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A Method of Virtual Displacements for the
Degenerate Discrete /; Approximation Problem

By W. Fraser and J. M. Bennett

Abstract. Given the system of equations

n

,Eaijxj=bi’ i=1,...,m

j=1

let A; = (a“, ... a;,). Itis known that if the matrix 4 = (aij) has rank k < n, then

there is a point X which provides a minimum of

m m
RX) =2 X0l = X I(4; X) - byl
i=1 i=1

such that 7{X) = 0 for at least k values of the index i. If r{(X) = 0 for exactly k values of
the index i, the point or vertex is called ordinary, while if rl(X) = 0 for more than k values
of i, the vertex is termed degenerate.

A necessary and sufficient condition to determine if X minimizes R is valid if X
is an ordinary vertex but not if X is degenerate. A degeneracy at X can be removed by
applying perturbations to an appropriate number of the b; so that X becomes an ordi-
nary vertex of a modified problem. By noting that the test uses only values of the 4;,
it is possible to avoid actual introduction of the perturbations to the bi with a resulting
substantial improvement of the efficiency of the computation.

1. Given the system of equations

n

(11) Za”sszbl (i=1,.,m),
=1
let A; = (a;,, - . - , a;,). It is known that if the matrix 4 = (aij) has rank k <n,
then there is a point X which provides a minimum of
m m
(1.2) R(X) = Z Ir(X)| = Z I(4; X) — byl
i=1 i=1

such that r(X) = O for at least k values of the index i. The minimum value of R and
a point X at which it occurs are usually found by replacing the problem with an equiv-
alent linear programming problem in which a function is to be minimized subject to
constraints, whereas the method to be described below solves the direct problem,
namely to minimize a function free of constraints. This implies, for example, that the
bookkeeping involved in setting up a linear program is not required for the application
of this method.

If r(X) = 0 for exactly k values of i, X is referred to as an ordinary vertex,
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while if r(X) = O for more than k values of 7, X is called degenerate. An edge is
obtained by holding r; = 0 for (k — 1) values of i and allowing the remaining ; to
vary.

It is known that if X is an ordinary vertex, and R(X) is nondecreasing for dis-

placements along each of the edges emanating from X, then X is a minimum of R.
On the other hand, if X is degenerate, R could be nondecreasing along edges generated
by the subset of the system used to determine X, but still not be a minimum. Example
1 at the end of the article can be used to illustrate this point, using the first two equa-
tions of the system.

Degeneracy of a vertex can be removed by applying perturbations to the b; for
indices i corresponding to any r{(X) = 0 not used to determine X. In this way the
problem is transformed into one for which X is an ordinary vertex at which the test
for sufficiency mentioned above is applicable. On a first coding the perturbations used
to remove degeneracy were explicitly introduced in the program. The routine that re-
sulted was found to be of more or less the same speed as the best routine known to
us at the time [1] if the solution was found at an ordinary vertex. However, the
computation required to cope with the perturbations in the degenerate case had the
effect of slowing the routine seriously.

In this article a procedure at a degenerate vertex is described which is of a nature
comparable to that which would occur if actual perturbations were introduced, but at
the same time does not introduce them explicitly into the problem. By eliminating
the arithmetic required previously, the resulting routine can be made significantly
more efficient.

Except for minor modifications, the procedure to be described is applicable to a
system with matrix of rank k < n, so that the discussion is restricted to the case of a
system of rank n. The steps taken at an ordinary vertex are described in the following
section so as to provide context for the discussion of the procedure at a degenerate
vertex.

2. Let e, denote the unit vector with 1 in position k and zero elsewhere, and
let 4 denote the matrix of a subsystem of (1.1) consisting of n of the equations, say
the first n, such that rank 4= n, and let B denote the vector ), i=1,...,n
Edges which emanate from the vertex X which satisfies AX = B have the directions of
the vectors £ which satisfy ZEk =e,k=1,...,n

If r,(X) = O for exactly n values of i, a necessary and sufficient condition that
R(X) given by (1.2) have a minimum at X is that R should be nondecreasing for dis-
placements from X in each of the directions £}, k=1, ..., n.

