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A Generalization of the
Simple Continued Fraction Algorithm

By Theresa P. Vaughan
Dedicated to Professor Leonard Carlitz on the occasion of his seventieth birthday

Abstract. In this paper we present a generalization of the continued fraction algorithm,
based on a geometric and matrix-theoretic approach.

We first give a geometric representation in the plane R2, of the simple continued
fraction algorithm, described in terms of geometric and arithmetic properties of 2 X 2
matrices with nonnegative integer entries and determinant 1. The algorithm of this
paper is then derived as a natural generalization of the situation in R2. We describe a

computational procedure for our algorithm, and give several examples.

In this paper we present a generalization of the continued fraction algorithm,
based on a geometric and matrix-theoretic approach.

There are several ways in which the simple continued fraction algorithm (CFA)
may be represented geometrically in R?. We summarize briefly, in Section 3 of this
paper, one such interpretation, which is described entirely in terms of geometric and
arithmetic properties of 2 x 2 matrices with nonnegative entries and determinant 1.
Our approach displays, in an easy and natural manner, all the main properties of con-
tinued fractions: the coordinates of the continued fraction for a positive real number
X, its convergents, and the convergence of the algorithm. The question of periodicity
is not so simple, and we do not discuss it here.

In Section 1 we give a simple computational procedure for our algorithm, and
some examples of its use.

In Section 4 we show how this algorithm is a natural generalization to R3 of the
geometric and matrix-theoretic situation in R? given in Section 3.

In Section 5 we show that our algorithm is always convergent. Geometrically,
the idea of the proof is very simple. The actual details are elementary but rather
tedious.

Basically, our algorithm bears a strong resemblance to the Jacobi-Perron algorithm
in its matrix-theoretic aspects, and we hope in another paper to investigate the Jacobi-
Perron algorithm itself from the point of view of this paper. We have not yet worked
out a theoretical basis for comparing our algorithm to the Jacobi-Perron algorithm, but
the examples of Section 2 show some interesting differences.

For instance, for (2, </4), our algorithm became periodic after 13 steps, while
the Jacobi-Perron algorithm takes only 3 steps. On the other hand, our rational approx-
imations at comparable stages are superior in accuracy.
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538 THERESA P. VAUGHAN

In [1, p. 69] it is stated that it is not known whether or not the Jacobi-Perron
algorithm for (4, </T6) is periodic, although it has been carried out to 150 steps.
Our algorithm for this vector becomes periodic after 91 steps.

1. The Algorithm. Define the matrices £;; (G, jE {1,2,3},i#j) by: E; is
3 x 3 and

(Eii)rs= 1, r=js=i

0, otherwise.

The algorithm defines by recursion, two sequences {x,}, {»,} of nonnegative
real numbers, a sequence {k,} of positive integers, and a sequence {4,} of 3 x3
matrices, as follows. Initially, let x,, y, be nonnegative real numbers, and 4 the
3 x 3 identity matrix. Then fori=0,1,2,...

L If0o<x;<y; <1, put

11 (1 -1 _ Eki
k= y. |l T JT ki) s X =x(U A k), Ay = A4E5)

i
IL If 0 <y, <x,<1,put

1 1 -1 ;
ki = l:x_]’ Xiv1 = <;T_ki> s Yier =Yl HRpx ), Ay ':AiEch'r

1

I If 0 <x; <1<y, put
ki =Dl X =X Yigr =Vi~ ks A =AiEJ1":°,-
IV. If 0 <y, <1 <x;, put
k:
ki =10x1, Xy =%~ kp Yigr =V Ay = AiEry
V. If 0 <1 <x; <y;, put
ki=Dixs Xipn =X Yigy =V~ kX Ay = AiEJ;g-
VL If 0 <1 <y; <x;, put
ki=xv), X1 =%~ kYo Vg1 =Ve A T A, B3
Evidently, given x;, y; > 0, then in order to find x;, ;, y;, it is not necessary
to know the matrix A;. We shall see later, however, that the matrices 4; carry the
information equivalent to the knowledge of the ith convergent of a continued fraction.
Note also that in the six steps described above, the inequalities are strict. One
can proceed perfectly well, however, if some x;, y; are 0 or 1 or equal to each other.
In these cases one finds that either the algorithm must stop (rational x;, ;) or involves

only two steps (x; or y; = 0 and the algorithm reduces to continued fractions) or the
ith step is not uniquely determined. Procedure in these cases, then, is left to the user.
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We also note that the user may find it more convenient to compute the matrices
A7 ! rather than A;; A7 may have negative entries, but their magnitude is smaller.
The matrices 4; themselves carry other information, which we describe briefly below.

Suppose A; is the matrix produced at the ith step of the algorithm, whose Oth
step was X, ¥, A9 = I5. Then A; is a matrix with determinant 1, with nonnegative
integer entries, which we assume for the moment are all positive.

