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On Multiple Node Gaussian Quadrature Formulae *
By David L. Barrow

Abstract. Let uy, ..., ug be odd positive integers and n = 2?:1(“1‘ + 1). Let
{“i}?=1 be an extended Tchebycheff system on [a, b]. Let L be a positive linear
functional on U = span( {“i})' We prove that L has a unique representation in the

form
kK M;—1

L) = ), Za,,p (t), a<t;<- <t <b,
i=1

for all p € U. The proof uses the topological degree of a mapping F: D C Rk

— Rk. The result is proved by showing that the equation F(z) = 0 has a unique
solution, which in turn is proved by showing that F has degree 1 and that for any
solution t to the equation F(z) = 0, det F'( 1) > 0. We also give extensions to the
cases when the {“i} are a periodic extended Tchebycheff system and when L is a

nonnegative linear functional.

1. Introduction. A quadrature formula is an approximation to a definite inte-
gral by a linear combination of values of the integrand and its derivatives at selected
points. It is a classical result that the formula

k

© > afe) =[] foswyan, o >0

i=
can, by a judicious choice of the points a <t; <---<t, <b and weights {a;}, be
made exact for all integrands f which are polynomials of degree at most 2k — 1. Fur-
thermore, this choice of points and weights is unique. An equivalent statement is that
a certain system of 2k equations in the 2k unknowns {#;}, {g;} has a unique solution.
Formulas of this type, and their various generalizations, are usually known as Gaussian
quadrature formulas.

In [1], Karlin and Pinkus give a discussion of some of these generalizations. We
refer the reader to that paper and its excellent bibliography for more information on
this subject.

This paper is concerned with generalizations of the following theorem, which is
proved in [1].

THEOREM A. Let u,, ..., u be odd positive integers, and let n = 2’.‘_1(ui + 1).
Let {u; } — be an extended complete Tchebycheff system on the interval [a, b].

Then there are unique points a < t, <- -+ <t, <b and coefficients {a,]},_1 ja o
such that
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kM-l

@ > 3 audy= [ upemd, 60 >0,

i=1 j=0
holds form=1,2,...,n.

This theorem was proved by extending the {u;} to a larger interval (c, d) O
[a, b] and then using induction on the number of points {#;} inside (a, b). The im-
plicit function theorem and the completeness of the system {u;} (see Section 2 for
definitions) were crucial ingredients in the proof.

The present paper gives an entirely different proof of this theorem, using the to-
pological degree of a mapping F: D C R* — R¥. This proof is somewhat simpler,
and obviates the requirement that the system {u;} be complete. This in turn makes
an extension of the theorem to periodic Tchebycheff systems straightforward, an ex-
tension whose proof is apparently not possible by the method used in [1].

In Section 2 we present some definitions and some results on Tchebycheff sys-
tems and degree theory which will be needed in our subsequent analysis. The main
result, Theorem 1, is proved in Section 3. The generalizations of this theorem to the
periodic case (Theorem 2) and to nonnegative linear functionals (Theorem 3) are pre-

sented in Section 4, along with a brief discussion on reducing the smoothness required
of the {u;}.

2. Definitions and Preliminary Results. Let {u; ;’21 be functions of class

ch-1 [a, b]. Then the {u;} are said to be an extended Tchebycheff system (ET-sys-
tem) of order N (see [2, p. 6]) provided

[uy(ty) uy@ty) - uy(t,) ] i

uy(ty) uy(ty) - - uy(ty)
det ) >0,

Lun(tl) up(ty) ** * Un(ty) |

whenever a < ¢, <t, < --<t, <b. The “*” means that if some of the #;’s coin-
cide, then the columns in the matrix corresponding to coincident ¢;’s are replaced by
derivatives, of increasing order. Thus, if » = 3 and ¢, = ¢, < ¢3, the condition is

uy(ty) uyey) uy(e3)
det| uy(ty) uy(t)) u,(t3)| >0.

ug(ry) us(ty) us(t;)

At most NV consecutive #,’s are allowed to coincide. An easy consequence of this defi-
nition is the following fact, which we will use extensively: if the points a < ¢,

< -+ <ty < b, the nonnegative integers {ui}f-‘zl, M; SN — 1, and the data

{ey ?:1 ;‘:‘ o are prescribed, and if n = Zle(yi + 1), then there is a unique “poly-
nomial” p(#) = Z'_  oqu;(t) which satisfies p(’)(z‘i) =cji=1,...,kj= 0,1,...,
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;. Hence, any nontrivial polynomial p(#) can have at most n — 1 zeros, counting mul-
tiplicities up to order M.

