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An Extension of Olver’s Method
for the Numerical Solution of
Linear Recurrence Relations

By J. R. Cash

Abstract. An algorithm is developed for computing the solution of a class of linear
recurrence relations of order greater than two when unstable error propagation pre-
vents the required solution being found by direct forward recurrence. By abandon-
ing an appropriate number of initial conditions the original problem may be replaced
by an inexact but well-conditioned boundary value problem, and in certain circum-
stances the solution of this new problem is a good approximation to the required
solution of the original problem. The required solution of this reposed problem is
generated using an algorithm based on Gaussian elimination, and a technique develop-
ed by Olver is extended to estimate automatically the truncation error of the pro-
posed algorithm.

1. Introduction. Consider the numerical solution of the mth order linear re-

currence relation
m

(1.1) Igo aj(r)yr+j = f(r),
where the a;(r)’s and f(r) are given sequences of the nonnegative integer variable r.
If m initial conditions of the form y; = k;,j = 1(1)m, are prescribed, the required
solution of (1.1) is in theory completely specified; but it may not be possible to
compute the desired solution using these initial conditions, owing to an unstable build
up of rounding error (see [2], [7] for example). In circumstances such as these it is
sometimes possible to replace the original problem by a well-conditioned boundary
value problem which has a solution closely approximating the required solution of
(1.1). The ability to recognize potential instability and to repose our problem so
that the required solution may be stably generated requires us to have some addi-
tional knowledge regarding the behavior of the required solution. In view of this,
two of the main applications of our algorithm will be in the numerical solution of
ordinary differential equations and in the solution of equations of the form (1.1)
where one boundary condition is given at infinity. Assuming that we are in a posi-
tion to recognize instability when it occurs, the first step of our algorithm is to re-
place the original initial values by boundary values of the form

yi=k, i=1(q,

yN+j=0, j=0m-1-gq
The conditions under which the required solution of (1.1) with the original initial
conditions is closely approximated by a solution of (1.1) with these new boundary
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conditions has been discussed in [8] and will not concern us here. This problem has
also been considered recently for the special case ¢ = 1, f(r) = 0 by Zahar [13]. We
shall assume that the required value of g is known and the problem that remains is

to compute NV and the required solution of the reposed problem. This type of ap-
proach, whereby the original problem is replaced by a suitable boundary value prob-
lem, is now well accepted and forms a basis for most of the more competitive algo-
rithms for generating solutions of linear recurrence relations [5], [9], [10]. In parti-
cular, Olver [10] has developed an extremely powerful algorithm for the solution of
second-order inhomogeneous recurrence relations with the ‘optimal’ value of N being
automatically determined in all cases. One of the more competitive algorithms for
computing solutions of higher-order recurrence relations is one proposed by Oliver
[9]. This algorithm requires the value of N to be guessed, and then a sequence of
approximations to the optimal value of N is built up at a relatively cheap computation-
al cost. Although this algorithm is often quite efficient, it would seem to have some
drawbacks especially if one of the boundary conditions is at infinity so that we have
little idea in general of the required value of N, or if a more general normalizing con-
dition of the form X7, v,y, = k is imposed. Also, Oliver’s algorithm requires the
solution to be accepted if two successive approximations differ by less than a prescrib-
ed amount and, although this is a common practical procedure, it does not guarantee
that the solution obtained is the required solution.

The algorithm developed in this paper stemmed from a desire to compute solu-
tions of high-order recurrence relations when either one boundary condition is at
‘infinity’ or when the more general normalizing condition mentioned previously is
imposed. Our aim is to develop an algorithm which yields an estimate of the opti-
mal value of NV before any back substitution has been performed. Although the algo-
rithm which we propose in this paper does not always achieve this aim, it does so in
many cases and a nonoptimal value of N can soon be recognized. Examples can no
doubt be constructed for which our proposed algorithm is not as efficient as that of
Oliver, and it may be that a combination of the two algorithms would be more ef-
ficient as a general purpose algorithm than either one by itself. Finally, we mention
that this new approach allows us to identify positively the solution obtained as the
required solution of the original problem since we are able to obtain an exact expres-
sion for the truncation error.

