MATHEMATICS OF COMPUTATION, VOLUME 32, NUMBER 142
APRIL 1978, PAGES 453-496

The Method of Envelopes

By W. L. Miranker and M. van Veldhuizen*

Abstract. The differential equation

dx A
= == t, x
o €x+g(, )

where 4 = [(1) —0] and € > 0 is a small parameter is a model for the stiff highly
oscillatory problem. In this paper we discuss a new method for obtaining numerical
approximations to the solution of the initial value problem for this differential equa-
tion. As € — 0, the asymptotic theory for this initial value problem yields an approxi-
mation to the solution which develops on two time scales, a fast time ¢ and a slow time
7 = t/le. We redevelop this asymptotic theory in such a form that the approximation
consists of a series of simple functions of 7, called carriers. (This series may be thought
of as a Fourier series.) The coefficients of the terms of this series are functions of z.
They are called envelopes and they modulate the carriers. Our computational method
consists of determining numerical approximations to a finite collection of these enve-
lopes. One of the principal merits of our method is its accuracy for the nonlinear
problem.

Introduction. The differential equation
—==x + g, x),
ox et x)

where 4 = [‘1) ‘(1,] and € > 0 is a small parameter is a model for the stiff highly
oscillatory problem. In this paper we discuss a new method for obtaining numerical
approximations to the solution of the initial value problem for this differential equa-
tion.

As € — 0, the asymptotic theory for this initial value problem yields an approxi-
mation to the solution which develops on two time scales, a fast time ¢ and a slow time
7 = t/e (cf. Hoppensteadt-Miranker [11]). We redevelop this asymptotic theory in such
a form that the approximation consists of a series of simple functions of 7, called
carriers. (This series may be thought of as a Fourier series.) The coefficients of the
terms of this series are functions of . They are called envelopes and they modulate
the carriers. Our computational method consists of determining numerical approxima-
tions to a finite collection of these envelopes.

This computational problem has been addressed by many others with a resulting
variety of algorithms. A first class of algorithms consists of multistep methods which
are exact for algebraic polynomials and/or trigonometric polynomials up to a certain
degree (the degree may depend on the type of polynomial). We mention the work of
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Gautschi [6], of Bettis and Stiefel, cf. [21] and the references therein, and the work
of Snider-Fleming [20]. In the latter paper the modified multistep methods are also
made more efficient by aliasing high frequencies by lower ones. Other methods have
been introduced by Amdursky-Ziv [1], Hoppensteadt-Miranker [10] and Miranker-
Wahba [15]. Amdursky and Ziv deflate the system, removing its highest frequency
after its determination by computational means. Hoppensteadt and Miranker use the
asymptotic theory, as they derive it in terms of infinite averages to develop numerical
evaluation schemes. Miranker and Wahba compute running averages of the solution.
(The envelope of the carrier, which itself is a constant, is, of course, the average.)
Thus our method is related to and generalizes several of the existing attacks on this
computational problem. One of the principal merits of our method is its accuracy for
the nonlinear problem.

In Section 1 we formulate the problem to be treated. We derive the asymptotic
theory in the carrier-envelope form and we introduce and develop the notion of a
smooth solution of a stiff differential equation. In Section 2 we show how the smooth
solution of a differential equation may be approximated by a polynomial solution of
an associated differential equation. We also introduce and give stability properties of
backward differentiation formulae. These formulae are to be used later to determine
the envelopes. Section 3 shows how complex valued carriers may be replaced by real
ones and shows as well in what sense the smooth solution concept commutes with
carrier changes. In Section 4 we describe two algorithms for generating envelopes. In
Section 5 we demonstrate the existence and uniqueness of the solution produced by
the computational scheme. We also obtain local and global error estimates as they
depend on €, the mesh width 4, the aliasing error and on other related parameters. A
superconvergence result as well as stability with respect to perturbations in initial data
are also obtained. All of these results in Section 5 are obtained without restriction on
the ratio €/h. By restricting this ratio we are able to obtain an additional stability
result, namely, stability with respect to roundoff errors. Finally in Section 6 we give
results of computations with our methods on a sample nonlinear problem. We point

out how the computations verify most of the theoretical behavior predicted in Section
5.

1. Exploration of the Problem. Consider the ordinary differential equation

1.1) ax _A
( ar ex+g(t,x).

Here € > 0 is a small parameter, g is a smooth mapping from a domain in R x R? into
R?, x is an R%-valued map and 4 is the skew-symmetric matrix

[} )
(1.2) 1, o

A solution of (1.1) is sought for z € [0, T, subject to the initial condition

(1.3) x(0) =&



THE METHOD OF ENVELOPES 455

The existence of a unique solution % is assumed, for 7 € [0, T]. This solution X isin
general highly oscillatory, with approximately 2m/e oscillations per unit interval. Since
€ > 0 is a small parameter, it is quite natural to describe the solution x by means of
an asymptotic series (¢ — 0). This series is not so easily obtained; e.g. a zeroth order
(e — 0) approximation is not obtained by neglecting g(z, x) in (1.1).

Since the basis of the numerical algorithm to be proposed is closely related to
the asymptotic series for the solution X, we give an interpretation of the asymptotic
results, suitable for our purpose (i.e. the numerical algorithm). Our reference source
for the asymptotic material is Hoppensteadt and Miranker [11].

Let ®(¢) = exp(4t). Hence

(1.4) Larfe) - La(e/e) = 0.

Put x(¢) = ®(¢/e)u(r). By this change of variable we consider the solution relative to
®(t/€). Using (1.4) and ®(0) = I, we find the following initial value problem for u.

(1.5) gt—u = &= (t/e)g(t, B(t/e),  u(0) = .

Now we introduce two time scales t and T = t/e. As long as the identification 7 = t/e
is maintained, no new features emerge; we simply introduce a new symbol and utilize
it where convenient. The basically new element appears by uncoupling t and 7. Le.
we consider ¢ and 7 as completely unrelated variables. Then, by some abuse of nota-
tion, we are obliged to write

d d
1.6 4 _ 9
(1.6) T

or’
where the ¢ on the left-hand side is the old ¢, and where the ¢ on the right-hand side is
the new one, which replaces the old one everywhere where the old one does not appear
as t/e. The variable t/e is replaced everywhere by 7.

+

@lo
a |-

For notational convenience we introduce the map G, which assigns to a function
u = u(¢, 7) a function G(u), given for all ¢, 7 by

(1.7) Gu)t, 1) = &~ 1 (1)e(z, A(Tu(z, 7).
Using this map G, we now have instead of (1.5)

9 19
(1.8) Y + e G(u),

with unknown (vector-valued) function u = u(z, 7).
Consider (1.8) as a hyperbolic equation on the rectangle [0, T] x [0, T/e] in
t, T-space. We know that u(0, 0) = £ This condition is clearly insufficient to guarantee
unique solvability of (1.8). As we shall soon see, the asymptotic process supplies addi-
tional constraints in such a way that the uniqueness problem is circumvented. The
manner in which this happens is the basis for the numerical algorithm to be proposed.
In order to find additional constraints, consider (1.8) in the form
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] a
1.9) 3 U= eG(u) €3 W
where ¢ is a parameter. Then (1.9) is just an ordinary differential equation, indepen-
dent variable 7, dependent variable u(z, + ). Thus, the ordinary differential equation is
nonlinear, with the nonlinear term eG(u). For all u-€ R? for which G(u)(, 7) is well
defined we have

G, v + 21) = Gu)(t, 1), Vr,

for all values of the ‘parameter’ . Thus, the ordinary differential equation (1.9), with
t considered as a parameter, is a forced oscillation in the sense of Urabe [22]. The
period of the nonlinear forcing term G(u) is 2m. Therefore, we require u to be 27-
periodic in the 7-direction. This choice has to be justified later by the proof of the
asymptotic character of the series obtained.

Because of the periodicity in 7, we introduce the Fourier series for u,

(1.10) ut, ) = 3 ePu (1)

PEZ
u, is defined by

2,
(1.11) up(t) = 511; Oﬂe"p"u(t, o)do, Vp.

Formula (1.10) expresses the idea of “separation of variables.” The basis functions in
the 7-direction (the {¢??"} in (1.10)) will be called carriers and the coefficients {uy}
will be called envelopes. The {€'PT} are not the only carriers possible. E.g. the

{cos pr, sin pr} provide different carriers, and thus, different envelopes. We also need
the Fourier coefficients of the right-hand side of (1.9). In particular, put

(1.12) g0 = 21—71 f z"e""’ ’G(u)(t, 0)do, Vp € L.

Then, under appropriate smoothness assumptions on u and g we may write

i 9
(L.13) G, 1=t 1 = T e[ @0 - Fu, 0]
pPEZ
Thus, from (1.9) we obtain an equation for each of the envelopes (i.e. Fourier coeffi-
cients) separately. For p # 0 and all ¢z € [0, T] we obtain

Vp # 0,

6
(1.14) ipu, = egy(u) — e3-uy,

which shows that the equations we obtain are ordinary differential equations with
independent variable . For p = 0, the left-hand side of (1.9) vanishes because of the
periodicity. Then so should the right-hand. This results in

(1.15) a—iuo = g, ().

Collecting these results, we have
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(1.162) 5%‘",, + l'gup =g,(u), Vp#0,
f]

(1.16b) 37 4o = 80w,

(1.16¢) u(0,0) = 2 u,(0) =&

PEZ

We still lack enough initial conditions, or other constraints, to specify a unique solution.
However, examine (1.16a), and imagine gp to be independent of u; thus gp is a function
of ¢ only. Then, any solution of (1.16a) consists of a smooth solution (depending,
together with its derivatives on ¢, and not on #/€) plus a solution of the homogeneous
equation. (This assertion will be clarified below.) This latter solution is highly oscil-
latory, and depends on 7 = /e rather than ¢. But 7 should be #-dependent, not 7-
dependent. Hence we require smooth solutions of the equations (1.16a), i.e. for p # 0.
Unfortunately, the concept of a smooth solution is an imprecise notion. However,
in many asymptotic results, and in many numerical considerations as well, it plays an
important part, without being mentioned explicitly. The work of Karasalo [12] is an
exception. Motivated by numerical considerations, he defines what is indicated here as
a smooth solution. However, his approach requires strong assumptions (analyticity)
and does not lead to a unique smooth solution. Here we adopt the following definition:
Definition 1.1. Consider the ordinary differential equation
(1.17) SRR
in C”, B a nonsingular n x n matrix and f a C"-valued map of class C™. Then the
smooth solution y, of order k of (1.17) is defined by

(1.18) yy =€eB lf =BT + - 4 (—kf 1kt Dp()
Thus, a smooth solution of (1.17) is not a solution of (1.17), unless f is a polynomial

and the order k is larger than or equal to the degree of this polynomial. However, y,

is close to a solution of (1.17) in an asymptotic sense as described by the following
lemma:

LEMMA 1.2. Let y be the solution of the initial value problem dy/dt + By/e = f,
¥(0) = y,(0). Then

() = v, (O = ("),

uniformly on a bounded interval [0, T).
Proof. We have

$(0) = exp(-Bilew,(0) + [ exp(-B(t = 5)/)(5)ds
By k partial integration steps we get
P(E) =y (@) = (- D)FH1kH1g-(k+D) f ; exp(B(t — 5)/e)f ¥+ 1(s) ds.

Now one additional partial integration step on the right-hand side gives the result. 0O
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We return to (1.16a)—(1.16¢). Our smooth solution concept as defined above
seems ineffective, because the equations (1.16a) (of which a smooth solution should be
obtained) are much more complicated than the simple linear ordinary differential equa-
tion (1.17). However, the smooth solution concept is basically an asymptotic concept
(for € — 0), and in constructing an asymptotic series for the solution of (1.16a)—
(1.16¢), the above simple concept, applied repeatedly, suffices. We will show this by
constructing the asymptotic series by means of a recursive process. Let us denote
successive approximations for the envelopes by [u, ], and for u itself by [u],.

Zeroth Term. Put [u,], = 0, Vp #0. Let [uly = [ug], where [ug], is defined
as the solution of (essentially (1.16b)—(1.16c))

(1.19) a%uo =gou),  uy(0) = .

This is an initial value problem for an ordinary differential equation which is not nec-
essarily autonomous. According to (1.12), g, should be interpreted as a mapping acting
on functions rather than function values, just as is G. Hence, if function value notation
is preferred, (1.19) should read ou(¢)/0t = go(uo)(?)- This clearly shows that the
notation is not the standard ordinary differential equation notation.

