evaluations required to reach the first mesh
point after x = 10’ for i = =3, -2, ..., 3, and the current stepsize /#, the maximum
absolute error in the components of y, and the order formula used by DIFSUB at that
point. Table 2 presents for each € the total number of derivative evaluations and the
time in seconds required to reach the first mesh point after x = 1000, and the max-
imum absolute error in the components of y observed up to that point. Table 3 pre-
sents for each e the minimum, average, and maximum values of the average of the
moduli of the ratios of the components of the exact and estimated local errors.

The block method generally required fewer derivative evaluations than DIFSUB
while yielding comparable accuracy. DIFSUB was faster, but it should be noted that
the present program was written for ease of modification and debugging and not speed
and efficiency. Furthermore, the time estimates were obtained with the IBM OS/MVT
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TABLE 1

Comparison for e = 10~ °

block method DIFSUB
x evaluations h error x order evaluations h error
.1000 - 2 31 5000 -3 4175-6 1011 -2 4 65 7423 -4 1140 -5
.1087 -1 113 1365 -2 7637 -7 1043 -1 6 165 4305-3 .1403 -6
1107+ 0 191 1556 -1 9005 -9 1025 +0 6 275 8105-2 2018 -5
1101 +1 323 1346 +0 .1838 -5 .1001 +1 6 411 2893 -1 3342-6
A157+2 427 2535+1 9886 -7 1044 +2 6 530 .6287+0 .2382-5
1228 +3 505 3072 +2 4206 -7 1035 +3 6 639 6186 +1 .1075-5
.1098 + 4 557 1920+3 2565 -5 1016 +4 6 719 8030 +2 .4226-6
TABLE 2
Comparison of costs
block method DIFSUB
€ evaluﬂs_ time error evaluations time  error
d-1 299 249 2086 -2 223 194 2344 -1
1-3 381 2.67 .8359 -4 447 232 5349 -3
d-5 557 3.19 2565-5 719 294 5135-5
1-7 865 405 .6335-7 1068 3.67 6136 -7
TABLE 3
Average of the moduli of the ratios of the components
of the exact and estimated local errors
€ minimum  average maximum
d-1 .5428 .8533 1.2352
1-3 6581 1.0182 2.2869
1-5 7237 9260 1.3181
d -7 .5447 9188 1.3289
TABLE 4
Comparison for ¢ = 10~
block method DIFSUB
x evaluations h error x order  evaluations h error
.1000 -2 35 5000 -3 .1414 -5 1033 -2 5 73 8593 -4 1351 -5
.1000 - 1 155 .5000 -3 .5618 -5 1009 -1 5 225 1354 -3 1266 -4
1010+ 0 913 2215-2 8979 -6 1002+ 0 S 969 5977 -3 3901 -5
1024 +1 1163 9162 -1 .3344-6 .1000 + 1 5 2831 6051 =3  .5129 -4
1027+2 1279 A731+1 .6840-6 .1000 +2 S 14979 7622 -3 2490 -4
1094 + 3 1411 1124+2 .8975-5 - - - - -
1034 +4 1621 S311+2 1742 -5 - - - - -
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timing routine and may be inaccurate. The error estimation scheme appears to work
remarkably well and has the desirable property of tending to overestimate the error.
However, the stepsizes obtained by assuming that the local error has the form Mh’
were sometimes too small because the coefficient M decreased rapidly over the next
pair of blocks.

The overall performance of the block method is comparable to that of DIFSUB
on this problem. This is surprising because the eigenvalues of the Jacobian of the
differential equations lie on the negative real axis so that the A-stability of Method 4
is of no advantage. However, we would expect Method 4 to outperform DIFSUB for
problems where the Jacobian has eigenvalues A; lying relatively close to the imaginary
axis because DIFSUB, if it used a high order formula, would be restricted to stepsizes
sufficiently small to keep the AX; within the region of absolute stability of the formula.
This expectation is confirmed by the next example.

Example 2. Here we set 8; = 100 + 1000j, 8, = B, B3 = — 10, B, = 0.01,

U= (%)

~i i -1 1

and € = 10~%. The results are summarized in Table 4 which has the same format as
Table 1. Asexpected, DIFSUB performed poorly although the maximal order was
restricted to 5 as recommended by Gear for such problems. By remaining at order 5
for large x, it was forced to choose & < 0.0008 to keep kA, and AX, within the region
of absolute stability. It would have required about 1.3 x 10° derivative evaluations to
reach x = 1000.
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