2. Statement of the Algorithm. In this section we consider the numerical solu-
tion of the third-order linear recurrence relation

@.n 4y, t by, +¢,y, 1y tdy, ., =€,

where a,, b,, c,, d, and e, are given sequences depending on the nonnegative integer
variable r. Although we are particularly interested in developing algorithms for the
solution of mth-order recurrence relations, we shall confine our analysis in this section
to the case m = 3 since the extension to higher-order equations is relatively straight-
forward and will be given explicitly at a later stage. The general solution of (2.1) may
be written in the form
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2.2) y, = Af, + Bg, + Ch, +p,,

where f,, g, and k, are complementary functions of (2.1) and p, is a particular solu-
tion. We shall assume that it is possible to choose these solutions such that
(2.3) lim (g,/f,) = lim (h,/g,) = lim (p,/g,) = 0.

P> oo y—> oo Pr—>oo
The problem which we consider is the generation of a solution y, which has the prop-
erty that lim_, . (»,/f,) = lim,_, .. (y,/g,) = 0 and which satisfies the condition y,
=k,. Provided that A, #* 0, the solution of (2.1) with these boundary conditions is
immediately seen to be

24) v, = (ky = p)h,/hy) + p,.

If h; = 0, then the solution does not exist, unless k;, = p,,in which case there is an
infinity of solutions. It is well known that if an attempt is made to generate the re-
quired solution of (2.1) using direct forward recurrence starting from three initial con-
ditions of the form Y= k].,the resulting procedure will be completely ineffective due
to an unstable propagation of rounding errors. If, however, we set y,y =y, =0
for some large integer V, which need not be specified at present, we may rewrite (2.1)
as the boundary value problem

byy§N + ey +dyy§V] =e; ~ayky,
a3y + by ey iV 4 a VT =,

2.5)

N Nl —
aN—lyJ[V—]2 + bN—lyzlv—ll = €n-1-

The conditions under which yr[N I — y, as N — oo are rather complicated and will
not concern us here. Instead, we shall assume as a basic hypothesis that le I —

y, since this is usually the case in practice. (This general convergence problem has
recently been considered by Lozier [4], and the reader is referred to his thesis for the
details.) As an example of this convergence, we consider the constant coefficient
equation

ay,, +by, +cy, .y +dy,,, =0.
The general solution of this recurrence relation is of the form (2.2) where
f,=wi, g=w, and h,=wj (p,=0)
with the w; being the three roots, assumed distinct in modulus, of the polynomial

dx® +ex? +bx +a=0.

For the time being we shall assume that lw, | > Iw, | > lw;1 so as to be consistent
with our earlier notation. Now
yr[N] =Ayf, + Byg, + Cyh, and ygN] =k, yJ[vN] =0, yzlvj\ill =0.

These relations give rise to the three equations
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ky =ANf, +Byg, + Cyhy,
0=Ayfy +Bygy + Cyhy,
0=Anfy+1 T By8ys1 t Cnhyiq-

Solving these three equations by Cramer’s rule, for example, and then letting N —
oo, we find that 4,, — 0 and B, — 0; but Cy, — 0 showing that in this case yEN]
— y,. A slightly different argument is required in the case lw,l = Iw,| but our fi-
nal result is still the same.

The two main problems which will now concern us are how to choose the
‘optimal’ value of V to achieve a prescribed degree of precision and how to prove
that the solution which we obtain is indeed the required solution. Following the ap-
proach adopted by Oliver, we may reduce (2.5) to the upper triangular form

Nl _3% JIN] _ A [N -
g yIV) = by iV - &, yIN] =%,
(V] _ (N] _a IN] ~
(2.6) 433 b3y4 C3Vs = ej,
2 (N] — 5
ay—1YN-1 = ey—1>
where
dy =by, by =7¢;, 3 =7dy, e =e;, "a,yy,
a, = arbr 1 + a, lbr’ br arcr— T4 46 6 = _ar—ldr’ r= 3(1)N_ L,
_ar—l r arer—

Up to now we have followed exactly the same approach as that adopted by Oliver.
The procedure adopted by Oliver at this stage is to compute y,, for some trial value
of NV and then to calculate a better value of N essentially by recurring in the direction
of decreasing ». We shall not follow this approach but shall instead attempt to calcu-
late an optimal value for NV before any solution values have been calculated. We first
of all prove the existence of an infinite expansion for yr[N I by means of the following
lemma:

LemMA 1. Suppose that a positive integer N is chosen so that y[N I = I[VIYI-II =
0. Defme a sequence z,, as the solution of the recurrence relation a,, , ,z", | —
b z lz = 0 with initial conditions zr_ =0, z, = l/a,. Then
(v N-1
2.7) yWNh="3 ez
s=r

