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Details of the First Region of
Integers x With m;,(x) < m;,(x)

By Carter Bays and Richard H. Hudson

Abstract. Since the time of Chebyshev [4] there has been interest in the magnitude
of the smallest integer x with 1r3,2(x) < 1r3’1(x), where ﬂb’c(x) denotes the number
of positive primes < x and = ¢ (mod b). The authors have recently reached this
threshold with the discovery that 1r3’2(608981813029)— 113,1(608981 813029) =—1.
This paper includes a detailed numerical and graphical description of values of 1r3’2(x)
- 1r3,1(x) in the vicinity of this long sought number.

1. Introduction. Let m, .(x),1<c <b, (b, ¢) = 1, denote the number of
primes < x which are = ¢ (mod b) and let A,(x, c, c) = Ty o(X) = Ty, o'(%)-

In a letter written in 1853, Chebyshev [4] (see also [5], [6], [10]) remarked
that 75 ;(x) <m3 ,(x) and m, ;(x) <m, 5(x) for all small values of x. Due to the
famous result of J. E. Littlewood [9], it is now well known that these inequalities
and the related inequality m(x) <1i x (where the right-hand side is the usual.integral
logarithm of x) are reversed for infinitely many integers x.

The first negative value of A4(x, 3, 1) is not difficult to find with a computer.
In 1957 John Leech discovered that A,(x, 3, 1) = —1 for x = 26861. This “first
axis crossing” was discovered independently at a slightly later date by Shanks [10]
and Wrench (see [10, p. 273]). However, in the computations by Leech, Shanks, Leh-
mer, and others no integers x with 7r3’2(x) < 7r3,l(x) were found. The present authors
experienced discouragement when an exhaustive search of the first quarter of a trillion
integers still produced no axis crossing. A computer solution, if possible, is highly
desirable since it is very difficult to obtain effective bounds for first axis crossings
which are likely to represent anything close to actual values. For example, values of
x with lix < m(x) may occur long before the integers x around 1.53 x 101165
found by Lehman [8]. Moreover, even less has been known previously regarding the
first negative values of Aj(x, 2, 1).

Consequently, we did not abandon the search but developed a new and faster
program described in [2] (with values coinciding with the earlier run at 2.5 x 101)
and discovered on December 25, 1976 that

(1.1) A,(608981813029,2,1) = —1.

The purpose of this note is to give a numerical and graphical description of the
region of integers from x, = 608,981,813,029 to Xp= 610,968,213,796 (and the
vicinity). This region contains 316,889,212 integers x with A;(x, 2, 1) negative, the
only such integers that occur for x < 2x,. Interestingly, this region separates into
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two parts removed from each other by an appreciable 1,363,263,116 integers. These
appear pictorially as “twin” subregions; the first contains 150,276,170 and the second
166,613,042 negative values of Ay(x, 2, 1).

In spite of the large amount of machine time necessary to obtain these results
we have considerable confidence in their accuracy. In particular, our computation of
my,1(10'%) + 75 | (10'2) + 1 agrees with the value of m(10'?) computed by Bohman
[31;
m5,1(10'?) = 18,803,933,520, 73 ,(10'%) = 18,803,978,497,

(1.2)
7(10'2) = 37,607,912,018.

Moreover, our prime count agrees with that of Bohman at 10'!, 2 x 10'!, and 4 x
1011,

2. Numerical and Graphical Description of the First Axis Crossing Region for
the Modulus 3. Asin [1], we define the first axis crossing region to be the first set
of positive integers x with x, <x < X satisfying the conditions,

2.1) Aj(xg, 2, 1) = Ag(xp, 2, 1) = =1,
and A5(x, 2, 1) 2 0 for each integer x with
(2.2) xp<x < 2.

Note that (2.1) does not require that we have A4(x, 2, 1) <0 Vx with Xy <
x S x;. We call the longest sequence of consecutive integers with A;(x, 2, 1) <0 in
an axis crossing region the “longest negative block™ and the longest sequence of con-
secutive integers with A;(x, 2, 1) > 0 in an axis crossing region the “longest non-
negative block”. The condition (2.2) merely ensures that the region considered is an
isolated axis crossing region (negative values of A5(x, 2, 1) occurring at, say 650
billion, would be considered part of the same general region).

The word “value” in Table 1 refers always to values of A;(x, 2, 1) for the en-
tire axis crossing region or, as denoted, for one of the two twin subregions into which

this region naturally separates. All classifications refer to values between the first and
last —1 values inclusive of the region or subregion under consideration, excepting the
first and last zero values which respectively precede and follow the first and last — 1
values, and the classification “total integers on the axis” which refers to values between
the first and last zero values (an integer is said to be above, on, or below the axis
according as A5(x, 2, 1) is positive, zero, or negative).

Figures 1 through 4 graphically depict the behavior of A,(x, 2, 1) in the vicinity
of the first axis crossing region for the modulus 3. Figures 1 and 2 consist of 610
points; Figures 3 and 4 consist of 1200 points. In all figures the vertical line repre-
sents the zero axis. In Figures 1 and 2 the left vertical line is for reference and ap-
proximates m(x'/2)/4. The horizontal scale of Figure 2 is twice that of Figure 1,
and the horizontal scale of Figures 3 and 4 is 4 times that of Figure 1. Figure 1
spans 10% of the integers in the vicinity of 610 billion, Figure 2 spans 1%, and Figures 3
and 4 span .1%. Table 1 may be referred to for specific values of A;(x, 2, 1) in the en-
tire region (Figures 1 and 2), and in the “twin” subregions (Figures 3 and 4).
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THE FIRST REGION OF INTEGERS x
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3. Concluding Remark. The first axis crossing region for the modulus 4 con-
tains only two integers with A,(x, 3, 1) negative; specifically A,(26861, 3, 1) =
A,(26862, 3, 1) = —1 (the next negative value for A,(x, 3, 1) isx = 616841). In
contrast the first axis crossing region for the modulus 3 attains A5(x, 2, 1) = —1538
and remains negative for tens of millions of consecutive values of x. On the other
hand, with its huge scale, Figure 1, which spans 10% of the integers in the vicinity of
610 billion, does appear similar to the Figure 1 in [2], which depicts A,(x, 3, 1) for
10% of the integers in the vicinity of the first axis crossing, x = 26861. In particular,
both A,(x, 2, 1) and A4(x, 3, 1) assume values far greater than m(x1/?)/4 above and
below the first axis crossing (and within the 10% range depicted), so that values ap-
pear to plunge, barely cross, and then rise again rapidly. We suggest, therefore, that
in any computer search for the smallest integer x with 1i x < m(x) which does not
perform a check at each odd integer (e.g., using the recurrence employed by Bohman
[3]), integers should be checked at fairly regular intervals (relative to x) in order not
to miss a plunge resulting in a “shallow” axis crossing region. Moreover, rapid plunges
(particularly plunges below 7(x!/2)/4) should be scrutinized with special care.
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