An ET-system of order n is called simply an extended Tchebycheff (ET) system.
If the functions {u;}}_, satisfy the property that for any k, 1 <k <, the system
{u;} f.‘=l is an ET-system, then we say the {y;}}_, form an extended complete Tcheby-
cheff (ECT) system.

Let {u;}7_, be an ET-system, and let U = (real) span({u;}). A linear functional
L on U is said to be positive if whenever p € U, p = 0, p # 0, then L(p) > 0. L is
called nonnegative if L(p) > 0 whenever p > 0. It is shown in [3] (Theorem 1.1)
that a nonnegative linear functional L on U may be extended to a nonnegative linear
functional L on Cla, b]. Hence, using the Riesz representation theorem for the dual
of Cla, b], we may assume that L has the form L(p) = [ f,’ p(t) du(t), p € U, where
u(?) is a nondecreasing right continuous bounded function. At this point we prove a
proposition, a form of which is stated in [1], which shows that Theorem 1 (below) is
sharp.

PROPOSITION 1. Let {u;}}_, be an ET-system on (c, d) D |a, b], and let L be
a positive linear functional on Ul, , ), the restriction of functions in U = span({y;})
tofa, b]. Ifc<t; < <t <dandif {u,-}f.‘:1 are positive integers, then if

kM1 .
O Y X aud) = Ly)
i=1 j=0
for m=1,2,...,n, it must be that n < n= Ef.;lu,- + F, where F is the number of

points t; such that t; € (a, b) and y; is odd.
Proof. Suppose that n > n. Let p € U be nontrivial and satisfy:

PPy =0,j=0,...,4 if #; € (a, b) and p; is odd;
p(j)(ti) =0,j=0,...,u— 1 for all other #;’s.

This is a total of 7 zeros. Let p have an additional n — n — 1 zeros outside (g, b) if
n >n + 1; then p can have no other zeros. Note that all zeros of p which are interior
to (a, b) have even multiplicity; hence p does not change sign on [a, b], so that L(p)
# 0. This is seen to be a contradiction of (3).

We next discuss the elements of topological degree theory which will be needed
(cf. Schwartz [4, Chapter 3]). Let D C R" be a bounded open set, and let F: D—
R" be continuous. Then if ¢ € R"” and ¢ ¢ F(dD) (3D = boundary of D), the degree
of F with respect to D and c is defined, is an integer, and will be denoted deg(F, D, c).
The following are some properties of the degree:

() If Fe (D) N (D), c ¢ F(dD), and det(F'(x)) # 0 when F(x) = c, there

are a finite number of points x; € D where F(x;) = c, and deg(F, D, ¢) =
z; sgn(det(F'(x;))).

(i) If deg(F, D, c¢) # 0, there is at least one solution in D to the equation F(x)

(iii) If F: D x [0, 1] — R™ is continuous and F(x, A) # ¢ for x €D, 0 <A
< 1, then deg(F( - , M), D, c) is constant, independent of A.
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Let A, be the open simplex
A ={t=(ty,...,.ty) a<t; <---<t, <b},
and let

Bye={t=(ty, ... tyya=ty<t; < <t <ty , =b,

ti+1—fi>€,i=0, 1,...,k}.

Finally, it will be convenient to let @ = (a;¢, @11, - - - » @1p;-1, G20, 4215 - - - >
A2py—15 -« akﬂk—l)’ where u;, My, . . ., My are prescribed positive integers.