Suppose we have

ay; byyocyy
Ai = a2i b2l C21
az; by ¢y

Then the ratios
ay; by cyy

b E)
ay;’ by’ ey

are approximations to x, and the ratios

are approximations to y,,.
The excellence of these approximations is proven later to be at least of the order

2\ /2]
3 b

and we conjecture that in fact they are at least of order

2\ i
()

Remark. The algorithm we have described has the property that the periodicity
of the algorithm is independent of the order of the entries of v,. That is, the algorithms
for the vectors (1, xg, ¥)s (1, ¥, Xo)s (1, x5 1, ¥oxo 1), (L, yoxo b xg 1), (L yg L,
xovo ), (L, xoyg !, yo 1) are either all periodic, or none of them is. This fact enables
us to predict periodicity before a repetition of steps actually takes place. E.g. for the
vector v, = (1, J4, 2372), we find v, = (1, J4, 232 — I4), and vy; = (1, J4 -1,
1/4) = (1/94) - (4, 232 —J4, 1). That is, except for the multiplier, the entries
of vy, are those of v, permuted by ¢ = (132). The order of the permutation o is 3,
so we predict periodicity, with vy, =v,. In fact, putting

~

I
© - o
- o ©
© o =

we find for this algorithm that

E23(E2‘31A31T2)3 =Ay,
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(since the rows of T2X are the rows of X permuted by o).

2. Examples. (i) x, =1/3,y, =5/7. Then 0 <x, <y, <1,k, =[7/5] =1,
A, =E},y, =5/2,x, =7/6. Now1<x, <y ,s0k, =[y,/x,]1=2,x, =x, =
76,y, =y, —2x, =1/6,A, = E} E3;. Now 0 <y, <1<x,,k; =[x,]=1,
x3=x,—-1=1/6,y, =1/6,A; = E},E3,E},. Now 0 <x, <y, <1,k, =

[1/y,] = 6,4, = E} E3,E},ES,. Now 1/y, — 6 is 0, so we can proceed no further.
We may rewrite the procedure above as follows:

Ls)_2. 75
("5’7>—7 E31<1’6’2>

71 2 11
’ E31E§3<1’g’ g) ='7‘E31E§3E12<1’g’ g>

1
6

As a check, we compute

il
QU

il

=i

E3,E33E1,£5,0, 1, 1).

3 2 19
E31E%3E12Egl= 1 1 6]=4,
2 2 13

and we indeed have 4,(0, 1, 1) = (21, 7, 15) so that
2.1 _ (115
7 6A4(0’ 1, 1) - (L 3, 7>
We could, from this point of view, go one step further, and write

0, 1, 1) = E,4(0, 1, 0);

then
3 21 19
AE, =1 7 6
2 15 13

and now the center column is 21 x (1, 1/3, 5/7).

In fact, this is always possible, although the last step or two may be accomplished
in more than one way (e.g. above, one can write (0, 1, 1) = E3,(0, 0, 1) or even one
step back, (6, 1, 1) = ES,(0, 1, 1)). For this reason, we have not attempted to describe
this procedure in the algorithm proper.

Thus, given rational x, y,, the algorithm may be used to produce a matrix with
nonnegative integer entries and determinant 1 having one column equal to an integer
multiple of (1, x,, y,).

(i) xog =2,y =0. 0<y, <1<xq k, =[\2] =1,x, =421,

v, =y =0,4;, =E,. Now0<y, <x, <1, k, =[l/x;]=2,x, =42 +1,
, =y (1 +2x))=0,4, =E ,E5,;0<y, <1<x,, [x,]=2,x3 =x, -
2=V2-1=x,y;=9,=0=yp, A = E7,.
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Note that we use only Step II and Step IV of the algorithm. The matrix 4; will
have the form

a; b; O
Ai = Ci di 0 5
0 0 1

and the quotients c;/a;, d;/b; are actually the ith and the (i — 1)st convergents of the
continued fraction for +/2 (in an order described in Section 3).

(i) x, = J2, Yo = J4. We do not repeat the calculations here, but the algo-
rithm repeats after thirteen steps.

We find the matrix

1 1
A= Eéa Eiz Eg1 Eia Egz Eia E?z E}il Eia E;l Eéz Ej3 E3y-

The product after the initial £, ; repeats.
We compute: 4 = E, ;B where

281 400 177
B=1354 504 223
92 131 58

Now (1, V2, J4) = E, (1, I2, ¥4 —I7) and v = (1, 2, I8 — J2) is an eigenvector
for B. We compute the vector
281 +223 2 +177 Y4
B) = | 354 + 281 2 +223 4|
92+73 J2+58 V4

Now the quantity 281 + 2232 + 177\J4 = « is an integer unit in Q(+2) and is an
eigenvalue of B. Indeed, if we put

281 223 177
M=12-177 281 223 |,
2-223 2-177 281

then M is a matrix representing multiplication by a (in the ordered basis 4,32, 1)
for Q(x/2) over Q), M has determinant one, and one has

19 -5 -8
M l=|-16 19 -5
-10 —-16 19
We note that M is similar to B:
E,;B. {31 =M

the characteristic polynomial of B is
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x3 —843x2 +57x — 1,

and o &~ 842.932 is very close to the trace of B.
Using an HP-25 hand calculator, we find:

(%)18 = 000676, J2 ~1.2599210, Y& -2 ~0.3274800,

3 — 3
\—/—Z-_,,\/_?‘/—z—=\3/§— 1 = .2599210,

% = 1.2597864 % = 3274021 % = 0.2598870

126 Bloosrs 12 =02599206

223 12598870 28— 02376836 22 = 26008969
TABLE 1

that is, as expected, the quotients y/x, z/x of the column vectors of B are within .0006
of the same quotients for v.