Approximation of Order k. Let [u],_, be given. Then define [u,] for all
p # 0 as the smooth solution of order k — 1 of

0 ip
(120) 5‘{141) + *e—up = gp([U] k— 1)$ Vp # 0.
See (1.12) for the 8p- Now define [t4], as the solution of
d ~. ~
(1.21) 3 %o = &g +[ul,),  ug(0) = £~ [u] (0, 0),
where
(1.22) [u] (&, ) = 2 P [u,] ().
p#0

Then we take [u], as [u],(z, 7) = z, eipf[up]k(t). This is clearly a recursive definition.
We now cast this construction into terms which are independent of the explicit
nature of the carriers and envelopes. We introduce the operators A, M and J,.

(1.23) Mu)(t, 1) = 511;{02” u(t, 0)do, (Ju)t, 7) = fOT u(t, o) do,

(1.24) H=(-M0a-M), (6= [ G nds

We use the notation [ak = (I = M)[u],. Obviously, [uy], = M[u],. It is also easy
to verify that

ipT = ?.ip_r
(1.25) H(ePTu, (1) = P up(®), Vp #0.

In view of the definition of a smooth solution, we may replace the equations (1.20) by
the following single equation
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~ p) 3 ak—l
(126) [u], = [eH— EH? oo+ (D) TR Sy _I]G([u]k_l).
Thus, if we define

— 22 0 . K krtpke1 0F

(1.27) D, =eH—-€eH 37 + + (D)€" 'H 3
and if we use J, to write (1.21) as an integral equation, we have
(1.28a) [mk = Dk_lG([u]k_l)a
(1.28b) [o] ) = & = [W(0, 0) + 7 go([uly).

Using (1.28a)—(1.28b), we start anew to define the [u], recursively. For k = 0, put
[u], = 0 and use (1.28b) to define [uy],. Then apply (1.282)—(1.28b) with k = 1 t
obtain [u],, then with k = 2 to obtain [u],, etc. If these [u], exist as sufficiently
smooth functions, then this construction, by means of (1.28a)—(1.28b) is equivalent
to the earlier one, i.e. (1.20)—(1.21), and at the same time it avoids Fourier series and
related convergence questions.

The following assumption is necessary to make sure that [u],, as defined recur-
sively by (1.28a)—(1.28b) is well defined, for any given k > 0 and for € > 0 sufficien
ly small:

Assumption 1.3. (i) The initial value problem (cf. (1.19))

0
a—t'uo = go(uo)a uo(o) =§
has a unique solution u§ on [0, T].
(ii) g is of class C” on [0, T] x B(8), where

>

|
B(®) = {xlx ER?, |x| < sup |ud(n)| + 6;.
t€[0,T]

Here the vector norm | - | is the euclidean norm, and § > 0 is an appropriately chose
constant. O

Clearly, this assumption implies the unique solvability of (1.28b), provided that
[Tf]k is sufficiently small in a supremum norm. The second condition implies that
[u],_, and G([u],_,) are of class C* (by a recursive argument). Thus, for € >0
sufficiently small it is indeed true that [Tf]k is sufficiently small, and unique existenct
of [u], follows.

For a more rigorous account we refer to Hoppensteadt-Miranker [11]. While o
formalism differs from the one in [11], the relationship should be clear, in particular
from (1.282)—(1.28b). Thus, we may state the following theorem and corollary (wit!
out proof):

THEOREM 1.4 (HOPPENSTEADT-MIRANKER [11]). Let Assumption 1.3 hold trn
and let € > 0 be sufficiently small. Then [u], is well defined and we have

Ix(5) - @(t/e)ul, @, te)l = O(*+'), e —0,
uniformly for t € [0, T]. O
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COROLLARY 1.5. Under the above conditions
o
ol D = [ul,_, @& D} = 0", e—0,

forj=0,1,2,...,and uniformly intand r,t € [0, T],7€R. O

We conclude this section with the following observations.

Remark 1.6. The relations (1.28a)—(1.28b) may be derived much more directly.
However, we require the Fourier coefficients explicitly, to reveal the smooth solution
concept behind the asymptotic series. The smooth solution concept forms the basis for
the numerical algorithm.

Remark 1.7. The relations (1.28a)—(1.28b) demonstrate that the [u], are R?-
valued. This is much less clear from the description in terms of Fourier coefficients.
In Section 3 we will show how to choose a convenient basis in the 7-direction (i.e. set
of carriers), which preserves the smooth solution concept, and which gives R2.valued
envelopes. E.g. if we write

oo

u(t, 7) = Z up(t) cos pr + Z vp(t) sin pr,
0 1
we have R2-valued envelopes, but the smooth solution concept is not applicable, be-
cause 90/0T maps cosines into sines.

The numerical algorithm to be proposed is closely related to (1.28a)—(1.28b). In
place of [u]; and [u],_, we introduce one discrete approximation (to [u],). D, _,
is replaced by a discrete approximation and the equation (1.28b), essentially an ordi-
nary differential equation is replaced by a collocation method. This set of discrete
equations may be solved by an iterative process which is the analogue of the recursive
process defining the [u],. But equally well, a different solution method may be used,
e.g. a Newton-type method. This is particularly important if € > 0 is not very small
(in relation to problem dependent parameters or algorithm dependent parameters).

2. Approximation of a Smooth Solution. The smooth solution concept plays an
important part in the construction of the [u], in Section 1. Indeed our aim is to
approximate ¥ e'P '[up] - In this section we discuss the approximation of a smooth
solution by a numerical method. The simple methods which will be proposed play an
important part in the numerical algorithm for approximating an asymptotic expansion
for the solution of (1.1).

Consider the ordinary differential equation (cf. Definition 1.1)

@n L 18y - o)

Here fis a C"-valued map of class C™, and B is a nonsingular matrix. Let m, f denote
an interpolation polynomial of f on k + 1 abscissae; the abscissae should all be different
from each other, and they are supposed to belong to a segment [0, A]. Here A plays
the role of the stepsize. Let | - | denote a norm on C*. As matrix-norm we use the
corresponding l.u.b.-norm. The following lemma shows how to approximate a smooth
solution of order k of (2.1).
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LEMMA 2.1. The equation

" B
2.2) 7aR ;yh =mf

in the unknown y®, y* a polynomial of degree < k, has a unique solution given by
23) Y =eB'mf- B m )+ + (DFFTIB (g, ),

Moreover, if y, is the smooth solution of order k of (2.1), then there exists a constant
c(k), depending on k, but not on €, h and f, such that in the L™ (0, h)-norm || - ||

k
24) Wi =" < ec(Rp**! <IB"1I + Z-IB"I +eo 4 f?|3—(k+l>|>||f(k+l)||.

Proof. Clearly, y" as given by (2.3) is a solution of (2.2). Any other solution of
(2.2) therefore differs from »” by a solution of the homogeneous equation dy/dt +
By/e = 0. Since B is nonsingular, a solution of the latter equation is never a polyno-
mial, unless identically zero. This proves the uniqueness of ”. The estimate (2.4) fol-
lows from a termwise application of the well-known estimate

d . .
| G = 1O < ey tupter iy

with constant c; independent of 4 and f and the ensuing assignment c(k) = max; ¢, U

Clearly, formula (2.3) defines an algorithm for the approximation of the smooth
solution y, of order k. The approximation error is given by (2.4).

In general, the algorithm defined by (2.3) will be applied on consecutive subinter-
vals (0, h), (h, 2h), (2R, 3h) etc. On each subinterval, the approximation error is given
by (2.4), with || - || interpreted as the L™ -norm on that subinterval. Hence, if the total
interval is (0, T), then the approximation error again satisfies (2.4), but with || - ||
interpreted as the L™ (0, T)-norm.

The method defined by (2.3) is self-starting. No initial values are required. How-
ever, if ¥ is an approximation for Y- obtained by applying the method on consecutive
subintervals, then y” is in general discontinuous, with jump discontinuitites at the joins
of the subintervals. This is caused by the (m, f Y)._terms. The discontinuity is very
mild, since the size of a jump is at most twice the size of the approximation error
Ye =Y k.

The method defined by (2.3) should not be applied if €|[B~!|/4 is “large.” Indeed,
on a suitable basis in the linear space of all polynomials of degree < k, the terms
(m.f )(j) in (2.3) are simply the difference formulae for the approximation of f 2
Such formulae are well known for their instability with respect to roundoff. Since
¥ = 0(eB~') and the (m.f Y?.terms in (2.3) are premultiplied by €+ 1B~U+1) then
in the scale of ", each such term is premultiplied by &B~/. This premultiplication
compensates for the numerical instability, or even annihilates it, if e[B~'|/A is sufficient-
ly small.

If f= f(¢, y), formula (2.3) still applies, provided that m, f is interpreted as
(m ) =m f(+, "+ ))(®); thus m, f contains the unknown y". Clearly, the problem
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dy/dt + By/e = f( -, y) is a model for the equations (1.16a), which are somewhat
more complicated. In the numerical algorithm to be proposed, we make use of the
equations (1.16a) and the method defined by (2.3), with nonlinear right-hand side. In
this way, the recursive process for the [u, ], is replaced by a single equation. In Sec-
tion 5, the unique solvability and the approximation properties of this process will be
discussed.

Practical experience indicates that the process described is quite costly if f =
f(t, ). In such a situation, the process has all the disadvantages of a Galerkin or
collocation method, and the arguments of Keller [13] against such methods apply to
the above process as well. Therefore, we look for an alternative procedure to couple
with the one already described.

It will be shown for the simple equation (2.1), that the backward differentiation
multistep formulae provide an alternative for the method defined by (2.3), as long as
appropriate starting values are supplied (the latter being furnished by the method
(2.3)). See Henrici [9], for general information about multistep methods, Gear [7],
[8] about the backward differentiation formulae in particular, and Lambert [14] about
stability domains in general.

The backward differentiation formulae are of the form

2.5) Yo toy, +- - +oy, ., =hbyf,, o FO0.

(We use the standard multistep notation; e.g. when applied to (2.1) one should read
f, =—By,le + f(t,)in (2.5).) The coefficients, . ..,a,, B, with a, # 0, are deter-
mined by requiring (2.5) to be both stable in the sense of Dahlquist [5] and exact if
applied to an ordinary differential equation with a solution which is a polynomial of
degree <r. Forr=1,2,..., 6 these requirements are known to determine unique
coefficients. See Gear [7]. Thus, we restrict ourselves tor =1, 2,..., 6. We now
state and prove Lemmas 2.2—2.5 which describe the accuracy and stability with which
the backward differentiation formulae (2.5) may be used to approximate smooth
solutions.

LEMMA 2.2. Let y; be the smooth solution of order k of (2.1). For this y, the
local discretization error of the method (2.5) is given by

1
6,, = ;{yk(tn) 4+ aryk(tn—r) + ﬁoh gyk(tn) - ﬁohf(tn)}

= (= 1)¥Byek 1B~ *+ Dz y + mrO(ly*+ V),

with || - || the L= (¢, _,, t,)-norm.
~ Proof. The construction of the coefficients implies that for any smooth function,
and thus for y, in particular

Lot + -+ 0y, )} = Bovilt,) + HOUYE VI,

Hence, by simple substitution

By = Bod i) + 230 = e} + wOUE O,
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For y, we have the explicit formula (1.18). With this formula, the assertion readily
follows. O

The following stability properties of the method (2.5) are well known, see Gear
[71.

LEMMA 2.3. Apply the method (2.5) to the scalar equation y' = \y. Then, for
all starting values yy, ¥y, . . . , ¥,_, and for |hA| sufficiently large, we have y, —> 0,
n—> o, Jf Re(\) <0, then y,, — 0, n — o for all h > 0 and all starting values
Yo Yir++ -+ Yy_q, Drovided that r = 1,2. O

This stability result is not enough; we also need a bound for the y,. Indeed, the
above lemma does not exclude that under the circumstances cited sup,|y,| — oo for
fixed starting values and |AA] — . We show:

LEMMA 24. Apply the method (2.5) to the scalar equation y' = \y. Then, for
[~ sufficiently large

|yl < max [yjl, Vn.
j=0,..,r—1

Proof. For |hA| large, the roots of the polynomial (1 — BoANx" + o x4

+ a, are approximately given by

y a, \/7
~ p2mif/r r
W e w=|[|——
f Y (Bohx> :

Write the solution y,, as y, = Efgolaiw;'. The a; are determined from the starting

values by a linear equation, the matrix of which is the Vandermonde matrix

.......... 1
Woeoonnnnn W, W 0 | e~ 2milr
—1 _ _ . .
wWo .. w,_ i 0 w1 1oL, .. e—2mi(r—1)/r

Apart from a multiplicative factor /7, the last matrix here is unitary. Hence, 4 =
ow'~"), forj=0,1,...,r=1. Thus,y, = O(w!~"w") = OW"~"t1) = O(w)
for all n = r. But w — O for |AX| — oo. This proves the assertion. [J

This result can be improved upon by carefully estimating the constants in the
O-symbols in the above proof. Upon doing so we obtain the following lemma by standard
techniques.