Proof. The relation satisfied by the z/, is immediately recognizable as the ad-
joint equation associated with the difference equation

a y Wl _p YNl _ o yIN)

nYn+ nYnt+2 = U
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which is represented by a typical row of the homogeneous form of (2.6). If we now
multiply the (s — 1)th row of (2.6) by z} and sum froms=r—-1tos =N -1, we
obtain

N-1
Nl _ N _ N
T G b - epWhr= Y e
s=r—1 s=r—1
If we now use our given initial conditions z]_, = 0, zJ = 1/, together with the defi-
nition of z},, this reduces to

(V] N-1

— A o

Yy - Z €sZs
s=r

as required, and this expression is in fact Green’s formula [6, p. 48, Eq. (3.11)].
This completes the proof of the lemma.
It now follows immediately that

*) IV VY =5 an

By using this expression we can estimate the effect of changing from N to N + 1 be-
fore any back substitution has been carried out. We consider the following two parti-
cular cases which are common in practical applications:

(i) If we wish to compute y, to D decimal places, we apply the recurrence re-
lation for values of r past L until a value is found for which

(2.8) le,zk 1 < % x 107P

and we then set N = n. As we shall show later, this case has its main practical ap-
plication in the numerical solution of ordinary differential equations.

(ii) If we wish to compute y, for a range of values of r between 1 and L
say, we again continue using the recurrence relation past L until a value of n is
found for which (2.8) holds, and we then set N = n. Putting r = N in Eq. (1) and using
the relations y}VNl =0 and Z% = 1/a,,, we obtain the expression yI[VN“] = éy/dy.
In particular if we wish to compute all values of y, that exceed % % 1072 in absolute
value (assuming, of course, that y, — 0 as r — ) we compute values until |(¢,/a,)!
<% % 107D, and then set N = n.

For problems of type (i) this procedure is relatively satisfactory since, as we
shall show in the next section, it does yield an acceptable value for NV, automatically.
In case (ii) the algorithm is not as good as Olver’s in that it does not always guarantee
that we have found the optimal value of N. The criterion which would enable us to
determine the required value of NV is
(2.9) < Max |z;|> le, | <% % 1070,

1<r<L
but because of the excessive amount of computation involved in calculating all of
the 27 ’s, we shall use criterion (2.8). This criterion is often useful when one of the
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boundary conditions is at infinity since it provides us with a practical approximation
to infinity before any solution values have been calculated. Algorithms which require
a value of V to be guessed as a practical approximation to infinity would seem to be
of rather uncertain value in general. Problems may occur when we do not know any-
thing about the behavior of z,, and so criterion (2.8) may not yield the optimal value
of N. In cases such as this it is important that we should be able to test the optimal-
ity of N before too much computation has been carried out. This may easily be
done by setting y}VN ) = y}VA_',_ll = 0 and then solving the equation

(*) a4y, = [;nyn+1 +CpYarar Yy =iy, Yy =0

in the direction of decreasing n. It may be shown that y, = z}; and so at each step

the value of |€,z} | may be computed and a check made to ensure that this quantity
is less than % * 1072, If this is not the case and the above quantity takes its maxi-

mum value at a point ¢ our procedure for estimating N needs to be carried out again

using the criterion

le,z | <% % 1072,

and then we set N = n. In extreme cases a new value of N may have to be computed
several times, and exactly how competitive our algorithm is with that of Oliver in
these cases is not clear. It may be that in these cases it is best to use a combination
of the algorithms proposed in this paper and Oliver’s algorithm with the former pro-
viding the first trial value of NV for use with the latter. This combination should be
particularly effective when one of the boundary conditions is at infinity and so it is
difficult to guess a reasonable value for N. If it was known, for example, that |z}, |
was an increasing function of r for fixed n = r then we could apply criterion (2.8)
with safety since in this case
Max lIz0e | = 1z%¢ |I.

1<r<L
The present author has so far been unable to derive a useful sufficient criterion for
this to be the case and this is an area where more results, perhaps along the lines of
those developed in [11], would be valuable. Finally, in this section we mention
very briefly the more general form of the linear normalizing condition Y, =
k. If we are able to solve the problem with the initial condition y, = ¢ (where ¢ is
arbitrary), then we need only to compute 2,7, 7,», and renormalize the solution
by a factor k/(Z;_, v,»,). If this procedure fails owing to the value of », being
zero or very small, then we could try for example y, arbitrary and carry out a similar
procedure. The point is that if we can solve the initial value problem described
earlier in this section, then we can also solve the problem with the general linear
normalizing condition.