3. Statement and Proof of Theorem 1. Let u,, ..., u; be odd positive inte-
gers, and let n = E;;l(ui +1). Let {y;}7—, be an ET-system on [a, b], and let L be
a positive linear functional on U = span({y;}).

THEOREM 1. There is a unique t € A, and coefficient vector a such that

-1

k
“ i; jz:o aijp(])(ti) = L(p)
for all p € U.

The proof will be based on a series of lemmas.

LEMMA 1. Let t € Ap,and fori=1,...,kj=0,...,u, letp,-j(L; -)EU
satisfy pg)Q; t) =1and p,(;”)(L; t=0if((my#Gj)m=0,...,m41=1,...,
k. Letaii=L(pij(L;-)),i= ...,k j=0,...,u;— 1. Then t,a satisfy (4) if
and only if
(5) L(pmi(g_;-))=0, i=1,...,k

Proof. If (4) holds, (5) is trivial. Conversely, if (5) holds, then (4) holds for all
p,-j(L; - ), and hence for all p € U, since the Pij(E - ) form a basis for U.

LEMMA 2. If t, a satisfy (4), then ajy;y >0,i=1,... k.

Proof. Fori=1,...,k,letp, €U satisfy

pl(])(tl)=0’ j=0,...,[ll,l=1,...,k,l=/éi;
PP = 1
PPty =0, j=0,...,4-2ifp>1;

pi(a) = 0.
Then p; has n — 1 zeros and hence no others. All zeros of p; which are interior to
(a, b) have even multiplicity, and so p; > 0. Hence

By = L(p;) > 0.
Now fix r = (ry, ..., r;) € Ay, and define Ly € U* (the dual of U) by
k
Lo(p) = Z P(ri)-
i=1

Let Ly = (1 - NLo + AL 0 <A< 1.
LEMMA 3. There is an € > O such that whenever t,, a, satisfy (4) for L,, then
I, €Ay ..
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Proof. Suppose no such ¢ exists. Then there is a sequence {A,,, tx,, = ™}
such that as m — o0, X, — A, and t"" — t €9A,. For ease of exposition, we as-
sume that ¢ <t, =1, <ty <--- <t <b. The other possibilities for z € 9A; can
be handled similarly. We will construct a sequence of polynomials {p,,} such that
L)\m(pm) =0, p,, — p uniformly as m — o, but on(p) > 0, a contradiction.

Let p,, € U satisfy

pr(il)(tlrn)=01 j=0,~~"uiai=3s---:k;
pPE™y =0, j=0,...,4-1,i=1,2;
Pm@ =0, p@>0, lp,ll=maxp,®Hl=1.

Clearly, Lkm(pm) = 0, since t", ay,, 8ive a formula (4) for Ly,
Now let p € U satisfy

pP)=0, j=0,...,u5i=3,...,k
PPy =0, j=0,...,u tu -1
p@@=0, p'@>0, lpl=1

Now since the {p,,} are uniformly bounded and belong to a finite dimensional vector
space, a subsequence, call it {p,,} again, must converge, p,, — ¢, the convergence
being in the topology of C"![a, b]. We claim that p and q have the same zeros, and
hence that p = ¢, by the normalizations on p and the p,,,.

Repeated application of Rolle’s Theorem to p,, shows there are points {5}"} C
[¢7, £7'] such that pd)(E") = 0,7 =0, ..., 4y + u, = 1. It follows that () =
]jmm_,mpf,{)(tl) =0,j=0,...,u, +mu,—1. Itisclear then that p and q have the
same zeros and so p = ¢. It remains to show that on(p) > 0. Arguing as before, we
see that p = 0 on [a, b], and hence on(p) > 0if Ay #0. If A, = 0, it again fol-
lows that on(p) > 0, since ¢t # r. This completes the proof of Lemma 3.