Suppose that X is an ordinary vertex, not necessarily a minimum, determined by
solving the system 7,(X) = 0,i=1,...,n,and that 7(X) > 0,i=n+1,...,m
Denoting the matrix of this sytem by 4 , and column j of its inverse by C]-, points Y
on edge j are given in terms of a parameter A by

2.1 Y =X +2C,.

Also, it follows readily that for points ¥ on edge j we have in terms of A
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(2.2) RN =N+ 5 00 +23d, )l

i=n+1

For all sufficiently small |\| this equation can be expressed in the form

RN =N+ 3 [r(X) +2d, G-

i=n+1

If (4, ¢) =0, then r(Y) remains constant along edge j. Otherwise, the zeros
of r(Y) are given by
r{X)

= — | = + 2 7
(2.3) N @, ¢) (=n+1,...,m), (4, C)+0.

R is a differentiable function of X everywhere along the edge except at zeros of r(Y),
where the derivative jumps by the amount 2|(4;, C;)|. Denoting the derivative of R
on the left at A = 0 by R'(0-), and on the right by R'(0+), we have

(24) RO =-1+ i ; C).
i=n+1

and

@5 ROD=1+ 3 4, C).
i=n+1

If one of R'(0-) or R'(0+) is zero, or if R’ changes sign at A = 0, then X is a
minimum of R along edge j. If this is true for each edge j, then X is a minimum of
R. If one or both of the derivatives at the minimum is zero, the minimum is not
unique, while, if neither derivative at the minimum is zero, the minimum is unique.

If both R'(0-) and R'(0 +) are negative, the positive A;; calculated by (2.3) are
ordered according to increasing size, and to R'(0 +) we add successively terms 2|(4;, C;)|
until the sum turns zero or positive. The index i for which this occurs, determines
a vertex Y which produces a minimum of R on edge j. Equation j is replaced by
equation 7 and the process repeated. A comparable procedure is followed if both
R'(0-) and R'(0 +) are positive at A = 0.

In this process the only role played by the b; is to attach a sign to r/(X), and
the sufficiency test for a minimum involves only elements of the matrix A. This
makes it possible to avoid explicit introduction of the perturbations to be described in
the next section.

3. Suppose that the computation has led to a degenerate vertex X, found as the
solution of 7(X) =0 (G =1, ..., n), and that for a positive integer p, 0 <p <m —
n, we also have r(X) =0 (@ =n+1,...,n+p),while r,(X) >0,n +p <i<m.
In order to test X when it is degenerate, perturbations are applied as in (3.1) below,
so that X becomes an ordinary vertex for a modified problem, and the sufficiency
test for a minimum applies. The perturbations are made as follows:

For u>0,n; > 0, set
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G b;=b;~un; (=n+1,...,n+p)

= b; (otherwise).

Here u is a parameter which we assume can be assigned arbitrarily small positive
values, and the nonzero n; are to be specified later. Denote the resulting perturbed
function by R”(X).

With the modifications (3.1) the vertex X becomes an ordinary vertex for the
system R, (X) such that at X each r,(X) > 0 (n <i <m). For Y given by (2.1) we
have

n+p m
G2 RM=N+ 3T kM4, QI+ T () + N4, C)l.
i=n+1 i=n+p+1

As before, if (4,, C) = 0, then r,(Y) remains constant along edge j. For those
A; such that (4,, C) # 0, the zeros at which the derivative of R, has jumps in value
are given by

un;

s — — s = + ) )
7\1} A, C]) G=n+1,...,n +p), 4, C])?&O,
(3.3)
- i=n+p+
B Ai’ q) (l_n p l""’m)>(Ai’ C});&O
All of the N from (3.3) fori=n +1,...,n +p can be made smaller in ab-

solute value than the A;; corresponding to i > n + p by choosing u to be sufficiently
small. Thus, if searching for a minimum along edge j, we can assume that hyperplanes
from the set corresponding toi =n + 1,...,n + p are met first. Furthermore, the
relative sizes of the n; can be adjusted so that these hyperplanes are met in any speci-
fied order. Thus, if the n; are equal, the A;; are proportional to the reciprocals of the
4, C]-), and the hyperplanes are met in this reciprocal of magnitude order. It is also
possible to choose the n; so that the hyperplanes are met in order of increasing index
i. Of course, the precaution has to be taken that if a search is to be in the direction
of increasing positive A, only those indices i for which (4, C;) <0 should be included,
and similarly for a search in the direction of negative .

