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On the Convergence of a Quasi-Newton Method
for Sparse Nonlinear Systems

By Binh Lam

Abstract. It is shown that an algorithm for solving a system of nonlinear equations

where the Jacobian is known to be sparse, converges locally and Q-superlinearly.

1. Introduction. Consider the problem of finding the solution of a system of
nonlinear equations F(x) = 0, where F and x are n-dimensional vectors. Broyden [1]
derived a quasi-Newton method using an iteration of the form

(1.1) Xpp1 =X T 6Dy,
where ¢, is a scalar and p, is given by

(1.2) Byp;, = "F(xk),

B, being an approximation to the Jacobian. To avoid solving the system of linear
equations (1.2), an approximation to the inverse Jacobian which is updated at every
iteration by a single rank correction is used. However, this method has a drawback
when applied to a system where the Jacobian is known to be sparse since the inverse
of a sparse matrix is generally not sparse. Schubert [7] modified this method by up-
dating B, so that the sparsity is retained. It has been proved by Broyden [3} that the
modified algorithm is locally convergent when the Jacobian satisfies a Lipschitz condi-
tion. He also reported that numerical results suggested that the convergence is super-
linear in most cases. In this note, we show that the modified algorithm in fact pre-
serves the convergence properties of the original method. It has a Q-superlinear rate
of convergence when applied to linear systems. Furthermore, under certain conditions,
the convergence is also Q-superlinear for nonlinear cases.

2. Main Results. Let S; bea diagonal matrix whose (I, [) element is zero if the
(7, I) element of the Jacobian is zero, and unity otherwise. To simplify the notation,
we let B and B, denote the approximation to the Jacobian at kth and (k + 1)st step,
respectively. Let B have the same sparseness characteristic as the Jacobian and B, be

given by
< T —1 piT
2.1 B, =B-— > uju; (Bpj =)
j=1 D Dp;

where y = F(x,) — F(x), p; = S;p and u; is the jth unit vector. We note that the spar-
sity is preserved in B, since ujT B, = u]-T B,S;.
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We now prove that the convergence of the algorithm defined by (1.1), (1.2) and
(2.1) is Q-superlinear for a linear system F(x) = Ax + b, where 4 is an n x n matrix.

Let

E=B—-A4, e=x—x*,
and
¢=IElg e=lel,

where x* is the solution of F{x) = 0. We use Il to denote the Euclidean norm and
-l ; the Frobenius norm.

THEOREM 2.1. If t, =1 for all k and ap, < 1, where o = l4~! Iz then

ex < (K/K"Yee,,

where K = agy/(1 — ag,), when the algorithm is applied to the linear system F(x) =
Ax + b.

Proof. Since t = 1 and y = Ap, from (2.1) we have

< po;
2.2) E,=E-3 uju].TET-.
=1 p;j P
Thus,
T T\T ) T 2
D.D; D;D; - |u- Ep~|
lulE, 12 = <u]-TE —ulE 2N\ ufE - ulE =) = 1B - ——7—,
Pj Pj Pj pj Ip;1

on expanding the terms on the right-hand side. As

ujTEpj = u]TES]-p = u].TEp and ||p].|l2 < lpl?,

2
lu]Ey 12 < lul EN? —luljl.Tl;l
pll
Summing over j, we obtain
(2.3) 92 < ¢ — IEpI?/lIpl>.
Since
IEpI2/Ipl? < I|E||§ < IIEllf, = ¢?,
we have

IEpIZ/lpl? = 692,
for some 6 such that 0 <6 < 1. Hence, ¢f < ¢%(1 — 0). In general, we have

¢]2¢+1 < ¢]2¢(l - ok)»

which implies
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<@ I1a- O1—)-

j=1
Since E=B-A, B! =@ + A 'EY!, and
(2.4) p=-Blde=-(I-A"'E)te
Thus, if ap < 1, then

(2.5 IEpI < NENlpll < ¢e/(1 — ag).
From (2.4), we also have e, , = —A'lEkpk; from this and (2.5),
Prcr 2 Srcn

2 __Tkk
€rp1 SO a _a¢k)2 <0,a R —a¢0)2

as ¢, < ¢, by (2.3).

The proof now proceeds in the same fashion as that of Theorem 2 in [2]. We
note that Frobenius norm is used here but this change of norm has no effect on the
proof.

To analyze the convergence for nonlinear systems, we assume that F satisfies the
following conditions:

(a) F is differentiable in an open convex set D in R", the linear space of n-
dimensional vectors.