Let € > 0 be as in Lemma 3. For £ € A, , let pAt; ) € U be the polynomial
Py (£; ") of Lemma 1. We define the map F: &, . x [0, 1] — R* by

©6) Fi(t,N)=-Lyp;(t;-), i=1,...,k
Then F is continuous in (£, \) and Lemmas 1 and 3 imply that F(z,2) #0if z €
94 - Hence deg(F(, N, By e» 0) is defined and is independent of A, by property
(iii) of the degree. We will show that this degree is one, and conclude that there is a
unique solution to the equation F(z, 1) = 0. This will complete the proof of Theo-
rem 1.

Lemma 4. If t € A,  is any solution to the equation F(t,N) =0,0< A<,
then

7 det 2L 0> 0.
) at

Proof. For convenience we delete the explicit reference to the parameter A.
Since F(t) = 0, let ¢, @ be the formula (4) guaranteed by Lemma 1. Let |A| be small,
and let e, =(1,0,...,0) € R¥. Then
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Fi(t +he))—F (1) =-L(p, (¢ + hey;))
Mi—1

== 2 aijp(lj)(L + heys 1)
=1 j=0

~.

I‘l_l . Ml—l (_h)“l_j _
- Z aljpg])(L'i'hﬁl;fl) =- }_: a,; —'—.T+O(h 1 1) ,
/=0 j=0 (g =7

the last equality following from a Taylor expansion of pgj)(L + he,;t,)about t, + h.
Therefore,

oF, ' Fi(t +he)-F (1)
a—tl(i)— mo h —al“l_l.

By similar reasoning, one shows that

oF .
—aZ(L) = dlag(aly,l—l’ et ak“’k_l)’

which, in view of Lemma 2, proves the lemma.
Lemma 5. Deg(F(:,0), A, ., 0) = 1.
Proof. We again delete explicit reference to the parameter A = 0, so that

k
F,'(L) = _Lo(pi(L§ == Z pi(L; r,).
=1

It is clear that F(r) = 0, and Lemma 3 implies that r € Ay - We claim that r is the
only solution to F(z) = 0. For suppose that s € Ay . also satisfies F(s) = 0. Then
by Lemma 1 (which holds for L also) let s, a be the formula (4) for L. Suppose
r, #s,. Construct p € U to satisfy

PPs)=0, j=0,...,5-1,i=1,...,k
p(rl.)=0, i=2,...,k;
p(r,) # 0.

Then (4) implies Ly(p) = 0, but Ly(p) = p(r;) # 0, a contradiction. Hence, §; =7y,
and one similarly shows s = r.

Now, unfortunately, det 0F(r)/dz = O (if some w; > 1, as can be seen from (8),
below), so a little care must be used in calculating the degree. We claim that F(¢) is
1-1 for ¢ near r. For t near r, we have

k_ ;- ) & y
8) Fi(L) = 2_, pi(LZ r[) == —71_'—— + Z 0((’1 - tz) I)~
=1

1 =1

If we make the invertible, orientation preserving change of variables ¢; = (¢, — r)"i,
we have
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t; k
©) F(D)=—7 + X o(t).
M =1
Hence, 3F(0)/dt = diag(1/m,!, ..., 1/u!), and so by the inverse function theorem,
F(t)is 1-1 for ¢ near O, and hence F(¢) is 1-1 for ¢ nearr. To complete the argu-
ment, we use the fact that deg(F, 4, ., 0) = deg(F, & . c) for ¢ near 0 [4, p. 72]
and the latter degree is easily seen to be one.

Theorem 1 now follows easily. Lemma 5 and property (iii) of the degree imply
deg(F(, 1), 4; ., 0) = 1. Combining properties (i) and (ii) of the degree with Lemma
4, we conclude that the equation F( ¢, 1) = 0 has a unique solution. Theorem 1 now
follows from Lemma 1.

4. Extensions. A periodic extended Tchebycheff system is a set {u;}}; C
C""1(—o0, o) of periodic functions having period 7, such that their restriction to any
interval [g, @ + 7) form an ET-system on that interval. An example is the set {1,
cos t, sin ¢, ..., cos mt, sin mt}. It is clear that such a set is not an ECT-system,
since, for example the polynomial % + cos ¢ has two zeros on [0, 27).