3. Examination of the Truncation Error. In this section we examine in more
detail the validity of the solution which we have obtained using the algorithms de-
scribed in the previous section. In particular, we wish to show that the value of N
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chosen using a criterion of the form

V1) — yINT | <y 107D
guarantees that ylV*+1] agrees with the true solution y, to D decimal places. We
have already shown that

[N+1] _ JIN] _ 2
yr ! y;[ ]_eNZ§V’

Replacing Nby N+ 1, N+ 2,...,N +s— 1 in turn and adding the resulting
equations, we obtain

s—1
N — ~
ypENT - yNl Z eN+kZN+k-
k=0
Putting £}, = EN I and letting s — oo we have, by virtue of the assumption
that lim,., y[N] =y, for all r,
Ey =2 éz.
sS=N

In order that y,[.N I and ¥, should agree to any prescribed tolerance € it is necessary
that | E},| should be less than e for each value of ~. Once a value of N has been cal-
culated we may compute the truncation error by continuing the recurrence past » =
N. Putting N = r in our expression for the truncation error, we have

El=y, -yt =y, = Z%Z?

Thus, our scheme is equivalent to approximating this convergent series for y,bya
partial sum and in this respect it has obvious similarities with Olver’s algorithm.
Finally, in this section we mention briefly the possible effect of rounding errors.
Since we are assuming that the boundary value problem to be solved is well condi-
tioned, any standard method for solving linear systems should not experience diffi-
culties with unstable error propagation. Information regarding the nature of error
build up when using most standard methods is available from the general theory [12].
The procedure which we have adopted in practice to reduce our original system to
upper triangular form is Gaussian elimination with row changes if a pivot is nearly
zero (partial pivoting) and practical experience has shown this procedure to be satis-
factory in general.

4. Numerical Results. In this section we present some numerical results to il-
lustrate some of the algorithms proposed in the previous section for third-order recur-
rence relations. The first problem which we consider is:

Problem 1. Integrate the scalar differential equation y' = —y, (0) = 1, in the
range 0 < x < 0.2 using the discretization algorithm

@.1) Vpt2 ~Wa T8V, =h(By, ., — 6y, =3y ).
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Scheme (4.1), which is of the type considered for nonstiff equations in [1], is not
even zero-stable, owing to the fact that there are two roots of the polynomial equation
x3 —9x + 8 = 0 which lie outside the unit circle. In view of this it is clear that if
we were to generate a solution of (4.1) using direct forward reéurrence, assuming that
we can find the two extra initial conditions required, the solution obtained would soon
bear no relation to the required solution. If instead we use the algorithm derived in
Section 2 to generate the required solution, it can be shown that the resulting proce-
dure is at least 4(0)-stable in the sense of Widlund (see [3, p. 233] for example) and
has order 4. Procedures for finding stability regions of schemes similar to (4.1) have
been discussed in more detail elsewhere [1] and so will not be considered here. In
general, the procedure that we shall use to solve a system of first-order O.D.E.’s,
especially if it is stiff, is to advance one integration step at a time and, on the basis

of an estimate obtained for the local truncation error, decide whether or not the step-
size of integration should be changed. Thus, in general it is case (i) discussed in Sec-
tion 2 which is important in the solution of O.D.E.’s. We note that changes in the
steplength are relatively easy to perform since scheme (4.1) coupled with the algorithm
described in Section 2 is essentially a one step method in that it requires only one
initial condition. In order to simplify our numerical example we shall not be con-
cerned with procedures for changing the stepsize but shall assume instead that a con-
stant stepsize of # = 0.02 is used so that the problem is to find the first ten values of
yj. The results obtained for this problem are given in Table 1 and, as can be seen,
satisfactory agreement is obtained.