It is interesting to compare these computations with the similar ones of the
Jacobi-Perron algorithm. One finds:

a9 =32, o =4 p» =1, p® =1,

VA -1 1
1) , = = -
) = 2D = , b(ll)_z, bgl)—3,

CEE-T T TE:RA

dP=I2+2, P =VE+I2+1, p{P =3, p®» =3,

The corresponding matrices are

00 1 0 0 1 00 1
By=|1 0 1|, B,=|1 0 2|, B,=|1 0 3
01 1 01 3 01 3

(actually the JPA finds the inverses of the B;). One finds the al(j) repeat after the
third step above: By =B, =B, - - - .
B, has characteristic polynomial
x3-3x% -3x -1,

with root A = J4 + /2 + 1; and the vector (1, /2 + 2, /4 + /2 + 1) is an eigen-
vector for B,. For large k, the column vectors of B’2c will satisfy
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Tavi+r, EnJA+d4
Our interest here is: how good is the approximation after a number of steps
comparable to the algorithm of this paper? The total length of A (the sum of the
exponents on the E,-]-) is 18. On the other hand, we may write

o

which has, roughly speaking, length 6. Consider then B;. We find

1 3 12
B3=|3 10 39
3 12 40

By calculator, /2 + 2 =~ 3.259921, Y4 + /2 + 1 ~ 3.8473221, and the quotients
y/x, z/x from Bg are

3. 10 39

=3 3 =333..., =325,
3_, 12_, 40_

T=3, 3 =4 5=333... .

The best is 39/12 = 3.25 which is within .01 of ¥/2 + 2.

The JPA in this case is inferior as a tool of approximation, and superior in
demonstrating periodicity. But we also have the following example.

(iv) In [1, p. 69] it is stated that the pair (Y4, \/16) has not yet been shown
to have a periodic JPA, although the calculations have been carried out to 150 steps.
We have found that our procedure produces periodicity in 91 steps (with x4, = x,,
Y91 = 1)

(v) For our last example, we give a table of both the JPA and our algorithm,
for vectors (1, X, A?) where X is the largest root of the listed polynomial. All these
polynomials have their roots in the same field (all have three real roots).

Notation. JPA, of course, stands for the Jacobi-Perron algorithm, and TVA for
the algorithm described in this paper. T is the following matrix:

0 0 1

T={1 0 O

010

The steps of the JPA are marked off with parentheses ( ); the periodic parts of both
algorithms are enclosed in square brackets.

The program used to calculate these is straightforward, and can only handle
integers up to sixteen decimal digits long. Nevertheless, the overflows for P,(x) and
Pg(x) are curious, in view of the extreme shortness and simplicity of the algorithms
for the other P(x).
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i Pi(x) JPA TVA

x = 3x? —dx -1 (B, E}SDEYE1STEL, E15T) B33 [E1,E3 B3 3B, B3 B3]

1 =E‘2‘3[(E‘;2E§1T)3]

x* +ax? +3x -1 (0(5137')[(]5“1‘37')(5?37)] E;l [E32E§3E‘2‘1E§2E?3E§l]
2 =E§1[(E§2E§3T2)3]

x?—6x? +5x -1 (Esz%_ﬁ,T)(EigEng)[E?zE%g E;3[E§2E‘3‘15§3E‘1‘2E§1E‘;3]
3 =E§3[(Ef2Eng)3]

x3—5x? +6x - 1 (E?{gEigT)(E%gE‘]‘gT)[(E%T)(E%T)] EgalEizEalEgaEleglEzal
4 =E§3[(E?2E31T)3]

X -x-1 (T)(E13T)[(E13T)(E?3T)] Ey [E325?3E21532E13521]
5 = 21[(E325?3T2)3]

X Hx?-w-1 (512513D(E¥2E?3DKE?3D(E§3D] EzleleglEnEizElega]
6 = 23[(E12Egln3]

x3 -20x% —9x — 1 machine overflow at step 3 machine overflow at step 14
7

x3 +9x2 +20x — 1 (T)(E%gT)[E?zEfg machine overflow at step 12
8

3. A Geometric Approach to Simple Continued Fractions. Our algorithm was
motivated by the actual construction of the continued fraction algorithm when it is
viewed as an aspect of the geometry associated with 2 x 2 matrices with positive integer
entries. To be more precise, we now give a brief summary of our geometric interpreta-
tion of continued fractions. (This can be done in several ways ([2], [3]); but the

particular approach given here, putting emphasis on linear algebra, seems to be new.)
Put

1 O 1 1
E, = and E,, =
1 1 0 1

Put

Q={(x, »Ix>0,y>0}, S5, ={1,»O0<y<1},
S, ={x, DIO<x <1}, §=5,US¢,.