The appropriate generalization of Theorem 1 is the following:

THEOREM 2. Let yu,, ..., U be odd positive integers and let n = 2:.‘21(;11. +1)
—1. Let {u;}}, be a periodic ET-system with period 7. Let U= span({uillo’,,)}),
and let L be a positive linear functional on U. Let t; € [0, 7). Then there are unique
points t = (ty, ..., 1), t; <t, < <t <t; +71 and coefficients a such that

mi—1

M=

(10) aijp(j)(ti) = L(p)

i=1 j=0

forallp € U
Proof. The proof is the same as for Theorem 1, with minor modifications. Let
A, _, be the simplex

D1 ={t=0y ... 1) 1 <t < <1, <t + 7}.
Forte€ A, _jandi=2,...,k,let p{(t;-) € U satisfy

pP(t;t)=0, j=0,...,01#1i
pP(66) =0, =0, u=1L1=1Lip =1

The theorem is proved by showing that there is a unique solution t € A, _; to the
equations L(p,(¢;))=0,i=2, ..., k, and this is done just as before.

We sketch the changes in the Lemmas 1--5 which are required. The notation
i=1,..., kischanged toi=2,...,k in obvious places (e.g. (5) and (6)). In Lemma
1, the function p, “1( t) is deleted from the basis. In Lemmas 2 and 3, the polyno-
mials p,, p,,, and p should have a zero of (even) multiplicity u, + 1 at ¢, and the
zero at a is deleted. The functional L is defined as before, with r; = ¢, and 7 =

(g oo s 1) €84
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Another easy extension is to the case where L is merely a nonnegative linear
functional.

THEOREM 3. Let the hypotheses of Theorem 1 hold, except that L is now any
nonnegative linear functional. Then L has a unique representation in the form

k IJ'i—l .
(11) > ¥ a0 = L)
i=1 j=0
forallp €U wherea<t; <t, <-- <t <b
Proof. We clearly may assume that L is nontrivial and not positive. Thus, there
is some nontrivial ¢ € U, g = 0, such that L(q) = 0. Since

b
Lp) = [ p@dun, peU,

for some nontrivial Stieltjes measure du(t), ¢ must have zerosa <s, <s, <--- <
sy < b. Furthermore, the support of du(f) must be contained in this set, so that

N
12) L(p) = }:1 Ao(s;),
i=
where N; > 0 (we discard and reindex if some A; = 0). We consider two cases.

Case (i) N <k. In this case (12) is already in the form (11), and we have only
to establish uniqueness. But this is easily done, by arguing as in Lemma 5.

Case (ii) N > k. This case is handled exactly as though L were a positive linear
functional. Indeed, the only use in the proof of Theorem 1 of the fact that p = 0
implies L(p) > 0 was in Lemmas 2 and 3. In Lemma 3, the zero set of p consisted of
k or fewer points, and so we have L(p) > 0 in this case by (12). In Lemma 2, we
again have L(p;) > 0 by (12), unless s, =a, s, = ¢, ..., Sy = t;. In this case we
let p; satisfy all conditions of Lemma 2, except that we replace p(a) = 0 by p;(b) = 0.
Then necessarily L(p;) = \;p,(a) > 0. We remark that in this case (V > k), the
stronger conclusion of Theorem 1 holds, and all the @y ATE positive.

We conclude with a conjecture, which is based on the following observation: if
all y; = 1, then Theorems 1 and 2 are known to be true whenever {ui};':l is merely
a Tchebycheff system (i.e., an ET-system of order one), with no smoothness require-
ments beyond continuity. This suggests the

Conjecture. Let the hypotheses of Theorem 1 hold, except that the {u,}} |
are merely an extended Tchebycheff system of order N where NV = max(y;). Then
the conclusion of Theorem 1 holds. An analogous statement is true for Theorem 2.

We remark that the existence of the desired formula follows fairly easily from
Theorem 1, since one may approximate the system {u;} by ET-systems, arbitrarily,
closely (for example, as in [2, p. 15]).
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