LEMMA 2.5. Let B be diagonalizable, and let the method (2.5) be applied to
(2.1). Then there exists a constant c, depending only on B and r, such that for €/h
sufficiently small and all n = r

ch -
ieltn) =yl S 775 maxs, | + co” U max |y () - vl

p<n 0<j<r—1

with p ~ O((e/m)*'") for e/h — 0. O
Thus, because of the strong damping, the error in the starting values scarcely
affects the y, for n > r, and the global discretization error is mainly determined by
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h x maxlapl, with the 6, given in Lemma 2.2. This shows that the backward differ-
entiation multistep formulae may be used to approximate a smooth solution.

Because of the strong damping, starting values y;= 0,7=0,1,...,r—1,
might be used. However, in a nonlinear situation, and if €/h and € are not extremely
small, this should not be done. It is much better to use the method defined by (2.3)
to generate the starting values. This is costly, but it has to be done only once. This
process will be explained in more detail in defining the numerical algorithm for (1.1).

Finally, it should be observed that the problems and the algorithms of this
section are closely related to earlier work of Miranker-Wahba [15]. Some ideas, con-
necting this section with their methods may be found in [16].

3. A Question of Formulation. In this section we show how to avoid complex,
nonreal numbers in the formulation of the problem, and thus in the algorithm. In the
next section we will describe the algorithm in a complex linear space, and thus the
algorithm would require complex arithmetic in an actual computer program. It is
possible to avoid the complex arithmetic, if the asymptotic series for the solution of
(1.1) is real, and this is the common situation. One simply has to change the carriers
(basis functions in the 7-direction, e.g. the {¢’P"} in Section 1). In changing the
carriers, one changes the equations (1.16a)—(1.16¢). Thus the smooth solutions change.
We need to make sure that the change in the carriers is reversible with respect to the
smooth solution concept. Even more, we need to make sure that the smooth solution
concept is preserved under the change of the carriers. E.g. replacing the {¢’P7} by the
basis functions {cos pr, sin pr} destroys the smooth solution concept of Definition
1.1. It will be shown that a basis involving powers of &(r) (cf. (1.4)) is a good sub-
stitute for the basis of the {¢P7}.

The result of this section is the following theorem:

THEOREM 3.1. (i) If f;, f_, € C?, then there exist unique g,, §_, € C* such
that for all T ER, fe" + f_e7'" = ®(1)g, + "1 (Dg_,.

(ii) Forj=1, -1 let u; be the smooth solution of order k of

d j. k
d—tuj'l‘;uj—fi(t): f}-GC.

Also, forj=1,-1, let y; be the smooth solution of order k of (cf. (1.2) for A)
d A
a’i +]'e'yl‘ =g(D, &€ c*.

Then u €™ +u_,e™" = ®(r)y, + @~ (r)y_, iff 1€ +f_,e” 7T = d(r)g, +
- I(rg_,. O

Indeed, this is what we need. The first statement asserts that the basis functions
€T and e~ have a representation in terms of the real functions ®(7) and ®~ (7).
The second statement asserts that this change in basis does not affect the smooth solu-
tion: the smooth solution concept commutes with this change in basis.

Proof of the Theorem. The first statement follows easily: First, we observe that
A = UAU*, U unitary and that
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=l )

Second, we use ®&(7) = exp A7 = Ulexp AT)U*.
Making use of the definition of a smooth solution, it may be seen that the second
assertion is implied by the equivalence relation

{VPEN, i7Pfe" + (i) Pf_,e™"" = A7PB(r)g, + (—A) PP~ (ng_,}
={fe" +f e =d(1)g, + 0 (g_,}.

So we prove this equivalence.
«: Differentiate f) e+ f_le_i" and ®(1)g, + ¢I>‘1(T)g_1 each p times with
respect to 7. Observe d®~ ! /dr = —A®~!. Then use

3.1 2P = (i) *PI = A7 = (-A)"?P = (-1YI, Vp

=: Integrate i~Pf] e+ (~i)"Pf_,e” " and A"PP(r)g, + (~A)"Pe ' (n)g_,
each p times with respect to 7. Making use of (3.1), the result is,

fleiT +f_le_" = ®(1)g, + <I>_1(1')g_1 + n(7),

with 7(7) a polynomial in 7. Since ®(r), ®~ () and e*'" are bounded uniformly in
7 € R, n(7) is a constant. However, in the 7-direction, f; eT+f e T and P(1)g, +
<I>'1(7')g_l have mean value zero on [0, 27]. Thus n(r) =0. O

4. The Algorithm. In this section the numerical algorithm is described.

The algorithm to be described consists of two parts: a starting method, and a
method to be used once suitable starting values have been obtained. The latter is
essentially Gear’s multistep algorithm for stiff equations, see [7], and so we concentrate
on the starting method.

The starting method is a discretization of the equations (1.16a)--(1.16c). First,
the number of Fourier coefficients is made finite, and only Fourier coefficients with
index p, |p|l <d are approximated. For p # 0, the approximation method in the #-
direction is the self-starting smooth solution solver of Section 2. For p = 0, a colloca-
tion method is used, cf. Axelsson [2], Weiss [23] and Russell [18] for collocation
methods. The use of a collocation method for p = 0 is quite natural, provided that
the collocation points coincide with the abscissae of m,, the interpolation polynomial
projector used in the smooth solution solver.

It is also possible to view the algorithm as a discretization of (1.9). First a dis-
cretization in the #-direction and then a discretization in the 7-direction as well. In
both cases, the discretization is a projection method. Le., it is defined by a projection
and (two) function spaces. We will now describe these discretizations.

Discretization in the 1-Direction. Consider a function u = u(7). It is not impor-
tant here whether u depends on 7 and ¢ rather than 7, because processing in the 7-
direction is performed for ¢ kept fixed. So we may as well omit ¢ in the notation, at
least in the description of the discretization in the 7-direction. We assume u = u(7) to
be periodic, period 27. Its Fourier coefficients u,, are given by
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- 2m ipo d
u. = a
=270 u(o)e o.

There exists a simple discrete version of this formula, which makes the approximation
of the Ups Ipl < d, possible. Let m = 2d + 1 be an integer and set

27j . _
“4.1) = j=0,1,2,...,m—1.

~ ] m=t .
(4.2) up = 2 u(r)e” P,
j=0

~

In (4.2) there is no distinction between u, and ’z;'q if p = ¢ (mod m). This is the well-
known aliasing effect.

Let u = u(7r) (or u = u(t, 7), but then ¢ is kept fixed) be continuous on [0, 27).
Then the ;p are well defined, because 7€ [0, 27) forj=0,1,...,m— 1. Thus,

we may define Il ,, by

43) (g0 = 2 ePTu,.
Ipl<d

Clearly, 11, ,, assigns to u a trigonometric polynomial of degree <d. Since m > 2d +
1, ’Jp =u, for u a trigonometric polynomial of degree <d. Then ﬂfi’ m = Ug - Le.,
Iy , is a projection.

As a special case, choose d = 0. Clearly, 11, ,u approximates the mean value
2n)~1 f%"u(o)dc by the mean value of the data u('rj),j =0,1,...,m— 1. For ease
of exposition we therefore use the notation

(4.4) M, =T, ,,.

Discretization in the t-Direction. Consider a function u = u(¢). It does not
matter whether or not u = u(f, 7) rather than u = u(¢), because all processing in the
t-direction is performed for 7 kept fixed. So we simply drop 7. We will make use of
two discretizations in the #-direction.

The first discretization is the projection m,, which assigns to u the Lagrange
interpolation polynomial on k + 1 different abscissae in [0, 4].

The second discretization which we need is called '77,‘_ .- 7rk_ ; is defined by:
;k_lu is a polynomial of degree < k — 1 and ;k_lu — mu is orthogonal to all poly-
nomials of degree < k — 1 in the L2(0, #) inner product. Thus, if P; is the Legendre
polynomial of degree i, shifted to (0, #), and if mu = agPy + - - - + Py, then
17k_ w=ogPy +---+a_ P._,. This shows that m, and ?k_l use function values
evaluated at the same abscissae.

Discretization in the t, T-Plane. let u = u(t, 7) be continuous on [0, 4] x R,
and periodic with period 27 in the 7-direction for all £ By keeping ¢ fixed, we may
apply 11, ,,, to u(t, - ), and then, by keeping 7 fixed, we may apply m, (or ;k_ ) to
(y ,,,w)( -, 7). If u is sufficiently smooth in the 7-direction for all #, then u may be
written as the convergent series
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4.5) u(, 1) = 2 P (o).
pEZ
Obviously,
(4.6) (T, )t 7) =|‘T‘ éPTu,(2),
pl<d
4.7) (Mg o)t 1) = 22 €P7(m )0,
Ipl<d

where the ’Jp are given by (4.2) (¢ considered as a parameter).
On the other hand, [y 7 is also well defined by the continuity of u. Again,
for u sufficiently smooth in the 7-direction, we have

(4.8) (meu)(t, 1) = 3 &P(mu, )(0),

PEZ
while Tl ,, mu = M Il 0 for u smooth. The following Lemma 4.1 and its Corollary
4.2 assert that continuity alone of u is sufficient for the commutativity of these pro-
jections.

LEMMA 4.1.  Let u be continuous on [0, h] x (0, 2m). Then My u =
My ,mhu. .

Proof. Let v(t, 7) be of the form =2 a, qe””tq, with finite summations, such
that v(z,, 1']-) =u(t,, Tj) for all points T = 0,1,...,m—1,and all k + 1 abscissae
t, of m. Thus v is smooth in the above sense (no convergence problems because of
the finiteness of the sums), and w11, , u = m 1, v =T,  mv = My mmeu. O

COROLLARY 4.2. The projections ; ,,, and M, in the r-direction commute
with the projections m, and ;k_l in the t-direction if applied to continuous functions
on [0, h] x (0,2mr). O

The Discretization of (1.9) in the 1-Direction. The basic equation (1.9) is hyper-
bolic. Its solution is subjected to boundary conditions for 7 = 0, 7 = 27 (the period-
icity in 7), an initial (point) condition as well as the smooth solution concept in the ¢
direction. This situation is familiar in numerical analysis and one of the frequently
used discretization methods is the “methods of lines”. (This method is best known for
parabolic equations.) The idea of this method is to discretize first in one direction
(this yields the lines) and then in the other. We do exactly that. Following common
practice, we discretize first in the variable for which boundary conditions are the con-
straints: in our case 7. As “line functions’ we use envelopes, i.e., Fourier coefficients,
and the discretization replaces an infinite number of them by a finite number. This is
accomplished by M, ,,,- Thus, we construct a system of ordinary differential equations
(with independent variable ) which approximates (1.9). The unknown will be of the
form

(4.9) ut, )= 2 €PTu (1)
Ipl<d
with differentiable u,. Observe (I, ,u, )t 7) = uy(t, 7) for all (¢, 7) € [0, 4] x

(0, 27). In Section 1 we used the Fourier coefficients gp(u)(t). Here we need their
discrete counterparts,
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4.10) 2@ =L "}fol PG, 7).
P2

This is just formula (4.2) for G(u) instead of u. Quite clearly
(4.11) (Mg, Gt 1) = 2 €P7g,(u)0).
) Ipl<d

Since Tl ,,u; = ug, it follows that aﬂd’mud/at = Qu,/0dt and that aﬂd’mudlar =
ou,/97. Thus we replace (1.9), written as

a 1
(4.12) FYL i a%_—u + G(u)
by
9 19
(413) 'a—tud = ——e-s;ud + "d,mG(ud)‘

This leads to the following system of ordinary differential equations for the u, (cf.

@.11)).

2 i ~
=-2u, + 2,0y, 0<pl<d

4.14 —u. =
( 2) atul’ € P

(4.14b) 56,'“0 = ().
This defines 2d + 1 ordinary differential equations in the 2d + 1 unknown C2.valued
functions u,. This resembles (1.16a)—(1.16b), and it explains the nomenclature:
method of envelopes.