Problem 2. The second problem which we consider is the solution of the dif-
ference equation

(P + 3% +rl4 + 3/4) 3r3/2 + 117%/4 + 5r/4 +1/4)

Yrex DT T v ! P =2+ 1)2 Ir
(4.2)

_(r3/2 +32/4 +1/2)
P —r2+1/2

Yr—1 =0

that is recessive as r — oo and has the initial value y, = 1. It can be shown that the
complementary functions of this problem can be chosen so as to satisfy the conditions
imposed in Section 2 and, in particular, the required solution is y, = (1/2)". All val-
ues of the solution which have magnitude greater than 107 are sought and so this is
an example of a problem where one boundary condition may be thought of as being
at infinity and one of the problems is to obtain a practical approximation to infinity.
As can be seen from Table 2, this approximation is obtained automatically and satis-
factory agreement with the true solution is obtained. It was found that for this prob-
lem, by actually computing the quantities z}, for increasing values of r, that z}, is a
nondecreasing function of r for fixed n. It now follows immediately that the value of
N obtained is optimal (see Section 2) and numerical experiments confirm that this is
indeed the case.
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TABLE 1

Absolute accuracy required = 4 decimal places

Estimated value of N = 20

r y£ 201 ez, True solution
1 098019866 - 0.98019867
2 0.96078941 - 0.96078944
3 0.94176445 - 0.94176453
4 092311614 - 092311635
5 0.90483693 - 0.90483742
6 0.88691927 - 0.88692044
7 0.86935546 - 0.86935823
8 0.85213722 - 0.85214379
9 0.83525451 - 0.83527021
10 0.81869387 0.11177507 0.81873075
11 0.80243001 0.12182301 0.80251880
12 0.78642142 0.29441481*%107!  0.78662786
13 0.77054711 0.18819592*10~' 0.77105156
14 0.75463621 0.60512259*%107% 075578374
15 0.73792540 0.31003434*1072  0.74081822
16 0.71986262 0.11451524*1072 0.72614904
17 0.69487642 0.52979218*1073 0.71177032
18  0.66432684 0.20940220*1073  0.69767632
19 0.58170411 0.92293239*10™* 0.68386141
20  0.00000000 0.37702526*%10~% 0.67032005
TABLE 2
Estimated value of N = 21
yE“l error r 52”
0.49999976 0.244*107¢ 11  0.48779381*103
0.24999963 0.366*107% 12 0.24365307*1073
0.12499957 0.427%107% 13 0.12158270*1073
0.62499957*10~!  0.457*107® 14  0.60547511*10™*
0.31249528*10~'  0472*107¢ 15 0.30029918*10~%
0.15624520%107!  0.480*10~¢ 16 0.14771122*107*
0.78120161*1072  0.484*107% 17 0.71417237*10~5
0.39057642*107%2  0.486*107° 18 0.33270257*107°
0.19526383*1072  0.487*107° 19 0.14196984*1075
0.97607530%1073 0.487*10°® 20 0.46649278*10~°

error
0.487*107°
0.488*107
0.488*107°
0.488*107°
0.488*107°
0.488*107°
0.488*107°
0.488*107°
0.488%107°
0.487%107°

508
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We note that for these two problems it is known that z}, is an increasing func-
tion of r, since for the purposes of understanding better what is going on we have
computed these sequences explicitly, and so the predicted value of NV can be used
with safety. Since in general it is not known in advance that z}, exhibits this particu-
lar behavior, it is safer in practice to take MV slightly higher than the predicted value,
say NV + 3. (Cf. [10, p. 124, footnote 6].)

5. Extension to Higher-Order Equations. In this section we consider the ex-
tension of the analysis presented in Section 2 to the solution of higher-order linear
recurrence relations. The extension to an mth-order recurrence relation, m > 3, is
immediate and we are able to give it explicitly. Rather than considering the higher-
order case in any great detail, we shall merely outline our results, since the extension
of both Lemma 1 and the analysis of Section 3 is relatively straightforward. We
shall assume that we are seeking a solution of (1.1) which may be approximated
arbitrarily closely over any given finite range by solving (1.1) with the boundary con-
ditions

yi=k, i=104,
Yysp =0 1=0ym-lg

(cf. Section 1). It now follows that the matrix set of equations corresponding to
(2.5) for the case m = 3 is a band matrix of width m + 1 with g subdiagonals and
m — q superdiagonals given by

N N N - e
0[qy([1+]l +oeoct 0tm—lyin : + 0tmy£n+ll _f(l) —Qyyy th_lyq,
N N N Nl _
o‘t1—1y¢[1+ll R P YL R S +a, Ny =) - gy, - T2 Vq>

agrhh s oyl 4 gt =g - ).