We have tended to favor the search according to increasing index i, both because
it is convenient for programming, and we have been unable to prove that any other
strategy is better. For the same reasons the search for a minimum along edge j has
been conducted according to order of increasing index j. It is possible to use other
criteria, such as finding an edge with the largest gradient, or maximizing the reduction
in R per cycle of calculation, but we have not been able to establish any clear supe-
riority.

In carrying out the computation we assume, without actually doing so, that the
perturbations un; have been applied fori =n + 1,...,n + p. The test for a mini-
mum is now applied successively along each of the edges emanating from X. If the
test is satisfied in each case, then X is a minimum of R. Otherwise a search is carried
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out along the first edge encountered for which X is not a minimum, with the direction
of search being determined as described before. If the search along edge j is in the
direction of increasing positive A, no sign changes are made in equation j; but if hyper-
plane i is passed, the signs of b; and the components of A4; are changed. If the test
for a minimum is satisfied in a member of the set corresponding to (n + 1) <i <

(n + p), no sign changes are made in the equation at which the minimum is encoun-
tered, and an exchange of equations is made in the usual way. By carrying out the
calculation in this way, the virtual vertex under consideration at any time is always on
the positive side of any hyperplane on which it does not lie fori =1,...,n +p.

Of course, in the calculation as performed, only an exchange of equation occurs with-
out a change of vertex. If the search is in the direction of decreasing negative A, a
similar procedure is followed with the exception that in this case the signs of b; and
the components of 4; are changed. If after all terms corresponding to indices (n + 1)
to (n + p) have been used, a minimum has not been reached, the remaining A;; given
by (3.3) are ordered as described previously and the minimum on edge j determined
accordingly. In this case the vertex is not a minimum of the original system and an
exchange of equations is made in the usual way. The new vertex so determined is
then tested according to whether it is ordinary or degenerate.

In the case of the previously cited method of applying perturbations which
would be subsequently held fixed, it was possible for us to show that the testing of
vertices of the set so generated must terminate in a finite number of cycles, either
with the decision that one of them is a minimum, or by calling for an exchange to a
vertex other than one of the set. This comes from the fact that exactly one function
is involved, and an exchange of equations is not made unless the function actually de-
creases. However, the technique of virtual displacements which has been described is
not exactly the same as this; for one thing it assumes that the relative sizes of pertur-
bations may be altered as needed while the computation is in progress. We have not
yet proved that for this process cycling within the subset of the system consisting of
equations satisfied at the degenerate vertex cannot occur, but we have never encoun-
tered it, and we conjecture that it is unlikely that it will occur.

4. The two examples which follow illustrate the exchange technique; the first
involves only degenerate vertices, while both ordinary and degenerate vertices are en-
countered in the second.

Example 1. Where € is interpreted as a small positive number, find the /, solu-
tion of the system

() 4 +tex-y=0,

(2 4-ex-y=0,

(3) ¥y =0,

(4) B+ex—2y-(8+e¢)=0,

(5) 8—€ex —2y —(8-¢)=0.

The procedure begins by finding the vertex determinedby the first two equations.
Calculations performed as described in the text are tabulated, and actions required for
the next cycle of the calculation are described below the tabulations.
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Cycle 1.
1 1
4+e -1 e _i—e—
Vertex (0,0); 4 = .
4 1 4-€¢ 4+e
€ 2e 2e
Index Equation Residual 4, C))
)] 4+ex-y=0 0 1
) @G-ex-y=0 0 0
_ 4—¢€
(4) —B+ex +2 +(8+e) =0 8 +e -3/2.
(5) —B-ex +2y +(8-¢€)=0 8 —¢ -1/2

r{0, 0) = 0 for three values of i, so that (0, 0) is degenerate.

Z)_ (4, C)) =2/e —3/2. Thus, R'(0-) =2/e—7/2>0and R'(0+) = 2/e
—3/2 >0, for sufficiently small . A search for the minimum is made through the
positive (4;, C,). Since

2 7\ [4-€\ _—4-5e
(e 2> <e>_ 2 <0

the signs in Eq. (1) are changed and Eqs. (1) and (3) are interchanged.