The Self-Starting Method. Now we discretize (4.13), or equivalently (4.14a)—
(4.14b), in the r-direction. We require smooth solutions for the equations (4.14a) and
therefore, in view of Lemma 2.1 and the discussion following it, we replace the up, in

(4.9) by polynomials u”

p- le., we replace uy by uy 4,

(4.15) u (1) = 2 Pl
Ipl<d

Each polynomial uZ has degree < k. Then (4.14a) itself is replaced by

9 n

(4.16a) 3 p

ip ~
= Uy +mgyug,),  0<Ipl<d,
as suggested in Section 2. Since degree (uﬁ) < k, we replace the ordinary differential
equation (4.14b) by the discretized ordinary differential equation (projection method)

d

(4.16b) 3740 = Ti_180(ug )

Finally, we have the initial condition

(4.16¢) ug (0,0)= > uh(0) =%
Ipl<d
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Thus, (4.16a)—(4.16c) is a direct discretization of (1.16a)—(1.16c).

The equations (4.16a)—(4.16b) are nonlinear in the unknown polynomials ug
(through the gp-terms). If there is a unique solution for the uZ, it should be obtained
by an iterative process. Picard iteration could be used for (4.16b). In (4.16a) we can
make the troublesome 8/d¢-term more explicit, if we write this equation in the follow-
ing equivalent form, hinted at in Section 2.

k+1
€ ~ € ~
4.17) uh = =meg,(ug )+ + (—1)"< > 3% "x8p(Ua,i)-

ip ip

This suggests successive substitution, because of € > 0 being small. For € and 4 not
extremely small, one might wish to accelerate the process by a Newton-type device.
However, the concomitant explicit computation of the Jacobian matrix of the right-han
side of (4.16b), (4.17) seems costly, and should therefore be avoided. Numerical differ
entiation for determination of the Jacobian matrix seems more appropriate.

Finally, we give a carrier independent formulation of the starting method. We
use H, M, J, and D, as in Section 1, cf. (1.23), (1.24), (1.27). Moreover, we use the
notation ;d' x = —Mu, ;. Then the equivalent form is (use (4.17))

(4.182) U = DTy 1 Glug )
(4.18b) uh =§ - ;d’k(o, 0) +J, ;k—leG(ud,k)’

(Compare (1.28a)—(1.28b).) Indeed, our starting method is a discretization of the
type indicated in Section 1.

The Multistep Method. The above algorithm is obviously quite expensive, since
on each subinterval, for instance on (0, ), (2d + 1) x (k + 1) unknown 2-vectors are
to be determined from the nonlinear equations (4.16a)—(4.16¢). Using a multistep
method as a discretization of (4.14a)—(4.14b), requires the determination of 2d + 1
unknown 2-vectors in each step. Therefore, we propose the use of the multistep
method (2.5). However, the starting values should be obtained by employing the self-
starting method.

We return to (4.14a)—(4.14b). This is a stiff system of ordinary differential
equations. For € > 0 small, the Jacobian matrix of this system is to a reasonable
approximation given by the linear terms in (4.14a)—(4.14b), i.e., the factor ip/e multi-
plying up,. Hence, the Jacobian matrix has many eigenvalues on, or close to the imag-
inary axis, and having large modulus as well. Of course, (4.14a)—(4.14b) is a discretizec
hyperbolic partial differential equation (discretized in the 7-direction only) and the
eigenvalues of the Jacobian matrix correspond to modes for the hyperbolic problem.
Usually in the numerical treatment of hyperbolic problems, these modes must be
represented reasonably well (energy conservation, or at least no strong damping). Here
the smooth solution concept enables us to avoid that requirement. Therefore, we pro-
pose the use of the backward differentiation formulae (2.5) to solve (4.14a)—(4.14b)
approximately, despite the strong damping properties of these multistep methods for
large modes. Indeed, the strong damping property is advantageous. See the simple, but
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illustrative discussion in Section 2 for properties of the multistep methods (2.5) in
approximating a smooth solution.

The multistep method needs starting values. These values should be supplied by
the self-starting method.

A variable order, variable stepsize implementation of the multistep methods (2.5)
might be used. However, one should be aware of the instability of the higher order
methods (r > 3) for eigenvalues of moderate size along, or close to, the imaginary axis.

Approximation of X. Both the self-starting method and the multistep method
yield approximations for the u,, |p| < d. Thus, X(?) is directly approximated by

Btfe) 3 ePUeul(),
Ipl<d

in which expression ¢ and 7 are coupled by 7 = t/e. For the multistep method we
might need some additional interpolation, since only discrete values of ug are obtained.

Special Cases. The above self-starting algorithm is defined for k + 1 arbitrary
abscissae on [0, #]. In the actual algorithm these abscissae must be fixed, and Lobatto
points, Radau points or Gaussian points seem a reasonable choice. In the case of
Gaussian points, the algorithm might be changed slightly: instead of using a polynomial
of degree < k for uﬁ, one may use a polynomial of degree <k + 1 for ug, but not for
the other ug. The same possibility applies for Radau points, but not for Lobatto
points.

Also, in the multistep method one might use an Adams-Moulton multistep
method for ug, but not for the other ug, p # 0.

5. Error Estimates. In this section we give a rigorous analysis of the self-starting
method. We proceed by introducing a set of equations, equivalent to the ones which
define the self-starting method. This new set of equations allows the use of the Banach
fixed point theorem without the restriction that €/ is small. The result is existence
and uniqueness of a solution of the equations defined by the self-starting method.

Also, error estimates are obtained, see Theorem 5.14 below. Then we use this basic
result in analyzing some properties of the self-starting method: superconvergence;
stability with respect to perturbations of the initial vector; global error estimates. These
results are obtained without the restriction that €/ is small. We also obtain stability
with respect to perturbations of the right-hand side of the equations (rounding errors).
However, this particular result requires a restriction of the form /4 < c/k?, ¢ a con-
stant. Cf. Consequence 5.22 below.

An analysis based on the assumption €/A small might very well be obtained. Cf.
(4.17) and the successive substitution process suggested there. Nevertheless, we adopt
an approach without the condition that /A is small. This permits a sharp distinction
between the role of € and the role of 4. Such a distinction is important, because €
and & do play differing parts. The parameter € is specified by the problem, i.e. the
equation (1.1), while 4 is chosen in applying the self-starting method. Thus, from the
point of view of numerical analysis, € is not a free parameter, while 4 is a free param-
eter.
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Readers not interested in technical details may proceed to Theorem 5.14 below;
the technical results preceding Theorem 5.14 may be skipped as they are not required
for understanding the statements of the results. However, one should take notice of
the norms || - I, Il - Il (see (5.5), (5.6) respectively), and the symbol Na,m (see the
discussion immediately preceding Theorem 5.14).

To begin with we reproduce the relations which determine [u],, cf. (1.28a)—
(1.28b) and Uy x> cf. (4.182)—(4.18b). These are

(5.12) [ule = Dy, G([ul_ ),

(5.1b) uy = £ = [u],(0, 0) +J,go([uly),
and

(5.22) Uy = Dym Ty, Glug ),

(5.2b) ult = £ =0y 0, 0) +J, m_  8o(ug ),

respectively. Here, and henceforth, we use the notation of Section 1 and Section 4
respectively. In particular, recall go(u) = MG(u), go(u) = M,,G(u). We will make use
of the following two function spaces.

C = {ulu: [0, ] x R — R?, continuous, 2m-periodic in the

(5.3)
second variable for all ¢t € [0, /] }.

54 Chp= {u lu(z, 7) = > eipTuZ(t), ug a polynomial of degree < k}
Ipl<d

In particular, u, , € C; , C C. The Euclidean norm in R? is (again) denoted by | - |.
Observe that |®(1)l = |®~!(7)| = 1 in the corresponding matrix norm. In C we have
the supremum norm || - ||,

(5.5) llull = sup lu(z, .
(t,7)E[0,h] XR
An important part is played by the norm ||| - ||, which is defined on a subset of C by
J
(5.6) llull = max ‘ i'u“
j=0,1,..,k 11 0¢

Use of the norm |[lulll always implicitly presumes that the partial derivatives d/u/d¢,
j <k, are continuous, i.e. are elements of C

If v = v(¢) rather than v = v(z, 7), we just interpret v as a function of (¢, 7) (but
one which is constant in the 7-direction for each ¢), and we use ||v|| and ||[v]|| with the
obvious meaning.

The map G, cf. (1.7), is defined by

(5.7) G)(t, 1) = & 1(n)g(t, B(Pu(t, 7).

Thus, for smooth g, G is differentiable with respect to ¢ and 7, and Fréchet differenti-
able with respect to u. In particular, we have
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(5.8) (53; G) (u)(t, ) = 1 (1)g,(t, D(Du(z, 7))

with g(t, x) = 9g(t, x)/ot. Also,

59) (Z6) @ » = 0~ @, 2 00)

with g,.(¢, x) = 9g(#, x)/dx. Note that (dG/du)(u)(t, 7) is a linear map from R? — R2,
(8G/du)(u) is a linear map from C into C, and dG/du is a map, not linear in general,
from a suitable subset in C into the set of linear maps from C in C. Formulae similar
to (5.8) and (5.9) are valid for the higher derivatives.

Henceforth it is assumed that Assumption 1.3 holds true for some T = hy = h.

We now begin the presentation of a sequence of technical results, which culminate
in Theorem 5.14.

LemMA 5.1. (i) 9/t is a bounded linear operator from Cq,x into Cy | and
lla/atll = 2k%/h, NYd. (Cf (5.4).)

(ii) 8/0t commutes with H, M, My, and My, on {ulu€ C, du/at € C}. (Cf.
(1.23), (1.24), (4.3) and (4.4).)

(iii) H is a bounded linear operator from C into C. Moreover, ||H| < 4.

(iv) M,, is a bounded linear operator from C into C. Moreover, M, Il = 1.

(v) J, is a bounded linear operator from C into C. Moreover, ||J Al =h

(vi) m, ;k_l are bounded linear operators from C into C.

(vii) All partial derivatives of G up to a certain order are bounded on {u € C|
llull < lludll + 8}. (Cf. Assumption 1.3.)

Proof. In C, ., 9/9t operates on polynomials of degree < k. Thus 3/d¢ is bound-
ed. The bound on its norm follows from the Markov-Bernstein inequality, which
asserts that |||f']]l < k2|||f|||, where f'is a polynomial of degree < k. The norm ||| - ||l is
the supremum norm on [—1, 1]. If fis the Chebyshev polynomial of the second kind
of degree k, then the equality sign maintains. (Cf. Rivlin [17, p. 105].) This proves
(i). The commutativity of 9/d¢ with M, ,, and with M, is obvious, because My s
and M, u are trigonometric polynomials with coefficients which are linear combinations
of the ll(Tj, 1), cf. (4.2), (4.3), (4.4). The commutativity of 8/d¢ with H and with M
follows, if 9/dt and J, commute. However, for all u € C with ||9u/dt]| < o=, du/dt € C,
the definition of differentiability easily shows aJ,/dt = J,(9/dt). This proves (ii). (iii)
and (iv) follow easily from the definition of H and of M, , respectively, and (v) is an
immediate consequence of the interval length # in the #-direction. (vi) is a consequence
of the Lagrange interpolation formula. Finally, (vii) is just a transcription of Assump-
tion 1.3(ii) into the G-terminology. O

Remark 5.2. ||m |l =2 O(log k), cf. Schonhage [19, p. 125]. Thus, [lm, |l is not
uniformly bounded in k, ¥ — oo. This is probably also true for II;k_ e

LEMMA 5.3. IIHl'Id’mII is bounded uniformly in d and m, m = 2d + 1.