For each nonsingular 2 x 2 matrix 4 = [¢ 2] with nonnegative integer entries, define
g c d g g
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amap 4*: S — S as follows. Letv = (x, y) €S. Then

Av = (ax + by, cx +dy) = (z, w) € Q.

Both z and w are nonnegative, and one of them must be positive. Let M = max{z, w}.
Then

Thus we have: Ej; is the result of performing the elementary operation “add row 7 to
row j~’ on the identity matrix I,, Q is the first quadrant of R% S , and S, are the sides
of the unit square in Q, A(Q) C @, and A*(v), for v in S, is the intersection of the line
through (0, 0) and A(v), with S.

We list the following statements without proof. All these statements have very
direct and elementary proofs.

3.1. For A, B 2 x 2 matrices with nonnegative integer entries, and v € S, we
have (AB)*(v) = A*(B*v).

3.2. EE,(S) N EX, (S = {(1, 1)}.

3.3. EF,(8) =S, and EX,(S) = S,,

34. ET,(S) NERTDYNS ) = {(1/(n + 1), D}, EZ1(S,) NENHD(S,) =
{@, 1 + 1),

35..8, =Un-, {E?;(Sl)}’ Sy = U:=1{Eg:(sz)}a
and the sets EZ.*(S,-) are intervals in §; with disjoint interiors; if |r —s| > 1, then
Ef(S) N E5(5) = 2.

3.6. Let (0, ny, n,, ..., n) denote the continued fraction
1
n, +1
ny, +1
ny + .
. + —l—
My

of length k (where the n; are positive integers); and let P, be the set of all continued
fractions of length &k in (0, 1]. Then the family {E{}*(Si) |n=1,2,...} induces the
partition P; on Sj.

3.7. Let T, be the partition of S given by:

T, = {FS)In=1,2,...} U{EFS)In=1,2,...}
and for k = 2, 3, . .. define T recursively by:

n=12,...
XET,_,,XCS,

n=1,2,...

Ty = {E7,(0)
r 3” XET,_,,XCS

U 35;;‘(;()

2)

Then T, induces the partition P, on the sides S, S, (respectively) of S, and the
members of T, are intervals with disjoint interior.
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3.8. Suppose x > 0 is a real number with continued fraction expansion to k
places:

ne + X4

Put x* equal to the intersection of the line L through (0, 0) and (1, x) with S.
Then x* is contained in the following member of T} :

X= (E?11f1 E?zzfz "33}‘3 o E?kl;.k)*(sik)’

where (i, j,) # (G, 41574 1); (15 71) = (1, 2) when x > 1, and (i}, /,) = (2, 1) when
x < 1. If 4 is the matrix = E?11i1 SR E?k’j-k, then the entries of 4 are the numerators
and denominators of the kth and (k — 1)st convergents to x, arranged in the order
described in 3.9.

39.
[q" q"—‘] k odd
Pr DPk-1
EY% ) ijk =
[qk_l qk] k even
Pr-1 Pk
b pk—l]
, keven,
A dk-1
EZ} ) ijk =
[p"—l p"] k odd,
dr—1 9k
where
P
i =n, + ", T R
. +—L
Ry
Py =1,49,=0.

3.10. The statement “the continued fraction algorithm converges” may be
proven by using the fact that mesh T < 1/k(k + 1) — 0 as k —> .

4. The Three-Dimensional Case. In this section we generalize the situation
summarized in Section 3 to R3. It will be seen that several generalizations are possible;
our choice was guided by a wish to mimic as closely as possible the statements 3.1—
3.10 of Section 3.

Corresponding to £, and E, in the two-dimensional case, we consider here
the six elementary matrices Ej; defined by: Ej; is a 3 x 3 matrix with
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1, r=s,

(Ei].)rs =11, r=j,s=i,
0, otherwise,

that is, £, is the result of performing the elementary row operation “add row i to row
j” on the identity matrix /5.

Now in the two-dimensional case, £, and E,, are noncommuting matrices which
neatly correspond one to each side of the unit square in the first quadrant (Property
3.3). In the three-dimensional case, we have six matrices Ei]-, some of which commute
with others, and we have only three “faces” of the unit cube in the first octant.
Evidently we cannot generalize the two-dimensional case mutatis mutandis.

To facilitate further discussion, we define the following sets in the first octant
of R3:

0={kx»2Ix>0,y>0,z>0},
F,={1,y,2|0<y,z<1},
F,={(x,1,2)|0<x, z<1},

Fy={kx» DI0<x y<1},

so that () is the first octant, and F,, F,, F5 are the three faces of the unit cube in 0.
We may occasionally refer to, e.g. /| as the “x-face” (it is the face with x-values all
equal to one), and so on. We put

F=F, UF, UF,.