Cycle 2.
1 1
0 1 B 4-¢ 4-¢
Vertex (0,0); A4 = .
4—-€¢ -1 1 0
Index Equation Residual 4,C) (4,C)
(1) y=0 0 1 0
2 @d-ex-y=0 0 0 1
2e 4 +¢€
@ S@xexty=0 0 T i
3e 8 te
- = + _ _
4 @B+tex +2y+(B8+e)=0 8 te I-e e
€ 8—¢€
(5 -B-ex+2y+(8-¢)=0 8-¢€ i 7—¢

Z,-szl(Ai, C,) = (4 —7e)/(4 — €), and the test for a minimum on this edge is
satisfied.

Zle(Ai, C,) = (=16 — 2€)/(4 — €). The test for a minimum is not satisfied.
The relations
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R0+ +2I(d;, C)l =~ 7= <0 and

8 + 2e

4-¢€ >0

imply that the signs in Eq. (3) are to be changed, and an interchange is made between
(4) and (2). Since (4) and (5) are encountered simultaneously, the test is made ac-
cording to order of increasing index.

R’(O +) + 2I(A3) C2)I + 2|(A4’ C2)| =

Cycle 3.

2 1

Vertex (1, 0); 4 = ° 1 oAl = 8+e 8+e

-8-¢ 2 1 0
Index Equation Residul (4, C,) (4, C,)
(1) y=0 0 | 0
?) ~-B+ex +2y+(8+e)=0 0 0 :
© wrormo v g i
? I T i
) -(8-ex +2y +(8-€) =0 0 8‘:(_:‘6 g;z

Ele(Ai, C,) = (8 +3¢)/(8 t+ ¢€), so that the test for a minimum is satisfied
along edge 1.

Z7_,(4; C,) = 8¢/(8 + ¢), so that the test for a minimum is also satisfied
along edge 2.

Thus, R has a minimum value 8 which occurs at (1, 0).

Example 2. Find the I, solution of the following system. The system is shown
with signs adjusted so that at the initial vertex, nonzero residuals are positive.

Cycle 1.

S 2
- 11 11
Vertex (—1,1); A= 1 2 Al =
305 -3 L
11 11
Order of
Index Equation Residual (4; C;) A Encounter
(1) x-2»+3=0 0 1
) 3x +5y-2=0 0 0
3) -2x-y-1=0 0 —7/11
€)) x-3y+4=0 0 14/11
©) -x-y=0 0 -2/11
(6) 4x+y+3=0 0 17/11
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7 -3x-4y+1=0 0 -3/11

(8) -2x+y+1=0 4 -13/11 338

) -5x-y-1=0 3 -22/11 150 3)
(10) -3x+y+2=0 6 -18/11  3.67
(1)  -4x+3y+1=0 8 -29/11  3.03
(12) -4x-y-1=0 2 -17/11  1.29 )
(13) -x+y=0 2 -8/11  2.75 4)
(149 -3x+2y+1=0 6 -21/11  3.14
(15) =3x-y-1=0 1 -12/11 092 (1)
(16) x+y+1=0 1 2/11
17) -x+2y=0 3 -11/11  3.00
(18) —4x+y+3=0 8 -23/11  3.83

218 (4, C,)=—142/11. The search through indices i for which (4,, C;) <0
goes through indices 3, 5,7, 15, 12,9 and 13 before the derivative turns nonnegative.
Signs in Egs. (3), (5), (7), (9), (12), (15) are all changed, and Eqs. (1) and (13) are inter-
changed.