Proof. The arguments are very similar to the ones used in the proof of the
Erdos-Turan Theorem, cf. Cheney [3]. We show that Il , is bounded uniformly in
d, m from Cinto a larger space; then we use the fact that H is a bounded linear operator
from this larger space back into C.
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Let I' = {plp €Z, —((m - 1)/2) < p < (m/2)}, and let

s=vivr)= X ePla,, a, €Ch.
pET
Let ¢, € S be defined by ¢ (1) =6 _;, for 0 <p, j <m — 1 and with 7, = 2nj/m.
p p\'j pj j
We introduce the operator II,,, as follows:

m—1
(M), 7) = 3 ult, 7,)0,(1), €0, k], Vr.
p=0
Thus, (T1,,,u)(z, - ) is the trigonometric interpolation polynomial of u(z, - ) on the

abscissae T} Observe that

(L)t 1) = 2 e"”’;p(t).

pET

Thus, since {plp € Z, |p| <d} CT,
2 27
[0, e, D dt < f 710 DI at

Now we observe that
2m - 1
S, 0,8, dr = ~5,,.
This is so, since the integral equals the discrete approximation
1 m—1 _
m j§0 ¢p(T]')¢q(Tj)y

because ¢y, 0q € S. Consequently

)12
”(nd’mu)(tr )”L2(0,21I’)

1 m-—1
< W2 < — 2 < 2
L0 Wy <5 2, 00T <
Since H is bounded as a linear operator from L2(0, 27) into L™(0, 27), we finally

obtain
[lHTI ul| < sup [|(HTT u)(f, -
d,m o t€(0,h) ( d,m )( )”

< sup ||H] ul| = ull.
Sap WL, ol = I, ol

This concludes the proof of the lemma. O

Remark 5.4. 1t is known that ||TI,, || = O(log m), cf. Schonhage [19, p. 127].
We expect a similar behavior for IIHd,mII if 2d + 1 is close to m. Of course, the fact
that ||TI,, || = O(log m) is closely related to the bound ||1rk||' = O(log k), cf. Remark
52. O

In order to avoid the repetitious use of the same phrases, we will use ¢ to denote
a generic constant, not necessarily the same at each occurrence. The value of ¢ may
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depend on k, on the choice of the abscissae of 7, (on a unit interval), on & (cf.
Assumption 1.3(ii)) and on upper bounds (up to a certain order which depends on k)
for the partial derivatives of G on the set {ul|lull <|ludll + 6}. Also, the value of ¢
may depend on the upper bounds €, 4, for € and & respectively. The value of ¢ never
depends on €, h, d or m.

LEMMA 5.5. Let u € C, and let G(u) and G(m, 11, u) be well defined. Then

Mg m GW) = m 1, G(m, 1T, u),

for all k, d, m. (1, is defined as in the proof of Lemma 5.3 above.)
Proof. m 1 ,,G(u) is determined by the values of G(u) at the points (t}, ),

with the #; taken from among the abscissae ¢y, . . . , ; of m, and with 7, = 2np/m,
p=0,1,...,m— 1. However, at these points we have G(u) = G(m,IT,,u). O
LEMMA 5.6. Forall h > 0,
@ 1(u = mu)/dd| < ch™/jomu/ar™, j=0,1,... ., m<k+1,
(i) 1¥(u - 7 w/or|l < ch™ 3™ /o™, j=0,1,...,m<k,

(iii) lo'mw/ad|l < clldu/ddll, j=0,1,...,k+1,

(V) 197m,_  wod|l < clldw/adl,j=0,1,...,k
provided that the derivatives exist in C.

Proof. (i) and (ii) are an immediate consequence of a result of Ciarlet-Raviart
(cf. [4], their Theorem 5, Section 4). Then

¥

+ '&T(“k“ - u)

NP
a—ﬂ'ﬂku\a—t}ru

By setting m = j in (i) we obtain (iii). The proof of (iv) is similar. O
LEMMA 5.7. Let u,u + w € {ul|lull <|llugll + 8}. Then forj=0,1,...,k

we have
o ¥
ng;fﬂ'k {Glu + w) - G(u)}|| < c{||w|| +---+ “a—l‘]‘-w“}

Forj=0,1,...,k— 1, we have

“ e (GG +w) - G| < e{iwi +- -+ u-%]-w“}

Proof. By Lemma 5.6(iii),

[57met6t + w - ] << 37 6w + w0 - G|

Also note that

Gu + w) — G(u) = f:) (%G) (u + sw)wds.

Because of the smoothness of G, we may interchange 9/d¢ and integration with respect
tos. The set {u | [lulll <[lludll + &} is convex; thus u + sw belongs to this set for all
s € [0, 1]. Consequently because of Lemma 5.1(vii), we may write (&//0¢)(3G/ou) -
(u + sw)w as a linear combination of derivatives of w, with coefficients which are dcriv-
atives of aG/du, evaluated at u + sw and at derivatives of u + sw. The highest deriva-
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tive which occurs is of order <j. Thus, because of Lemma 5.1(vii), these coefficients
are bounded uniformly in s. In fact, the bounds depend only on |[[luglll + & and on the
bounds for certain derivatives of G. This proves the first inequality. The second ine-
quality follows similarly from Lemma 5.6(iv). O

LEMMA 5.8. Letu € (I —M)C, and let |||lT||| < 8/4. Let n be a polynomial of
degree < k (in the variable t), and let |Inlll < 6/4. Then there exists a constant hg
such that for all h € (0, hy], and all m = 1:

(i) the equation

x=¢t+n+J,M,GU+x)

has a unique solution x, |lx|| < |lu¥|l + 8/2.
(i) the equation

h=¢4nq +Jﬁk_1MmG(E+ x")

h

has a unique solution x", x" a polynomial of degree < k. Also Ixh) < lugll + 6/2.

(iii) if n = 0, then x — x" obeys the following inequalities:
“aﬂ(x xh)“<chk 1 i=0,1,...,k

Proof. We use Picard iteration. G is Lipschitzian by Lemma 5.1(vii), 1M, 1l is
bounded, cf. Lemma 5.1(iv), and so is II;k_III, cf. Lemma 5.1(vi). It then follows
easily that the Banach fixed point theorem applies, which proves (i) and (ii). Since the
second equation is just a collocation type of approximation for the first one (both
interpreted as differential equations), the results of Russell [18] apply. This leads to
the estimates in (iii), but with constants which are m-dependent. Since [|M,,|l <1
Vim, the dependence of these constants on m is readily removed. This proves the third
assertion. An mdependent proof based on Lemma 5.6, is also possible 0

LEMMA 59. Let v, u € W — M)C, and such that IVl 1l < 8/4. Let Ny My
be polynomials of degree < k, and such that |In,|ll, lin, Il < &/4. Let h € [0, hy],
with h sufficiently small. Let x", y" € {x |lIxIl < llugll + 8} and let

M=ty + T T M, G0+ x),
"=t +J, T M, GV + Y.
Then
" = Y < (1 + ch)liny = nyll + chllw = V1.

Moreover, forj=1,2,... .,k

[ < £,

,p ("?1 772)” te Z

t” (u -7)
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Proof. Since Lemma 5.1(vii) applies, the results follow directly from the formula
for x" — y" and the fact that 4 is sufficiently small. O

Now let us introduce the map F from an open neighborhood of 0 € C as follows:
Fu,, u) =x"iff x" = ¢ + uy +J, ;k_ M, G(; + x™). Thus, the range of F consists
of the polynomials of degree < k. Lemma 5.8 shows that F is well defined for all
u € C with Illuolll < §/4, IIIT(III < §/4. Also, Lemma 5.9 describes the Lipschitz char-
acter of F on this closed set.

By making use of F, the discretized equations (5.2a)—(5.2b) may be written
equivalently as

(5.102) Uy, = Dymlly ,, Glug 4,
(5.10b) ulh = F(= Uy (0, 0), ug ;).

In general, the right-hand side of these equations is not a contraction on a suitable
domain. Therefore, we introduce the map F,, defined by

(5.11) Fy(w) = F(- Dknkl'[d,mG(u)(O, 0), Dk“k“d,mG(“))'

This map F,, does have contraction properties, for € > 0 sufficiently small. This is the
content of the next lemma.

LemMA 5.10. Let u, u +w € {ulllull < llull + &, Wull <5/4}. Let e €
0, €], 2 €(0, hyl, with €y, hy sufficiently small. Then

() F, is well defined on {ullllulll < [lugll + 3, Nl < 6/4} and F, maps this
set into {u/llulll < llugll + 5/2, W = 0}.

(i) Forj=0,1,2,...,k,

ai+l k ak
<cfomt +++  Zyvl - @ ] o e o]y

Forj=1,2,...,k we have

” DT (G + W) — G}

”6’ {Fo(u + w) — Fy(u)}

7 il
. 21 £ k—j+2
c{e"wll + -4+ e”bt’ iwl| + € ”at] w“ + + € E W
For j = 0 we have
"Fo(u +w) - Fo(u)”
k
<c{ellw|| +-- Pt —w“ R A -a;k-w“}

Proof. Because of Lemma 4.1, we have m T, ,, = Tl ,,m;. Because of Lemma
5.1(ii) and the definition of D, (cf. (1.27)), we then obtain



THE METHOD OF ENVELOPES 477

d n,,, = AN k=g C
37 Demilla,m = e HUy o o7 (—eH) d,m 3k Tk

Now apply Lemma 5.3 (uniform boundedness of HTU,; ,,), Lemma 5.1(iii) (boundedness
of H), and the first estimate of (ii) follows immediately from Lemma 5.7.

This first estimate of (ii) is now used to prove (i). It follows from Lemma 5.8
that F, is well defined on the indicated set if Dy, 1 ,,G(u)0, 0)l < 8/4 for all u in
that set. Using the first estimate of (ii), we obtain

leﬂkﬂd,mG(u)(O, 0) < Dy, G
< "Dk"knd,m {G(u) - G(O)}|| + IIDkﬂkHd,mG(O)II
< ce + DT, GO)I.

Because of the smoothness of g, and thus G, and in particular by the smoothness of
G(0), it follows that Dym, My ,,, GOl < ce. Thus Lemma 5.8 applies, and thus F, is
well defined on {u|lllulll <l + 5, U}l < §/4}. The second set of estimates of
(i) follow directly from Lemma 5.9. The second assertion of (i) follows easily if we
observe that |[Fy(u) — ¢l <c +ch O

If x €R", y €R", we say that x <y if x; < y; for all coordinates x;, y; of x
and y, respectively. If B and C are matrices with the same number of rows and columns,
then we say B < C if B;; < G for all matrix coefficients B Ci]. of B and C, respective-
ly.

i

LEMMA S5.11. Let x, b € R", and let L be an n x n matrix with nonnegative
coefficients. Let (I — L)™' have nonnegative coefficients as well. Then x < Lx + b
implies x < (I — L)~ 'b.

Proof. Since the coefficients of (/ — L)~ ! are nonnegative, applying (I — ™!
to both sides of the inequality x < Lx + b yields the result. O

>T

We apply this lemma in situations where
with w as in Lemma 5.10. Hence, the matrix L we require is given by

. B B
(5.13) =, L)

~ ak ~ ak’
(5.12) x = <||w||, ce ”a—tk‘W”, ||W0||, e, UW;WO

€ €2 ekt e € ...... ektt
€ € ...... ekt1
o € € g2 . €*
(5.14) B= | . , D= a
. -2
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LEMMA 5.12. Let L be given by (5.13) and (5.14). Then, for all € € (0, €,], €,
sufficiently small, we have

B B
o<(U-L)y'<I+c .
B B

Proof. The existence of (/ — L)~! and the convergence of the series I + L +L?
+ - - - are obvious, since € is small. This also shows (/ —L)~! > 0. Now

B B
L<c R
B B

It is easily verified that B?> < keB. Thus

B? B? B B
L? < 2¢? - < 2kec? .
5 B B B

Thus, for €, sufficiently small, and all € € (0, €,]

L+L2+---<——12—B B,
l—2kceoBB

which proves the assertion. 0O
The results of Lemma 5.9—Lemma 5.12 are summarized in the following lemma:
LEMMA 5.13. Assume:
() wg 4 is the solution of

;d,k = Dk”knd,mG(wd,k) + ;1:
Wg =£- VNVd,k(O’ 0) + Jl;k—leG(wd,k) + Mg,

with ng € MCy ;. n € ([ = M)Cy .-
(i) ug 4 is the solution of the unperturbed equations (5.2a)—(5.2b).
(i) ug g Wgr € {ulllull < lllugll + 8, il < 8/4}.
(iv) €y hy» W7l and linglll are sufficiently small.

Let

~ ~ oF ~ ~ T
x = (“wd,k “ug gl “gﬂg(wd,k - ud,k)H> J

T
>

y = (nw’:, —dh, “%;(“’5 - “’5)“>
X= (n?in, s “%CE;JDT

b - [end)

Also, let U and V be the (k + 1) x (k + 1) matrices,
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respectively. Then, for all € € (0, €,], h € (0, hy] and all m, d,

()=(a 200 00)

where B is given by (5.14).

Proof. The proof of this lemma closely resembles the proof of Lemma 5.10. So
we omit this proof. O

The statement of Theorem 5.14 below contains asymptotic bounds in € and 4,
valid on the rectangle (0, €,] x (0, hy] in € h-space. We distinguish between O(ePh?)
and O(e°h") iff (p — s)(q — r) < 0. The term O(e’h?) is incorporated into O(e*h") if
(» =) A (g =r). We make an exception for the terms O(e**1) and O(e**1h), be-
cause their source is so different.