In analogy with Section 3, for each 3 x 3 nonsingular matrix A with nonnegative
integer entries, define a mapping A*: F — F as follows. If v = (x, y, z) € F, then
Av =w = (r, s, t) is a vector in () with nonnegative entries, at least one of which is
positive. Put M = max{r, s, t} and define 4*v by:

(i)
that is, A*v is the intersection of the line along v with F. Again it is clear that
(AB)*v = A*(B*v).
Consider now, for example, the sets E’f;(Fl), E’f;(Fz) E’l‘2(F ). We have

_Ek*(F )= {(k_-ll-_y" 1’k-zl-y>|(1’y’ z)eFl},

Yy —E]fz(Fz)_ = , 1, z (x,1,2) EF,},
kx +1 kx +1

Z, =B (F) = {(x, kx + v, DI(x, », ) € Fy; kx +y <1}

X 1
; >13.
U{(kx+y’1’kx+y>’(x'y’ )EF  kx +y 1}
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Below, we have sketched the sets X,, Y, zZ,.

z
N

(0,0,1)

> X
/ (1,0,0) e

(0,1,0)

se = U—TRANNNMY

N

FIGURE 1

We wish to follow the situation of Section 3. Evidently we cannot have a close

analogue of 3.2 and 3.3 because the corresponding sets in R3 actually overlap, and no
E;"j(F) covers an entire face F,.

Wishing an analogy of 3.4 and 3.5 we eliminate sets E;."]-(F,) with ¢t #i. For
example, ESHD" (F,) C E¥3(F,), and BTV (F,) C B¥(F,) forallj = 1,2, . . .,
whereas 3.4 and 3.5 suggest we want the intersection to be a line or a point. (Inciden-
tally, analogy with 3.5 also suggests that the desired sets should lie entirely on one

face; on this score alone we would eliminate sets E;“j(F )Y with ¢t #1i, t #j.)
Fortunately, the collection

T, = {E(F)lk=1,2,...5i,j€{1,2,3},i#}}

fits in nicely with our requirements: the members of T, are convex quadrilaterals with
disjoint interior; T'; partitions F, and T, induces the partition P, on six of the nine
edges of F, and the partition P, = {0, 1} on the remaining three edges of F.
There is another consideration here also: we wish eventually to have an algorithm,
based on constructing successively finer partitions of F and “locating” a point of F in
these successive partitions. Convergence will follow from an application of the Cantor
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Intersection Theorem. An efficient algorithm then would arise by choosing the mem-
bers of the partitions as small as possible (consistent with other requirements). It is
obvious to the eye that the sets Y, , Z, are bigger than X, . In fact, for all £, Y, and
Z, always have an edge of length one, whereas all the edges of X, have length < 1/k.

For the reasons outlined above, we shall use only the collection T';, in order to
have a situation analogous to that described in Section 3. This amounts to restricting
the domain of E;’; to the face F;; this restriction is understood in the remainder of this
paper.

We emphasize at this point, that our aim is to generalize the work in Section 3
in as simple and natural a way as possible; thus we do not consider sets which might
arise in other ways.

Before describing our algorithm, we first prove some results about the maps E7.
These results demonstrate further analogies to the two-dimensional case, and also help
to motivate the derivation of the algorithm.

4.1. LEMMA. Leti,j€ {1,2,3},i#].

(a) Et'-;-* is a continuous 1-1 function on F, and El'.}* (F)C F;.

(b) If L is a line segment in F;, then E:-'j* (L) is a line segment in F;;

(c) If K is a convex polygon with vertices X |, X,, . . ., X, in F;, then E:.'j*(K)
is a convex polygon in F; with vertices EZ*(XI), e E;}* Xy).

Proof. (a) It is clear that EZ-* is continuous and 1-1 on F. Suppose, e.g. that
(i, /) = (1, 2) and suppose (1, y, z) € F;. Then

z
L Ver,

5

* 1
n —
E12(1’y» Z) - <y +n’

so that E’l';(Fl) C F, ; similarly for all other choices of i, j € {1, 2, 3},i #J.
(b) Suppose again that (i, /) = (1, 2) and that

L={0,y,2)I0<y,z<1;ay +bz +c¢ =0}

is a line segment in . Then

K * _ __1__ z )I
EXN(L) = {(y+k,1,y+k (1,y.20€LY CF,.

The equation ay + bz + ¢ = 0 may be rewritten
a(y + k) + bz + (c — ak) = 0,

and putting x' = (v + k)" ! and z' = z(y + k)™, it is clear that the points (x’, 1, z")
in E'l‘;(L) satisfy the equation
(c—akx' +bz +a=0,

that is, these points are collinear. Now from part (a) (continuity) E’f;(L) is a line seg-
ment in F,; similarly for the other choices of (i, ).

Part (¢) follows immediately from (b).

We next state
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4.2. THEOREM. The sets Ef].* (F;) are convex quadrilaterals with disjoint interiors
which partition F. In addition, we have

(a) Efj*(Fi) N EZ.*(F,.) =g unless |n — k| <1. If In — k| = 1, the intersection
is a line segment in Fi’ parallel to one edge of F]

(b) E,{‘j*(Fi) N E;'].*(Ft) =B unless [n — k| < 1. If In — k| = 1, the intersection
is a line segment on a diagonal of Fj; if In — k| = 0, the intersection is a point on a
diagonal of F]

(c) EHF) N E;;(F]) is on the common edge of F; and F;.