If we now apply the forward elimination part of our Gaussian elimination algorithm,
we annihilate the subdiagonals to obtain the upper triangular system

2 [N] ~ [N] e 45 [N] -2

Ty 11,9+1Yg+1 +aq+l,q+2yq+2 + a1 me1Ymn =€r+1s
- [N] AT [NV] > INT _ &
Gg42,9+2Yg+2 T+ Yo mitYm+1 Y agiami2Ymer = €g42

.................................................

5 [N] _ 5
Ay—1 N-1YN-1 = €y_1-

Suppose now we let z}, be the solution of the adjoint equation

~ r ~ r . ~ r —
(5'2) an,n+m—qzn + an+l,n+m—qzn+l + +an+m—q,n+m—qzn+m—q =0
with initial conditions

r — e — ro_
Zr—m+q+l = Zrem+q+2 = T Zp—1 < 0, z, = 1.
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's
q+j
r—q toj =N —1—q (this is the generalization of the procedure used to prove Lem-

ma 1), we obtain

Then if we multiply the jth equation of the system (5.1) by 2/ . ; and sum from j =

(53) 4, yWN =8z +6, 20, + +éy_ 12y, qFISr<N-1
It now follows that ‘
(54 yINH = yINY = & 20 )a, .

This is very similar to the expression derived in Section 2 for the third-order case,
and a very similar procedure to that described in Section 2 may be used to estimate
the optimal value of NV in advance. As before, we shall assume as a basic hypothesis
that le ] — », as N —> oo, On this assumption it is clear that

(5.5) a,,y,= 2 &z,

j=r
which is the generalization of the Green’s formula derived in Section 2. Subtracting
(5.3) from (5.5), we have

(5.6) i, 0, -y =Y &z
Ry
It can easily be seen that in the case m = 2, g = 1 the Egs. (5.3), (5.5) and (5.6) are

effectively the same as Eqgs. (5.04), (5.03) and (5.01), respectively, of Olver’s original
paper [10]. In this sense our results may be regarded as generalizations of those of

Olver. The basic reason why Olver’s algorithm is so effective for the second-order
case is that in his case the adjoint equation is of order 1 and so all solutions may be
expressed as a multiple of the single solution of the adjoint. This property will also
hold for the higher-order case when ¢ = m — 1. In general, however, it will be neces-
sary to construct the sequence z], for the largest value of r required and test conver-
gence in the manner described in Section 2. Since the extension of our algorithm is
now immediate we shall not consider it any further but instead go on to give some
numerical results for the case m = 4 where the required solution is an intermediate
one, i.e. neither the most dominant nor the most recessive.

6. Numerical Results. In this section we present some additional numerical re-
sults which serve to illustrate the extension of our algorithms to recurrence relations
of order greater than three. The most important application of our algorithm in this
case is in the generation of intermediate solutions since the most dominant (recessive)
solution (assuming of course that such solutions exist) can usually be found by for-
ward (backward) recursion. As a first example we consider:

Problem 3.

(6.1) Yyos = 111y, , + 11211y, , — 1111y, + 100y,_, = 0

with the conditions y, = 1, y, = 1, and y, bounded as r — oo. The general solution
of this recurrence relation, which corresponds to a problem with m = 4, ¢ = 2 in our
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TABLE 3
error tolerance = (1/2)*10™* error tolerance = (1/2)*107¢
N=15 N=17

r  Solution obtained Erzrlo/ﬁr,, Solution obtained

3 1.00000000 - 1.00000000
4 1.00000000 - 1.00000000

5 1.00000000 - 1.00000000

6 0.99999999 — 1.00000000

7 0.99999998 — 1.00000000

8 0.99999989 - 1.00000000

9 0.99999890 — 0.99999999
10 0.99998900 - 0.99999989
11 0.99989000 0.980100*107! 0.99999890
12 0.99890010 0.989010*1072 0.99998900
13 0.98901000 0.989901*1073 0.99989000
14 0.89100000 0.989990*10™* 0.99890010
15 0.989999*107° 0.98901000
16 0.990000%107° 0.89100000
17 0.990000*10~7

notation, is
Y, = A(1/10y + B + C(10)" + D(100)",

and the given initial conditions are clearly such that 4 = C=D =0, B=1. For
our particular example we shall consider the generation of the reqdired solution of
this problem in the range 3 < r < 10 for the two different absolute error tolerances
(1/2) » 107 and (1/2) » 107%. As can be seen from the results presented in Table 3,
the optimal value of V is obtained automatically in both cases and agreement with
the exact solution is satisfactory throughout the given range. As our second problem
in this section, we consider one arising from the solution of an ordinary differential
equation: '

Problem 4. Integrate the scalar differential equation y" = —xy, y(0) = 1 using
the discretization algorithm

(62) Y,43 Vys2 = (h/720){— 19y, , 4 + 346y, 5 + 456y, ., — 14y, + 11y, }.