In the statement of Theorem 5.14 below, we encounter error-terms of the type

=14 m Gty

, TSk

It is not so useful to give asymptotic bounds for these errors, especially if the functions
on which I — T, ,, operates, are of class C®. Therefore, we use the symbol Na,m tO

denote a common upper bound for those errors. Thus Ngm 0 ford, m — o=. The
rate of convergence of n, ,, to zero depends on the smoothness of G, [u]; etc. In
particular, it depends on the smoothness, as a periodic function in 7, of [ul;, G([uly)
etc. This may depend on €, since the problems we are considering here have the ten-
dency ““to change the frequency” for increasing e. However, since € € (0, €o], we are
always able to use an upper bound. Thus, n, ,, is independent of €. Also, n ,, is
independent of 4. It turns out that the dependence on 4 in an error term like

I = Uy )7 G([u])ll may be bounded from above for all # € (0, hy]. (This is done
by Lemma 5.6.) Thus Ng,m does not depend on € and ~. However it may, and will,
depend on k.

The technical results just obtained will now be used to prove the following
theorem (5.14) which characterizes properties of the smooth solutions exploited by
the algorithm of Section 4.

THEOREM 5.14.  Assume:

(1) Assumption 1.3 holds.

(ii) €y, hy are sufficiently small in relation to k, to the choice of the abscissae
of m, (shifted to a unit interval), to § as in Assumption 1.3(ii), and to the upper bound
for the partial derivatives of G up to a certain order (which depends on k).

Then:

(a) The equations (5.2a)—(5.2b) have a unique solution in the complete metric
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space (S(8), p). Here
S@) = {ug g € Cy g lug gl < NuGlll + 6, llug (I < 8/43,

and the metric p is induced by || - I. (Cf. (5.6) for Il - |Il.)
(®) Ifuy, = 'Ed, xt ug denotes the unique solution of (5.2a)—(5.2b) in S(§),
then

G luf = [uglell Sc{(h*F + e2rF + o+ E ) + ekt 4y

Forj=1,2,...,k
(b2) ‘é‘]— h— < k—j+1 3pk—i 4 ... k—it2 k+1 4
a7 Uo " [ulo)|| <cin +e€ € h} + ce N m-

Forj=0,1,2,...,k,

¥ ~ ~ » .
(b3) |57 (Ya,x [u]k)” Scfen T+l + - 4 kit ip) 4 oektl 4 g -
Here c is a generic constant, independent of €, h, d and m. n am >0 ford, m— o
uniformly in € and h. The rate of convergence of Ng,m — 0 is determined by the
smoothness of [u],, [ul,, , as periodic functions in 7.
Proof. Instead of (5.2a)—(5.2b) we consider the equivalent equations

(5.15a) Uy = Dym My Gy, + ub),
(5.15b) ug = o(;d,k +up),

cf. (5.10), (5.11). The right-hand side of the above equations defines a map, which is
well defined on S(§). It follows from Lemma 5.10 that the image of S(§) under this
map is in S(§), and it also follows from Lemma 5.10 that this map is Lipschitzian on
S(8) in the metric induced by ||| - |ll. The Lipschitz constant is O(e), uniformly in

h, m, d, but not uniformly in k. Thus, with ¢, sufficiently small, as in (ii) above, the
Lipschitz constant is < 1. Thus, the Banach fixed point theorem applies. This proves
assertion (a).

The error estimates, i.e. assertion (b), are obtained by comparing the solution
uy, ;. With a suitable approximation to [u],. We choose v, ;, = m, T, ,, [u], as this
approximation. Insert this approximation into the equations (5.2a)—(5.2b). This yields
a residual (local discretization error). Then we obtain bounds for the difference be-
tween vy ; and the solution u, ; by means of Lemma 5.13. Since bounds for the
difference between v, , and [u], are easily obtained, we thus get bounds for the differ-
ence between u, , (the discrete approximation) and [u],.

So we must compute the residual n and we must estimate the difference between
Vg and [u];. Let us consider the difference Va,x — [uly first. We have

vh = [ugl, = mM,, [ul, — M[ul,

=m,M,, —M[u], + (m — Duyl,.
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The term (m, — 1)[u, ], is easily estimated through the use of Lemma 5.6. The term
(M, — M)[u], may be estimated through the use of Lemma 5.6(iii). Also observe
that 8/0¢ commutes with M — M, for [u], smooth (and [u], is smooth). Thus, for

j=0,1,...,k,

il ¥y y
ngﬁ_(vg - [uo]k)“ <c (Mm —]M)a—t]-[u]k‘ + C/’lk ]+1_‘

In a similar manner we obtain forj =0, 1, . . ., k, that

_i ¥
< C‘hk ]+lnnd’m a_tj_['ﬁ']k

¥ o~ ~
na—t/'(vd,k - [u]k)

(5.16) (M—M,,,)%,-[u]k

‘+c

¥ o~
(I = Ty, ) 57 (W

‘+c

Since [;]k is smooth, we may estimate ||TI; m(af/atf) [;]kll by a bound independent
of d and m (this is not in conflict with Remark 5.4). [;]k = 0(e), (cf. (1.28a)) and sc
are its derivatives. Thus, the first two terms in the right-hand side of (5.16) are

=11 0%e) + Ng,mO(€). The last term in the right-hand side of (5.16) contains [u],,
and [u], = O(1). However, for [u], smooth, we know that (M — M, )(9//0¢)[u], is
given by a series, the coefficients of which are taken from the Fourier expansion of
(&/0)[u],. Thus,

e ! (M—Mm)%;[u]ku — 0 form — oo,

Thus,

%}(Vd’k - [;]k)" =Oom* 7t + Ng,m uniformly in € € (0, €].

6—1

This allows for estimates which are (probably) sharp with respect to their order in €
and in A.

The residual n has to be computed in much the same way. Use should be made
of the above estimates, Theorem 1.4, Corollary 1.5, the expressions (5.1a)—(5.1b) for
[u],, Lemma 5.5 and Lemma 5.6. The details of this (tedious) computation are not
especially illuminating. The result is: forj =0, 1, ..., k,

y k—j+1
Joo <7+ + 1

H%";u Scleh* I+ .-+ FI IRy + et teny .

Now apply Iemma 5.13, to conclude the proof of the theorem. O

Remark 5.15. The O(e**')-terms in statement (b) of Theorem 5.14 are due to
the difference between D, and D, _, and to the occurrence of G([u],_,) in (5.1a).
The appearance of these O(e* ™ 1)-terms is a consequence of comparing u, , to [u].
One might ask whether the difference between O(t/e)uy 4 (t, t/e) and X(¢), X the exact
solution of (1.1), contains an O(e**1)-term. Numerical evidence suggests that the terr



482 W. L. MIRANKER AND M. VAN VELDHUIZEN

O(e** 1) is also present in this difference. This would imply that there is no conver-
gence, either to [u], or to ;, for h — 0, € fixed, m, d —> . O

It is well known that the error of numerical processes may be different (and
better) in behavior, for A — 0, at certain special points in the (¢, 7)-space (supercon-
vergence). Our approximation displays a similar effect. Let us assume that

h h ~
fof(t) dt — fo (M YD dt = on*YH, h—0,
for all sufficiently smooth f. Since

Sl G ey = [l rxo dr

and since [|f = m fll = O(h*+1), h — 0, it follows that s >k + 1. We will characterize

this situation by saying that m, defines a quadrature rule of order s. The following

theorem, giving a superconvergence result, is based on the results of Russell [18].
THEOREM 5.16. If m, defines a quadrature rule of order s, then we have

lug, x(r, 0) = [u](h, O)I

~ ~ 3 ~ ~
<c{hs+1 + hllug 5 — [ul Nl + hufﬁ{“d,k - [u]k}“ + hnd,m}.

Here c is a constant independent of €, h, m and d.
Proof. Let x" be the solution (cf. Lemma 5.8) of

x" = & - [U],(0, 0) + J, T, _,&o([ul, + x").
Then, x"(h) = [uy 1, (h) = O(*+1), see Russell [18]. We have
ulf = £ =[]0, 0) + J, 7, _ &o((ul; + u) +n,

where 7 is a residual. We introduce the abbreviation z= ;d’ k= [;]k. Then it is easily
seen that

lln + 20, O)I < chllZll + hng, -

h
I

Using Lemma 5.9 we get a bound for Ilug — x"||. Here we employ the somewhat

sharper bound
lluly = x" = nll < chlinll < chllZil + h2ng,,,,.
Hence, upon collecting all these estimates, we get
uy (h, 0) = [u](h, 0)
= uli(h) = [uol,(h) + Z(h, 0)
= {x"(h) = [uple(m)} + {z(h, 0) = O, 0)} + O(hllzll) + OCim, ,,)-

This completes the proof of the theorem. O

Remark 5.17. If h is an integer multiple of 2me, then the periodicity in 7 shows
that there is superconvergence for u, , (h, h/€) — [u], (h, h/€). This is how the result
of Theorem 5.16 above will be made useful. [
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We turn now to the question of stability of the method. To start with we con-
sider the influence of a small perturbation { of the initial vector £. Thus, consider the
equations

(5.17a) ;d,k = Dym My, G(Wy 5,

(5.17b) wg =¢+¢- ;d,k(O, 0) + Jl?k_leG(wd,k).

The result of the following lemma will be used to derive a stability statement; it will
also be used to derive global error estimates.

LEMMA 5.18. Let the assumptions of Theorem 5.14 hold. If [¢| is sufficiently
small, then the equations (5.17a)—(5.17b) have a unique solution w, , € S(8). More-
over the estimates,

y' ~ ~
“gt_f(wd,k - ud’k)u < eclgl,

¥
|20 = | < et

llwg, (0, 1) = uy (0, k) = ¢Il < chlgl,

j=0,1,...,k with c a generic constant, independent of €, h, m, d, are valid.
Proof. Existence of a unique solution follows as in the proof of Theorem 5.14.
The first two estimates are given by Lemma 5.13. The last estimate comes from

"9
Wy k(1 0) —uy (h, 0) = foa—t{wd’k(t, 0) —ug (t, O} dt +¢. O

The obvious conclusion of this lemma is the following Consequence 5.19.

Consequence 5.19. The self-starting method is stable with respect to small per-
turbations in the initial vector £, for all e € (0, €,], & € (0, hyl, Ym, d. O

We are also able to obtain global error estimates. le., for the self-starting method
applied on consecutive subintervals (0, &), (h, 2h), . . . C [0, T]. E.g., on the subinter-
val (h, 2h) the initial vector £ is chosen as uy (&, hje), u, , being the approximation
to [u], on (0, k). Thus, if & = 2mpe, p integer, we may use Lemma 5.18 to describe
the build-up of the global error at the nodes j& (in the uncoupled time #). This is a
consequence of the periodicity in the 7-direction. Hence, with suitable assumptions on
g we obtain the following Consequence 5.20.

Consequence 5.20. Let the self-starting method be applied on consecutive sub-
intervals (0, k), (h, 2h), (2h, 3h), . .. C [0, T]. Let m, define a quadrature rule of
order s, s = k + 1. Then the global approximation error e(%),

e(t) = X(t) = B(t/e)uy (1, t/e)
is majorized by (jA < T)

le(in)| < ch® + c{en® + - - - + e¥n} + et + 1y .,

sup le(H)l < ch* ' +c{en® + -+ en + kY .
1€(0,nh)C[0,T] ’
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The generic constants ¢ do not depend on €, A, m, d, but they do depend on T and
k. O

The proof is rather easy to obtain in view of previous results, and it will be
omitted. However, we prefer to give a nonrigorous description of the error mechanism
of the self-starting method.

Consider the subinterval (0, ). Let ¢ be a small perturbation in the initial vector
£. The method determines envelopes on (0, /), and those envelopes approximate
corresponding envelopes of [u],. At = 0, each envelope, as determined by the
method, approximates the corresponding envelope of [u},, the error being dependent
on ¢, but also on the parameters used in the method. This is the situation at ¢ = O for
each of the envelopes. These “initial” errors, at ¢ = 0, in the envelopes are propagated
(along the envelopes). During this propagation process a relative change of at most
O(h) may take place. So, the “initial” errors are encountered at ¢ = h multiplied by
1 + O(h). Also, in going from ¢t = 0 to t = h, the error in each of the components
picks up a local error. Hence, at ¢ = h, the error in each envelope is [1 + O(h)] x
{“initial” error}, plus a local error. The global error at ¢ = A is obtained by recombina-
tion of the envelope errors at ¢t = h. If h = 2mpe, p integer, then the [1 + O(h)] x
{“initial” error}’s recombine into the global error at ¢ = 0, plus a perturbation of
relative size O(h). This is exactly the assertion of Lemma 5.18.