@ EXF) N ELF) = {(1, 1, D} if ( 5) # G, ).

(e) In all other cases, Etl‘j*(Fi) al E:’:(Fr) =g.

Proof. The proof is computational, using the fact that

* 1 V4
E’1€2(F1) = {(ma 1, k—_l__y'>|(1$ Y, Z) EFI}

and the analogous descriptions for the other E;‘i*(Fi).
We give here a sketch of the x-face F, partitioned by the sets E’z‘ I(Fz) and

E§(F3).
@1,0,1) 1,1,1)
*
By (Fy)
1
(1’0’ E) "
2
Ejy (Fy)
1
(1:0; '—)
3 EEd
1,0, P F51 )
* *
Egl(Fz) E21(F2)
(1,0,0) (1,1,0)

1 1 1
' (19430) (1)3)0) (132’0)

FIGURE 2

If an edge of F intersects a coordinate plane, call it an outer edge; otherwise call
it an inner edge. We have

4.3. COROLLARY. The partition of Theorem 4.2 induces the partition P, =
{Unln=1,2,...} on the outer edges of F, and the partition Py = {0, 1} on the
inner edges.
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Let

_ pk* - S

- {EU (Fz)ll;]e {1’ 27 3},l¢]7k_ 1, 2, s }'

We shall define inductively, in analogy with the work in Section 2, successive partitions
T, such that T} refines T) _,, etc.

4.4. Definition. For each k = 2, 3, . .. define a collection T} as follows:
n* 1,j€{1,2,3},l=)&j,
T \E Wl =1,2..  xcF,xerT,_,

Thus, for example,
T2 = {(EZ : Eii)*(Fk)}-

For convenience, we state

4.5. THEOREM. Foreach k =2,3, ..., the collection T, is a proper refine-
ment of Ty _,. T, partitions F into convex quadrilaterals with disjoint interiors.

Proof. The proof is immediate from Lemma 4.1 and the definition of T}.

Derivation of the Algorithm. Let x,, ¥, be nonnegative real numbers. Put v,
equal to the intersection of the line through (0, 0, 0) and (1, x,, y,) with F. Since T
partitions F, we must have v, in one of the members of T, say v, € (E':' 11“)*(F ).
Then we may write

=(E;L *©,); v, GF,..

171

Now v, = E:;zll)*(v2) for some v, € F; , v, = Ef'33,2)*(v3) for some v; € F;,
and so on. The algorithm consists essentially of computing the entries of the successive

v; and keeping track of the Ef'k";k

5. Convergence. Recall that the diameter of a (convex) quadrilateral in the plane
is the length of its longest diagonal. Our procedure in this section may be roughly
described as follows: Given a set X in the partitioning set 7). Then X is a convex
qua(frilateral contained in one of the faces F;, F,, F;. Now theset {YET,  ,|YC X}
partitions the set X, and it is a comparatively simple matter (though tedious) to show
that if Y € T}, , and Y C X, then the diameter of Y satisfies diam ¥ < (2/3) diam X.

We begin with some preliminary lemmas.

5.1. LEmMA. Let X € T, and suppose that X C F; (i € {1, 2, 3}). Then there
exists a matrix A such that

4= E:'1111E:122/2 o E?kk}k’
where the n, are positive integers, j, =i, _, (r = , k), j; =1, and A*(Fik) =X

Proof. The proof follows immediately from the deﬁmtlon of T,. fX€ET,,
then X = E:l1111(U) forsome UET,_,,UC le’ and X C F; implies j, = i. Now
U= E:;zjz(W) for some WE T, _,, WC Fiz. Then U C Fl-1 implies j, =i, and so on

5.2. LEMMA. If X €Ty, then X is a convex quadrilateral contained in one of
the faces F; (i = {1, 2, 3}). If we write X = A*(Fik) where A is the matrix defined
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in Lemma 5.1, then letting E,, E,, E;, E, be the edges of face F and Dy, D, its
two diagonals, we have that the edges of X are given by AX(Ey) (z =1,2,3,4)and its
two diagonals by A*(D,) and AX(D,).

Proof. This follows from Lemma 4.1(b) and (c).

5.3. LewMa. If X €Ty and Y €Ty, Y C X, and we write X = A¥(F, )
as in Lemma 4.2, then we have

h
— AE”k+1 k+2 Vx(F
( E’t+1 t) ( It41

)
for some i, i, € {1, 2, 3}; and Ny 11> Ny 4, POSitive integers; that is,

=A%)

for some UET,.
Proof.  The proof is immediate from the definition of T} ,.