Some remarks regarding the source of (6.2) would seem to be relevant at this stage.
The first point that we note is that (6.2) is rather like an implicit Adams method (see
[3, p. 41] for example) except that the value f,, , as well as the usual f,, . . ., f, 13
is used in the expression for y,, ;. By using this additional forward value it is possible
to derive integration procedures which have higher orders of accuracy than the more
conventional Adams methods, and it may be shown that scheme (6.2) has a local trun-
cation error of order O(h®). In order to solve for Yr4 3, however, we need to have an
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TABLE 4

error tolerance = (1/2)*10™% error tolerance = (1/2)*1076

N=11 N=12
r Solution obtained Erzrl g /z?r’ , True Solution Solution obtained
3 0.99955010 — 0.99955010 0.99955010
4 0.99920032 — 0.99920032 0.99920032
5 0.99875078 — 0.99875078 0.99875078
6 0.99820162 — 0.99820162 0.99820162
7 0.99755299 — 0.99755299 0.99755299
8 0.99680511 — 0.99680511 0.99680511
9 0.99595819 — 0.99595819 0.99595819
10 0.99498364 — 0.99501248 0.99501248
11 — 0.2886*107% 0.99396826 0.99393684
12 - 0.9127*%107° — -
13 - 0.3126*107!3 — _

estimate for f,, , and hence, in our case, ¥, 4. Thus, our problem is of an ideal form
for solution using the algorithm developed in the previous section with m =4, g = 3.
In our numerical experiment scheme (6.2) was used with a constant step of # = 0.01
and the required solution was sought in the range 3 <r < 10 for the two different
tolerances (1/2) * 10~% and (1/2) * 107%. In order to use scheme (6.2) we need to
know the values of y, and y, and for our purposes we set y, = exp(— 1/éhz), Y, =
exp(—2h?) which are in fact the exact solutions. In a practical example we would of
course need to generate these extra initial conditions using a one step method, such

as a fourth-order Runge-Kutta method for example, but since this does not present us
with any additional problems there is no loss in generality in using the exact values.
As can be seen from the results presented in Table 4, the optimal value of NV is again
found automatically in both cases and agreement with the exact solution is again satis-
factory throughout. We note that the value of érzrlo/cfr,r decreases very rapidly result-
ing in our algorithm converging very quickly for any prescribed error tolerance.

7. Conclusion. The purpose of the present paper has been to develop an algo-
rithm for the solution of high-order linear recurrence relations in cases where the
required solution is not stably generated by direct forward recurrence due to unstable
propagation of rounding errors. Our main aim was to extend Olver’s algorithm so
that, if the original problem is replaced by a well-posed boundary value problem, the
size, NV, of the boundary value problem to be solved to give the required degree of
precision is estimated automatically in all cases. We were particularly interested in
the case where one of the boundary conditions was at infinity so that Oliver’s algo-
rithm, which requires a practical approximation to infinity to be guessed, is not so
easy to use. We showed in Section 2 that in some cases we are able to estimate the
value of N automatically while in other cases we had to perform a check to test that
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the estimated value of NV was acceptable. In cases where one of the boundary condi-
tions was at infinity the algorithm developed in Section 2 provided a practical approxi-
mation to infinity before any back substitutions were performed. In Section 3 we
were able to derive an exact expression for the required solution and this allowed us
to positively identify the solution obtained as the required solution of our original
problem. Finally in Section 5 the extension of our analysis to higher-order equations
was considered and we were able to show that all of the important results developed
in Sections 2 and 3 for third-order recurrences could be immediately extended to
equations of arbitrary order. In conclusion, we may say that in some cases, where
the optimal value of N is obtained automatically, the proposed algorithm is at a
reasonably satisfactory level. In other cases, where we are not sure that the estimated
value of NV is optimal, it may be that a combination of the algorithm proposed in

this paper and that proposed by Oliver would be better than either one by itself, es-
pecially if one of the boundary conditions is at infinity.
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