It is not so clear what happens if & = 2ape, p not an integer. Rigorous, but
straightforward, global error estimates are certainly not very sharp. This is quite for-
tunate, for such estimates contain terms like Ng, m/h. One expects that a certain amount
of cancellation takes place, which reduces the linear build-up of local errors. But the
extent to which this occurs is an open question.

In summary, these arguments show that the self-starting method goes through
three stages: decomposition, propagation along envelopes, and recombination. The
condition & = 2mpe, p integer, causes the decomposition and the recombination to
take place in phase.

It is not so easy to give an analysis of the self-starting method, which is based
directly on these ideas. In the first place, the situation is more complicated than
sketched, because of the interaction between the envelopes during the propagation
phase. Second, envelopes and Fourier series engender convergence questions. That is
why we used a somewhat more abstract approach. However, the basic idea, outlined
above, is preserved to some extent in treating the MC; ,-component and the
( = M)C, ,-component separately. This seems to be the important dichotomy.

We do not have a rigorous analysis for the algorithm based on the backward
differentiation formulae (2.8). In fact a rigorous treatment of these methods is much
more difficult, because these methods are not as directly related to [u], as is the self-
starting method. However, if the above nonrigorous discussion has some sense in the
multistep method case, then we see that in the multistep method situation only one
stage occurs: propagation along the envelopes. No decomposition, nor recombination
in the very strict sense of the self-starting method takes place. If this idea is correct,
it follows that no condition of the type h = 2mpe, p integer, is necessary for a ‘good’
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global error behavior. For very simple linear problems and with the simplest backward
differentiation formula (backward Euler method), it seems to be true that & = 2npe, p
integer, is not required. However, for those problems the number of envelopes is very
small, and those simple examples are certainly not representative for the class of prob-
lems we want to deal with.

Finally, we consider the stability with respect to perturbations of the right-hand
side. Usually, this type of stability is closely related to the stability with respect to a
perturbation of the initial vector, cf. Consequence 5.19. Here the situation is complete-
ly different. Consider the perturbed equations (perturbation n € Cax)

(5.18a) Wa o =Dpm Ty Gwy )+ 7,

(5.18b) wh = = Wy (0, 0) +J, T _ M, ,G(wg ;) + 1.

Estimates of the effect of these perturbations are given in the following lemma.
LEMMA 5.21. Under the conditions of Theorem 5.14, let |nll, llin,lll be sufficien
Iy small. Then the equations (5.18a)—(5.18b) have a unique solution w, , € S(8), and

il e )

Iwh — il < 3”%" + Z ep“”azf’%“ +p2 FP“”W"”%

k
~ ~ 1
w, . —u, |l <c<lnll + et
d, k d,k
p=1

The (generic) constant ¢ does not depend on €, h, m, d.

Proof. Just apply Lemma 5.13. O

It is instructive to interpret this result. This is done by considering two different
situations. First, we assume that ;7', N are smooth, i.e., their derivatives with respect
to ¢ are bounded uniformly in 4, 2 € (0, h,]. Such perturbations may arise if, in actual
computations, an approximation for g is used, the difference between g and its approxi
mation being smooth. The obvious conclusion of Lemma 5.21 is that the method is
stable with respect to smcoth perturbations of the right-hand side, uniformly in € and /
for € € (0, €0],h €(0, hy]. Second, we consider rough ’1;, Mo- These perturbations
are characterized by the fact that IIBﬁ/BtII, IIZ)nO/thI are realistically estimated by
2k2||’17||/h, 2k2||noll/h respectively, cf. Lemma 5.1(i). Such rough perturbations may be
caused by rounding errors due to the finite precision of the arithmetic used. Now the
obvious conclusion of Lemma 5.21 is that the method is stable with respect to rough
perturbations only if 2k2e/h < ¢, ¢ a constant. These conclusions are summarized in
the following Consequence 5.22.

Consequence 5.22. The self-starting method is stable with respect to smooth
perturbations of the right-hand side, uniformly in €, & for e € (0, ¢,], 2 € (0, k] and
uniformly in m, d. The method is stable with respect to rough perturbations of the
right-hand side if 2ek?/h < c, for some constant ¢, and all m, d. O

We conclude this section with a remark concerning the initial value problem, cf.

(1.1),
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(5.19) 4., =/eix + g(t, x) +’fff—),

it x(0) = &.

The numerical example to be treated in Section 6 below involves a problem of this
type.

If £ is smooth, the substitution x =y — A~ !fin (5.19) yields a problem of the
type (1.1) in y. This shows the relation between (5.19) and (1.1).

We do not require a substitution of the above type if we seek to apply the self-
starting method or the multistep method to (5.19) directly. However, theoretical
results may be derived by making the substitution x =y — A4~ lrrk f, and by applying
the self-starting method to the problem in y (with y = x + A_lﬂ‘k ). It is also possible
to give a theoretical treatment without the explicit use of this transformation. It should
be clear from the preceding sections and the analysis of this section how to proceed.

We just mention some results for the self-starting method applied to (5.19) direct-
ly. In general, the results of this section hold true for this problem as well, but there
are a few small modifications in the formulation. E.g., the set S(8) in Theorem 5.14
has to be changed to a closed sphere with center A~ 'f and radius greater than
l€ + A=1£(0)l. In the error estimates of assertion (b) of Theorem 5.14, €, p > 0,
should be changed to €’ ~ 1 However, no term which is 0O(1), e — 0, has to be

changed to O(1/€), e — 0! The global error estimates (cf. Consequence 5.20) now
take the form

(5.20) leGm)l < ch*+1 + c{en® + - + én} +ce* +ny .,

(5.21) ) s(up le())| < ch 1+ c{eh® + - + €¥n} +ce +ny .

0,nh)
However, if £ = 0 and ¢ = h are abscissae of 7, then
, k k k
(5.22) leGM| < ch® + c{eh™ + - - - + €A} + ce® + N, m-

This follows because the (m, f — f)-term now vanishes at the nodes jh. The estimate
(5.21) does not change.

6. A Numerical Example. We apply the methods described in Section 4 to a
simple problem. In order to have a problem for which the exact solution is known we
sonstruct an ordinary differential equation of the type (5.19) as follows:

The solution of the second order equation

, d*z  z et
6.1 &
. ) d_ft + _67 62 s €e>0,

ubject to the initial conditions
_ 1 vy 1
6.2) z0) =1+ i ? ) = P

s given by

6.3) 2(r) = cos(t/e) + le—;—t?
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A nonlinear problem is obtained by introducing the new variable x,
(6.4) z=x +uwx?, u>0.

It follows that x and y = e(d/dt)x satisfy the ordinary differential equation

€3 & €L-1 ol\y/ €\x2-2y%-2xe”* e’

1 + 2ux €

The initial conditions for x and y at ¢t = 0 are easily computed by making use of (6.4).
In particular, we have

o 2z(1)
(6.6) =TT T T w0
with z given by (6.3). We require that x(#) € R. Thus if we are interested in the
interval [0, T], we must restrict u through ’

(6.7) p< [4 X Jnax { Z(t)}] Saa-Ty
We choose T = 327/100 ~ 1.005. Thus we have u < 0.4.

For fixed €, increasing u increz;ses the influence of the nonlinear term in (6.5).
The influence of the nonlinear term determines the number of envelopes needed in
order to achieve a specified accuracy. Thus, we expect that d (the number of envelopes
is 2d + 1) increases if u increases, for fixed €, and for the same accuracy.

As already observed in Section 5, the nonlinear term in (6.5) tends to “change
the frequency” of the problem. It is well known that the odd terms in a Taylor expan-
sion for g(t, x) (expansion in x, about x = 0 for (1.1) and about x = —A4~f for (5.19))
are responsible for this frequency change. In this sense, the nonlinearity in (6.5) con-
tains the small odd term 2ux in the denominator. The term 2xe™* cancels in a Taylor
series about — A~ !£ Thus the order of the odd terms in the nonlinearity in (6.5) is
O(u2x/e€). If this argument is correct, then u? is the parameter which determines the
change in frequency. The methods of Section 4 deteriorate if a substantial change in
frequency takes place. The number of envelopes required for even moderate accuracy
becomes too large for all practical purposes.

The largest value of u used in the examples below is u = 0.3. This corresponds
to u? ~ 0.1, and this seems reasonable.

We employ three different methods in the examples to follow:

First Method (With Lobatto Points, k = 1). This method is the self-starting
method used repeatedly on consecutive subintervals (0, &), (h, 2h), . .. . We choose

= 1. The projection m, assigns to f its linear interpolation polynomial on the abscis-
sae t = 0, t = h (Lobatto abscissae for k = 1).

Second Method (With Lobatto Points, k = 2). This is the self-starting method
used repeatedly on consecutive subintervals (0, k), (h, 2h), . . . . We choose k = 2.
The projection m, assigns to a function f its quadratic interpolation polynomial on the
abscissae t = 0, t = h/2, t = h (Lobatto abscissae for k = 2).



488 W. L. MIRANKER AND M. VAN VELDHUIZEN

Third Method (Multistep Method). This is the method based on the backward
differentiation formula

(6.8) 11x, — 18, | + 9%, _, = 2x,_5 = 6Af,

(standard multistep notation). We need starting values at t = 0, ¢t = h and ¢ = 2h.
These starting values are supplied by one step, stepsize 2k, of the second method (with
Lobatto points, k¥ = 2). Then we obtain approximations at ¢t = 3h, t = 4h, etc. by
using (6.8).

In all examples we use the following conventions:

—The integration interval is [0, 327/100](327/100 ~ 1.005).

—The values of m and d are kept constant over the integration interval.

—A fixed subinterval of length / is used for the methods with Lobatto points
(k =1, k = 2). For the multistep method, the starting values are obtained with
subinterval length 2k (see above), and the multistep method itself is used with the
constant stepsize A.

—We use a formulation of the methods involving ®(7) and powers of ®(7), cf.
Section 3. Thus, we avoid complex arithmetic. The nonlinear equations are solved by
a simple successive substitution process. This process corresponds directly to the one
suggested in relation to (4.17). A similar process is used for the multistep method.

We perform only a finite number of successive substitution steps; consequently,
we obtain approximations for the solutions of the discrete equations. Numerical exper-
iments convince us of the accuracy of the results given in the tables and graphs. The
error due to performing only a finite number of successive substitution steps is estimated
to be typically less than 1% of the results given.

We consider global errors at the nodes as well as envelope errors. As in Conse-
quence 5.20, let e(z) denote the global error at the point ¢ (¢ and 7 coupled by 7 = t/e€).
Let | - |; be the Holder 1-norm. For the methods with Lobatto points we define the
maximum error at the nodes, called £, 4, by

6.9) Enoq = max le(jh)l,,  nh = 321/100.

n o0<j<n
For the multistep method this quantity is defined by

(6.10) E 4= | ax leGGm)l,,  nh = 327/100.

<j<n

Observe that the starting values are disregarded in E| 4 for the multistep method.

The envelope errors are defined for the first coordinate of the solution of (6.5)
only. This first coordinate of the solution is given by (6.6) and (6.3). Obviously, x
may be written as x = x(¢, 7), by replacing t/e by 7 in (6.6). Then, with convergent
Fourier series,

oo

6.11) x(t, 1) = 3 a,(t)cos pr + i b, (#)sin pr.
p=0 p=1
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FIGURE 6-1. Maximum error at the nodes for (6.5)

We even have b, =0, Vp. The discretization methods yield approximations ;p for a,,
0 < p < d, and approximations 'Ep for b,, 1 <p'<<d. For the methods with Lobatto

points the envelope error for a, is defined by

(6.12) lla, = aP”L“(o,aznuoo)'

For the multistep method the envelope error for a, is defined by

(6.13) max lap(jh) - Zp(ih)l, nh = 32n/100.
3<j<n
The envelope errors for bp are defined similarly. Observe that the starting values are
disregarded in the envelope errors for the multistep method.
The value of ap(t) is approximated, making use of a discrete Fourier transform on
64 points. Since d < 15 in all examples, this seems accurate enough. The
L™(0, 321/100)-norm is estimated, using at least seven points per subinterval. Numerical
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FIGURE 6-2. Envelope errors for (6.5)

experiments indicate that the error in estimating the L™ (0, 327/100)-norm in this way
is at most 4%.