1 1 1
@,0,1) 4 3 2 1,1,1)
AN J / /
. 1 / /
.\ \ . . / // /
N Iy / Ey1Ep3(Fyp)
. , / /
_____ N / y
_____ Ny /
Ny
______ N/
AN
AN
E 4B, (Fy) N N Ey1Ea3(F3)

1 1
2 [ / -7 2
.._>-\" ,’/ / A -7

N N « Pl
~
~ . - 1
1 = — \"/ E)1E3(F3) 3
bl 2182 F) 'Y -
=< \ | \/ _ %.
; \ .7 I IN__---7
1 ¢ {
4 . \ | '\ A \ ‘ ‘ .
. . . \,’ . l//—— | l ‘ N .
. l":_ ' | \ ¢ | I ' . N
* ! l|\“\ ! ! : \’- | | | * N N
. 1 .
:::‘-.\ P ! I N\
(1,0,0) 1 1 2 1 2 3 4 1,1,0
- 3 5 2 3 P

FIGURE 3. T, on the x-face
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We append here a sketch of the x-face as partitioned by T, (Figure 3). The solid
lines surround members of T,, members of T, have at least two edges on the dotted
lines. (Cf. Figure 2.)

Suppose now that X = A*(Fik) as in Lemma 5.1, and for convenience suppose
X CF,andi =2;X=A*%F,). Now A is a matrix with nonnegative integer entries,

say
a, by ¢
A=la, b, c,|.
a3 by cy

The vertices of F, are: (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1) and so the vertices of
A*(F,) are points in F given by:

b2 b3
Ule*(O, 1’0)= I’IZ’E )

b, +c, by+cy
= * =
U2 A (O, 1, 1) (1’171 +clabl +Cl )

ay +b, a3+ by
= A% =
U3 A (1’ 1,0) <1’al +b1,al +b1 9

. ay, +b, +c, ay +b3 +c5
va =AML L) =\ L o e 4 b, v ey

We remind the reader that the definition of 4 assures that we do have b, <b,,
by <by, by, +c, <b, +cy, etc. so that the second and third coordinates of v, are
between O and 1.

24+%2 23453
’
al+c1 al+c1

\
—e (1,
\

FIGURE 4
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In Figure 4, we sketch the set X = A*(Fik) as partitioned into the sets ¥ =
A¥U) for UET,, UC Fik' As an aid in sketching we assume a,, a; <a, and
¢,, ¢3 <c; so that in fact A¥(F) C F,.

The points x,, x,, . . . are given by 4*(1/n, 1, 1/n); either the points z,, z,, ...
are A*(1/n, 1, 0) and the points y;, »,, . . . are A*(0, 1, 1/n); or vice versa. The heavy
lines give the outlines of the sets Y = A*(U) for U € T,.

For A*(U), U € T,, the picture becomes

FIGURE 5

The new points w; are the intersections of the lines through ¢ and y; with the edge
V,v, and similarly for the points u;.

We now state

5.5. THEOREM. Let X = A*(F,.k) as in Lemma 5.1, and let Y = A*(U) where
UET,, UCF;. ThendiamY < (2/3) diam X.

Proof. The idea of the proof is geometrically quite simple. If Y = 4A*(U), then
Y is one of the quadrilaterals outlined in Figure 5. If L is an edge or a diagonal of Y,
it is indicated in Figure 5 that Y lies on a line segment L' in X, extending from one
edge or vertex of X to another edge or vertex of X, and it appears that L is always
strictly shorter than the corresponding line L'.

Without loss of generality, we may assume X C F and i, = 2, that is, A*(F,) C
F,. Let UET,, UCF,. lItis clear from Figure 3 that either

(a) U has two sides parallel to an edge of F, and to each other,

(b) U does not have two sides parallel.
In case (a) we have either U = (E%,E5,)*(F,) or U = (E%,E% 3)*(F,), while in case (b)
we have either U = (B} ,E%,)*(F;) or U = (E%,E’}3)*(F)).

For case (a), consider for example, U with vertices
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_ 1 1/(n+1) _ 1
“1= <t+ 1/(" + 1)’ 1’f+ 1/(n + 1))’ Uz _<t + 1/(n + 1)’ 1, 0>,

_ (1 1/n> (1
“3 (t+1/n’1’t+1/n’ u4_<t+1/n’1’0>'

Then the diagonals of U run from u, to u, and from u, to u;. Now the segment
u,u, lies on the segment L, from

1 _(n+1
p1_<t+1/n’1’0> to ”2‘\nr+1’1’1>

and the segment u,u, lies on the segment L, from

_ 1 _( nfnt1)
q1_<t+1/(n+1)’1’0> to q2_<t+1/(n+1)’1’1>'

Writing
a by ¢
A=la, b, ¢, |,
ay by c3
we have, e.g.
A*(uy)

(n+ Day + {0+ Dt + 13, + ¢, (n+ Dag + {2 + Dt + 1}b5 +¢;
= <1’(n T, ¥ (0 F D+ 13, Top @+ Da, + {n + i + 13b, +ey

and, similarly, one may write out A*(u,), A*(u5), A*(u,). (We have found it simpler
to keep the numerators and denominators of the entries of A*(u;) clear of fractions.)
Put

S, = (a,by —a;by) + (nt + 1)(cyby = byey) + n(aycy — a,cy),

Sy = (azh; —a;by) + (nt + ez, —bsey) +nlayes — a5cy),

R, = (ayb, —aby) +(n + (a,e, —816y) + {(n+ Dt + 1}(byeq — cyby),

Ry = {azby —a;b3} +(n + (aze, —ayc3) + {(n + Dt + 1}(byc, —c3by).
One computes easily that