(b) For some x* € D such that F(x*) = 0, F'(x*) is nonsingular and F" is
continuous at x*.

(c) F' satisfies a Lipschitz condition of order one at x* so there exists a positive
constant L such that

(2.6) 1F'(x) = F'e*)Il < Lllx — x*I.

We need the following result which is a special case of a more general theorem
proved by Broyden, Dennis and Moré [4].
THEOREM 2.2. Suppose F satisfies assumptions (a), (b), (c), and for all k,

2.7 1By — F'x*)g < 1B, — F'(x®) + ao,,

where a is some constant and o, = max{lx, ., —x*I, lx, —x*I}. Then there exist
positive constants € and & such that if lIxy — x*I <e and |By — F'(x*)I, <&, the
sequence (1.1) with t,, = 1 is well defined and converges linearly to x*.

We have the following result.

THEOREM 2.3. If F satisfies assumptions (a), (b) and (c), then the algorithm
defined by (1.1), (1.2), (2.1) with t, = 1 is locally convergent.

Proof. We want to prove that the algorithm satisfies (2.7). From (2.1), we have

pp p.T
2.8) B, —F'(x*) = Z [B F(x*)]( __1> + [y —F'(x*)p]<lﬁ>
JEi

j=1 pr

Thus, since u]-T Bp = u]-T Bp, and u].T F'(x*)p = ujT F '(x*)p]-,
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/ T
uf[B, — )] = ul [B ~ ")) (I— ’%’3’—>

i Pj

pr
+ul [y—F'(x*)p,-1< ; )

p; pj

(2.9)

Since ujT y = ujT F'(x + \;p)p;, where 0 <X, <1 (see [6, p. 660]) and F"' satisfies
Lipschitz condition (2.6),

Iu].T[y — F'exe*)p;] 1 < Llx + \p — x*1 lp; |
(2.10)
< LINGy = x%) + (1= )0 = x9)1 |
< Lolpl.

From (2.9), we obtain
lul [By = F'e®)] I < lu] [B - F'(x*)] I + L?0.
Summing over j,
1B, — F'c*)IZ < IB = F'(x*)IZ + nL?¢%.
Hence,
1B, = F'(x*)lz < IB - F'(x*)l + nLo,
as (o + {32)'/2 < «a + B for a, 8 = 0. The result then follows from Theorem 2.2.
To obtain the Q-superlinear convergence of the algorithm, we need the character-
ization given by Dennis and Moré [5].
THEOREM 2.3. Suppose F satisfies assumptions (a) and (b), and for some x, €

D, the sequence (1.1) with t, = 1 is such that x,, #* x*, x,. € D and {x, } converges
to x*. Then {x, } converges Q-superlinearly to x* if and only if

(2.11) B — F'o)] (e —xp)l
lim =
k— o0 “xk+l _xk "

We have the following result.

THEOREM 24. Suppose F satisfies assumptions (a), (b), (c), then the algorithm
defined by (1.1), (1.2) and (2.1) with t,, = 1 generates a sequence that converges
Q-superlinearly.

Proof. We note that since {x, } is linearly convergent,

(2.12) Z 0k < oo,
k=1

We need to prove that (2.11) is satisfied. Let

n , pof
C=3% uu; [B-F&II-—=F—|
j=1

i Pj
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Setting £ = B — F'(x*) in (2.2) and (2.3), we obtain

I[B - F'(x*)]pll?
lIpll2

ICIZ < IB = F'(x*) 1% —
Since (o — B2)” < a — 82/2¢,
1

2.13 <p——y2
(2.13) ICl, <n LA

where n = B = F'(x*)lz and ¢ = I[B — F'(x*)] pl/lpll.
By using (2.10), (2.13) in (2.8) we obtain

1 2
<n-=-y2 +Lo.
N 2nl,U g
Thus, in general, we have
1 2 v
M1 SN~ '2n_‘1’k + Logn™.
k
In particular,
12
M1 S Mg +Lokn/,

which implies that {n, } is bounded due to (2.12). Let M be its upper bound; then

<—Myypq + 1 + Logn”.

2 5=
RN

Hence, for any m = 0,

Y

SIS
It

m
<L Y 0 F Mg " My
k=0

. oo o0 2 . m 2 .
Since £p_o 0 <, Ty Yy is bounded. Furthermore, as Z_ /¥ is mono-

.. . . m 2 . . _
tonic increasing, lim,,,_, .. Z3_o Y exists, we therefore must have lim,_,., ¥, = 0.

The result now follows from Theorem 2.3.
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