In Figure 6-1 we display the maximum error at the nodes E, 4 for the three
methods in graphical form. The methods are applied to the problem (6.5) with
€ =0.001, u = 0.03.

For the methods with Lobatto points, the length % of a subinterval ranges from
7/100 ~ 0.03 to 87/100 ~ 0.25. For the multistep method we display the results as
a function of the equivalent stepsize. The equivalent stepsize is defined as twice the
actual stepsize. This is done because the method with Lobatto points (k = 2, subinter-
val length 4) and the multistep method (stepsize A/2) use exactly the same set of points
(abscissae) in t, T-space (for equal d, m). Thus, the method with Lobatto points (k =
2, subinterval length %) and the multistep method (equivalent stepsize %) use the same
amount of information about the differential equation.
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The Lobatto points correspond to the abscissae of the trapezoidal rule (k = 1)
and of Simpson’s rule (k = 2). Thus,s =2 for k =1 and s = 4 for k = 2. (Cf.
Theorem 5.16 for the definition of s.) Hence, we have the upperbounds, (cf. (6.9) and
(5.22))

c(h? +eh) +ce + 1y ) k=1,
(6.14) E

nod

<
c(h* + eh? + e*h) + ce* + Mgy k= 2.

The graphs in Figure 6-1 illustrate this theoretical result.

For k = 1 we have E_ 4 ~ 5.7E — 4 (with a 5% margin), for all # and d, m
under consideration. Since € = 10~3, we conclude that the term O(e) is very much
dominant in E, 4 for # < 1/4 and all d, m, d > 3. For k = 2, the situation is more
complicated. For A small, 2 < 1/10, the term n, ,, (aliasing error) plays some part for
d =3, m=8,while ford =7, m = 1 the term O(e?) is dominant. The influence of
the length & of a subinterval is (weakly) felt for A > 1/10.

The error £ 4
method with Lobatto points (k = 2), for d = 3, m = 8. This is not so surprising: the

for the multistep method is roughly the same as £ 4 for the

aliasing error n, ,, does not depend strongly on the discretization in the ¢-direction,
provided that the resulting algorithm is stable. We have already seen that the aliasing
error Ny ,,, gives an important contribution to the error £, 4 for the method with
Lobatto points (k = 2) for d = 3, m = 8. So we expect the same, and even the same
contribution, for the multistep method. This is confirmed by the graphs of Figure 6-1.
Of course, this argument is made possible by the use of the equivalent stepsize.

For d =7, m = 16 the behavior of £ 4 for the multistep method and the be-
havior of E| 4 for the method with Lobatto points (k = 2) differs considerably. A
possible explanation is that the term O(e?) is not important (perhaps even absent) in
E,,q for the multistep method. In this case the approximation properties which de-
pend on & are not obscured by the term O(e?). The fact that the multistep method is
not so strongly related to the asymptotic series as is the method with Lobatto points
supports this explanation.

The error E 4 for the multistep method, d = 7, m = 16, in Figure 6-1 is
approximately a straight line (there is some leveling off at 2 ~ 7/100). Curiously
enough, the slope of this line is 2.4 (in the figure the logarithmic scale in the horizontal
direction is twice the one in the vertical direction). This implies that £ 4 ~ on*).
We have no explanation for this behavior.

In Figure 6-2 we display, in graphical form, the envelope errors for the method
with Lobatto points, k = 2. Cf. (6.12) for the envelope errors. We consider the envelc
errors for a,, a,, a, and b, b,. We observe that the envelope error admits the same
bound as the supremum norm of the error in the total approximation. The supremum
norm error for the total approximation is given by, cf. (5.21),

(6.15) sup le()] < ch® + c{eh® + 2h} + ce? + Nd. m-
t<(0,327/100) ’
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MULTISTEP METHOD LOBATTO POINTS (k = 2)
h = 21/100 h = 4¢/100
P II.’H d=3 d=7 d=15 d=3 a=7 d=13
0 7.6(-1) 2.6(~3) 3.1(-6) 2.1(-6) 2.6(-3) 1.0(-5) 9.8(-6)
1 9.1(-1) 6.8(-3) 8.2(-6) 4.5(-6) 6.8(-3) 3.0(-5) 2.5(-5)
2 1.2(-1) 1.4(-2) 2.7(-5) 1.4(-6) 1.4(-2) 1.8(-5) 7.6(=6)
3 3.1(-2) 1.9(-2) 3.8(-5) 5.6(-7) 1.9(-2) 3.5(-5) 3.6(~6)
4 1.0(-2) 5.7(-5) 2.6(-7) 5.6(-5) 2.0(-6)
s 3.8(-3) 9.1(-5) 1.2(-7 9.5(-5) 1.2(-6)
6 1.5(-3) 1.5(~4) 6.3(-8) 1.5(~4) 7.0(-7)
? 6.4(~4) 2,5(-4) 3.4(-8) 2,5(-4) 4.2(-7)
8 2.8(-4) 2.3(-8) 2.6(-7)
9 1.2(-4) 2,2(-8) 1.5(-7)
10 5.7(-5) 2,9(-8) 8.8(-8)
1 2,6(-5) 4.7(-8) 8.0(-8)
12 1.2(-5) 8.1(-8) 9.2(-8)
13°| 5.9(-6) 1.4(-0) L.4¢-1)
4% 2.8(~6) 2.5(-0) 2.5(-1
15 1,4(-6) 4.6(-7) 4.6(-2)
16 6.6(-7)
17 3.2(-7)
TABLE 6-1. Envelope errors for € = 0.01, u = 0.3
MULTISTEP METHOD LOBATTO POINTS (k = 2)
h = 21/100 h = 47/100
P llb’H d=3 bhe7 d=15 de3 de=7 de1s
1 [} 6.8(-2) | 6.6(-5) | 4.5(-6) 6.8(-2)| 6.4(-5) | 3.7(-6)
2 [ 1.2¢-2) | 1.9(-5) | 1.1(-6) 1.7(=2)| 1.8(-5) | 1.1(-6)
3 ° 5.,0(=3)| 8.3(~6) | 4.1(-7) 5.0(=3) | 7.9(~6) | 4.4(¢-D)
4 ° 4.8(-6) | 1.6(-7) 4.4(-6) | 2.7¢-D)
[ 0 3.7(~6) | 6.5(-8) 3.4(-6) | 1.6(-D)
6 0 4,0(=6) | 2.5(-8) 3.2(-6) | 1.1(-D
7 ] 3,3(-6) | 8.0(-9) 3,2(-6) 7.8(-8)
(] [ 1.8(-9) 4.5(-8)
9 ° 1,3(-10) 2.7(-8)
10 0 3.5(-10) 1.6(-8)
1 ° 1.2(-10) 8.4(-9)
12 [ 1.1(-9) 4.1(-9)
13 [ 2,6(-9) 3.4(-9)
1" ° 5.0(-9) 4.3(-9)
13 [ 9.0(-9) 8.0(-9)
MAXIMUM ERROR
AT THE NODES 6.3(-2)| 4.0(-4) | 6.3(~6) 6.4(-2) | 3.8(-4) | 1.4(-5)

TABLE 6-2. Envelope errors, maximum error at the nodes, e = 0.01, u = 0.3
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FIGURE 6-3. Envelope error a, — ;0 for (6.5)

Thus, we see that the aliasing error N, m is the dominant error in the envelope errors
for ay, a,, a,, b,, b, ford =3, m = 8. In the other case, i.e.,d =7, m = 16, the
envelope error for a, consists mainly of the term O(h?) (slope of the straight line for
llag - ;o" ~ 3 in Figure 6-2). The envelope errors for a, and a, are given by the term
O(€?) (or perhaps even O(e®)), for small o But for & ~ 1/4 the term O(h>) makes
itself felt. For d = 7, m = 16 the envelope errors b, - 31 |l and Ilb2 - 32II behave
like O(h?) (slope of the corresponding lines in Figure 6-2 is approximately 2). We are
inclined to believe that these errors represent the term O(eh?) in (6.15).

For the sake of completeness we note that the envelope errors for the multistep
method (these errors are defined by (6.13)) for the problem parameters € = 0.001,
it =0.03 and for d = 7, m = 16 are: envelope error in a, is O(h), envelope errors in
a,, a, are O(h3), envelope errors in b,, b, are O(h?) (the corresponding curves are
straight lines). This behavior is not so easily explained. It might be that these errors
are mainly due to the errors in the starting values, even if the errors in the starting
values themselves are not taken into account in the envelope error, cf. (6.13). In view
of the results of Section 2, particularly Lemma 2.5, and in view of the very weak non-
linearity of the differential equation (6.5) (with € = 0.001, u = 0.03), it is implausible
that the envelope errors for a, a,, b, (these envelopes are obtained by the smooth
solution concept) are due to the multistep method (6.8) itself. Indeed, the multistep
method itself would yield an O(h*) behavior for these errors. Thus, the explanation
in terms of errors in the starting values seems the more likely one. This strengthens
our impression that the multistep method is far superior to the self-starting method as
a global method; the self-starting method should only be used to generate starting
values.

A more severe test for the methods is offered by the differential equation (6.5)
with € = 0.01 and g = 0.3. In Table 6-1 we give the envelope errors for the multistep
method (6.8) and for the method with Lobatto points (k = 2). The stepsize & (for
the multistep method) as well as the subinterval length kA (for the method with Lobatto
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b EmR0R in ||+||;-norm ac :-%3—
27/1600 1.01
3.2(-2)
2%/3200 1.97¢-1) 4.0(-3)
5.7(-3) 5.0(-5)
2¢/6400 4.50(-2) 1.2(-5)
3.7(-4)
27/12800 1.10(-2)

TABLE 6-3. Richardson extrapolation table for trapezoidal rule, ¢ = 0.001, u = 0.3

points) are given in Table 6-1. The table also lists the values of d used. We have

m = 2d + 2 in all cases. The L™(0, 327/100)-norm of the envelopes a,, is also given.
Table 6-2 corresponds to Table 6-1 but yields the envelope errors for the b, instead of
the a,. It also gives the errors E, ;.

As observed earlier, the multistep method and the method with Lobatto points
(k = 2) have the same behavior if the aliasing error is dominant (cf. the case d = 3).
Then from Table 6-1 and Table 6-2 it is seen that the aliasing error is dominant for
d = 3, less dominant for d = 7, and the aliasing error is felt in the higher order
envelopes only for d = 15. This is a strong experimental argument for the stability of
these methods.

In Figure 6.3 we display the envelope error a, — ;0 itself, as a function of ¢,

t € (0, 327/100). The points are obtained through the lineprinter (20 lines above
and below the horizontal axis). For the method with Lobatto points (k = 2) the error
2y — ;0 is clearly discontinuous with jump discontinuities at the joins of the subinter-
vals. Also, on each subinterval the error is well approximated by a third degree poly-
nomial, as is to be expected. For ¢ > 3/4, the envelope error ag — ;0 for the method
with Lobatto points (k = 2) shows some weak signs of instability. This instability is
due to the problem, more so than to the method. The exact solution of (6.5) with

€ = 0.01 and u = 0.3 does not exist for all # > 0; the solution exists on [0, T) only,
and in view of (6.6), (6.7) we have T ~ 1.9. Thus, the singularity in the solution itself
makes itself felt for ¢+ > 3/4.

For € = 0.01, u = 0.3, we also solve the problem (6.5) by direct application of
the trapezoidal rule. The trapezoidal rule is chosen because of its favorable stability
properties for oscillatory problems. We use a constant stepsize 4, and at each step we
solve the nonlinear equations with a successive substitution process. We stop the
successive substitution process if two consecutive iterates differ less than 10~ (in the
Holder 1-norm). The result for ¢ = 327/100 is improved by Richardson extrapolation.
The Holder 1-norm of the approximation error at ¢ = 327/100 is listed in Table 6-3.
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It would be desirable to obtain some insight into the efficiency of the methods
of Section 4. It is clear that the behavior of the methods of Section 4 is almost inde-
pendent of €, ¢ — 0. Thus, the methods of Section 4 are more efficient than any
(classical) method provided that e > 0 is sufficiently small.

This is a relative statement about the efficiency of the methods of Section 4.
At present, it is not possible to give more absolute information about their efficiency.
However, it is clear that the methods of Section 4 solve a forced oscillation problem
at each step, cf. Urabe [22]. Thus, the efficiency of these methods depends strongly
on the efficiency of the process used in solving the forced oscillation problem. It is
conceivable that a piecewise polynomial discretization, or a finite difference method,
in the 7-direction leads to a more efficient algorithm.
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