VYRS

d(A* (W), A*Wa) = (G Da, + (0 + Dt + 13b, + ¢, )na, + (ar + Db,

o (nt + IWSTF ST
dA*@,). A*P2)) = G Gur + Db, N + Dy + (1t + Db, + (a2 + Dey)

\/R22 + R%

d(A*(uy), A*(uz)) = (na, + (nt + Dby +c )+ Day + {(n + Dt + 135,)
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d(A*(q 1 ), A *(qz )

_ VR RS
(A Da, +{(n+ D+ 13b))na, + {tn + 1)+ 1}b, + {t(n + 1) + 1}¢))
Then

d(A*(u,), A*(uy)) 3 (n+ Da, +(nt + 1)b, + (nt + 1),
d(A*(p,), A*(py))  (nt + D[(n + a, + ((n + Dt + )b, +¢,]
1
nt[(n + a, + ((n + 1)t + 1)b,]
(n+ a, + (@t +1)b, + (nt + 1)c,

Il

__1
l1+a’

Ve must now show a > %. To do this we shall use the fact that 4 has the form
lescribed in Lemma 5.1. If 4 = BE, 5, then column 2 of 4 is elementwise larger than
:olumn 3 of 4; then b; > ¢, and we have a > 1> %. If 4 = E?llfl s E?k’;-k has all
»J,=1or2, thenc, =0,and again b, >c¢,. If4 =BEE,, - E,, then
:olumn 1 is greater than column 3; if A = BE, E,, - - - E,, then column 2 is greater

han column 3. Thus, either ¢, = 0, or one of @, and b, is greater than ¢,. In all
ases o > .

A similar argument shows that

d(4 *(uz)a A*(u3))

d(A*(q,), A*(4,))

ind again we must use the fact that our matrix 4 has either @, or b, greater than c,).
Case (b) is somewhat simpler than case (a), in that case (b) does not require any

sstrictions on A4 except that A*(F,) C F| and the entries of 4 are nonnegative integers.
et U €T, fall under case (b). Then suppose U has vertices

_(11L> YO S
“ENT D) 2 = T oar 1)

t+
n

U, = l1——1———> Uy, = ! 1 L
3T\ (m+ ) AT py 1 U m+ D+ 1)

n+1
The diagonals of U are the segments L_l: L—IZ and uyu4.
The segment u,u, lies on the line from P, = (1/(¢ + 1), 1, 0) to

n+1
rr- <
(t 1,l,l), n<t,

<1,1,5>, n>t
n

d the segment u,u, lies on the line from Q, to Q, where

2
<3

P, =
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1 1 .
g, =11, P 0, OITI ift=1,

1 1\ .
0, < 1,10> 0, <01 +1> it > 1.

The computation of the distances proceeds as before; when it comes time to take the
ratios, the square roots cancel, and one has, e.g.

I

I

d(A*(uy), A*(u,)) (@, + (@ + Db + Da; + (¢t + Dby + (¢t + 1)e,]
d(A*(Pl),A*(Pz))—(t + Dlna, +ntby +cy)la, + (@ + Db, +na; +nth; +c,]

1
(t + D[na, +ntb, +c,] na, +nth; +c,
X
(n + Da, +(t + Db, +( + De, a, +( + Db,

1
Taxf’

It is clear that « > 1 and that § > 1 + 1/2 = 3/2 so that a8 > 3/2 as desired.
Similarly, one shows that

d(A*(u2), A*(u3)) <2
d(4*(Q,), A%Q,)) 3

Similar computations may be used for any of the quadrilaterals U in case (a) or (b);
the corresponding ratios are always < 2/3. This completes the proof.

Conjecture. If X €T, and Y € T, Y C X, then there is some fixed a <1
(perhaps a = 4/5) such that diam Y < a diam X.

Open question: Find the best possible value of « for extension from T to
T, .y from T} to Tk+2, etc.

Open question: The reader will recall that among continued fractions, the
quantity

=1+ —— =<1,1,...,1,1,...>=1+2*/§

1
1+1+

converges most slowly. Figure 3 (and pictures of T, for k > 2) suggest strongly that
something analogous happens in this algorithm. The largest sets in T, (having longest
edges, longest diagonals, and largest area) are those of the form

(ELE})*(F,) with r #7j.

ij=ri

In T, corresponding largest sets are of the form

(£}

In fact, after 3 steps, the indices repeat, e.g.,

iy 121 l3 2)*(F ) withi, #j,,iy #1i,.
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E\ By Ey3E 25 Eyy

One might expect that the matrix 4 = E| ,E5, E, 5 would be as interesting as, for
n=72:

11
EyBy, = (1 2) =B;

B has characteristic roots 1 + &, 1 + 8 (@ = (1 ++/5)/2, 8 = (1 —+/5)/2) and has
(1, @) as a characteristic vector.

The author would like to thank the referee for his careful reading of the paper,
and for helpful suggestions.
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