Cycle 2.
-1 1 -5/8 1/8
Vertex <}‘, i), A= ;A7 =
3 5 3/8 1/8
Index Equation Residual (4, C1) (4 G) Ny porder gefr
€)) -x+y=0 0 1 0
) 3x+5y-2=0 0 0 1
3) x+y+1=0 7/4 -7/8 3/8 467
4) x—3y+4=0 712 -14/8 -2/8
Q) x+y=0 1/2 -2/8 2/8  2.00 2)
(6) 4 +y+3=0 17/4 -17/8 5/8  6.80
7 3x +4y-1=0 3/4 -3/8 7/8 .86 (1)
(3) -2x+y+1=0 3/4 13/8 -1/8
9) 5x+y+1=0 5/2 -22/8 6/8 333
(10) -3x+y+2=0 32 18/8 -2/8
(11) —4x+3y+1=0 3/4 29/8 -1/8
(12) 4 +y+1=0 9/4 -17/8 5/8  3.60
(13) x-2+3=0 11/4 -11/8 -1/8
(14) -3x+2y+1=0 3/4 21/8 -1/8
(15) 3x+y+1=0 2 -12/8 4/8  4.00
(16) x+y+1=0 3/2 -2/8 2/8  6.00
(17) -x+2=0 1/4 11/8 1/8  2.00 3)

(18) —4x+y+3=0 9/4 23/8  -3/8
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E}zsl(Ai, C,) = 0, so that the test for a minimum along edge 1 is satisfied.

T18,(4, C,) = 4, 50 that R'(0—) = 2 and R'(0 +) = 4. The search for the
minimum on edge 2 goes past equation with index (7) and the minimum is encoun-
tered at index (5). Signs of Eqs. (7) and (2) are changed, and (2) and (5) are inter-
changed.

Cycle 3.
Sy [
Vertex (0,0); 4 = ; A7l =
o »
Index Equation Residual 4, C)
(1) —x+y =0 0 1
(2 x+ty=0 0 0
3) -x+2y=0 0 3/2
4 2x+y+1=0 1 -1/2
(5 x—-3y+4=0 4 -4/2
(6) “3x -5y +2=0 2 -2/2
@) 4 +y+3=0 3 -3/2
(8) -3x -4 +1=0 1 -1/2
) “X+y+1=0 1 3/2
(10) 5x4+y+1=0 1 —4/2
(11) “3x+y+2=0 2 42
(12) —4x +3y+1=0 1 7/2
(13) 4 +y+1=0 1 -3/2
(14) x—-2y+3=0 3 -3/2
(15) -3x+2+1=0 1 5/2
(16) x+y+1=0 1 -2/2
(17) x+y+1=0 1 0
(18) -4 +y+3=0 3 5/2

218,(4, C)) = 3,50 that R'(0-) = 1, and R'(0 +) = 3. The minimum is en-
countered on this edge at index 3. Thus, change signs of (1) and interchange (1) and

3).

Cycle 4.
1 2
Vertex (0, 0); 4 = ' ATl = :: :13
1 1 3 3
Index Equation Residual (4, C,) (4;,C,)
¢))] -x+2y=0 0 | 0

2) x+y=0 0 0 1
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3) x-y=0 0 -2/3 1/3
4) +y+1=0 1 -1/3 5/3
Q) x-3y+4=0 4 -4/3 -1/3
(6) -3x-5+2=0 2 -2/3 -11/3
(7) 4x+y+3=0 3 -3/3 9/3
(8) -3 -4y +1=0 1 -1/3  -10/3
9) -2x+y+1=0 1 3/3 -3/3
(10) Sx+y+1=0 1 -4/3 11/3
(11) -3x+y+2=0 2 4/3 -5/3
(12) —4x +3y+1=0 1 7/3 -5/3
(13) 4 +y+1=0 1 -3/3 9/3
(14) x-20+3=0 3 -3/3 0
(15) “3x+29+1=0 1 5/3 —-4/3
(16) 3x+y+1=0 1 -2/3 7/3
(17) x+y+1=0 1 0 3/3
(18) —4x+y+3=0 3 5/3 -7/3

218,(4, C)) = 2/3, 50 that R'(0—) = — 4/3 and R'(0 +) = 2/3, and the test
for a minimum is satisfied along edge 1.
E}ZSI(AI-, C) = 2/3, so that the test for a minimum is also satisfied along edge

Thus, the test for a minimum is satisfied along both edges; and furthermore, the
minimum is unique. The unique minimum value of R is 26 and this occurs at x = y
=0.

Department of Mathematics and Statistics
University of Guelph
Guelph, Ontario, Canada

Department of Computer Science
University of Western Ontario
London, Ontario, Canada

1. I. BARRODALE & F. D. K. ROBERTS, ‘“Solution of an overdetermined system of
squations in the l1 norm,” Comm. ACM, v. 17, 1974.



