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Table of the Cyclotomic Class Numbers 42*(p)
and Their Factors for 200 <p <3521

By D. H. Lehmer and J. M. Masley

Abstract. This table gives the values of the “first factor” h*(p) and their factorizations
for all primes p, 200 < p < 521. This extends similar data by M. Newman [Math.
Comp., v. 24, 1970, pp. 215—219], and Schrutka [Berlin Akad. Abn., 1964]. The two
methods used to compute these data are described.

1. Introduction. The present table extends a similar one given by Newman [8],
for p <200, in 1970. At that time Newman was unaware of a larger table by Schrutka
[10] containing A*(p) and its factors for p < 257. In setting the range 200 < p < 521
the authors decided to include the nine primes between 200 and 257 because Schrutka’s
table is incomplete as to some factorizations and also because his table is unavailable
in most libraries. The present table appears in the microfiche section.

Two methods were used to obtain the results given herewith. The first method,
an elaboration of Newman’s, gives the value of 2*(p) by a determinant. The second
method obtains A*(p) as a product of its “algebraic” factors which in turn have their
factors so strongly restricted that many quite large values of 2*(p) have been complete-
ly factored. This factorization theory has been set forth in two other papers (Lehmer
[5] and Masley [6]) from different points of view. This second method is more ex-
pensive than the first and, for p > 300, was used only to get all but the largest factor
of h*(p), the latter being obtained from the value of A*(p) as given by the first method.

2. First Method. This method uses modular arithmetic to evaluate A*(p) from
the formula

n*(p) = |det M|,
where M is the 0-1 matrix of order (p — 5)/2

M= {m,} (r,c=301)p-1)2)

me=[3]- 5]
o Lp p I
This formula was first published by Carlitz and Olson [1] as a consequence of
their work on Maillet’s determinant. A direct derivation is given in [6].

with

Before resorting to congruential computation it is advantageous to reduce M by
elementary row and column operations to a much smaller matrix B. This reduction is
aided by the fact that M is relatively sparse, having almost 75% of its entries zero,
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and the fact that the ones in M in column ¢ are situated in rows
j—2
r= [———(’ - )”] +1 =3I~ D/2)).

Some of this reduction can be done for a general p. In fact, one may cross out columns
3,4, 6 and rows [p/6] + 1, [p/4] + 1, and [p/3] + 1, thus reducing M to a 0-1 matrix
of order (p — 11)/2. Further reductions depending on the form of p can be automated.
For the range 200 < p < 521 the matrix M was reduced to a matrix B of order k with
p/5 < k < p/3 without any element of B exceeding 10° in absolute value. This pre-
liminary reduction can be compared with that used by Newman [8] whose B is of order
(p — 1)/2 with mostly nonzero entries less than p in absolute value. To compute det B
use was made of modular arithmetic. Remainders r; were found for which

det B=r; (modg;) (= 1(1))

and then combined by the Chinese remainder theorem to determine the actual value
of det B. The q; were chosen to be primes slightly greater than 10, and the process is
valid provided

1) |det Bl <q4q, " " q4

To make an efficient choice of ¢ it is essential to know quantitative upper bounds for
|det B| = h*(p). Fortunately, these have recently become available. Kummer [2]
asserted that A*(p) is asymptotic to the function

@ G(p) = 2p(p/4n™) P~ DI,

This has not yet been proved. The best result to date in this direction is due to
Lepisto [3] who proves that for p > 200,

—Ylogp — 4loglogp — 12.93 — 4.66/log p
< log(h*(p)/G(p)) < 5 loglogp + 15.49 + 4.66/log p.

These results can be improved by methods used in [6] but not enough to yield Kum-
mer’s conjecture. For the range 200 < p < 521 the best known upper bound is

3) log(h*(p)/G(p)) < log p + log log(p/3) + 3.52.

The number ¢ of moduli was chosen using (2) and (3) so that at most one modulus
was “wasted” in satisfying (1).

Every value of A*(p) obtained by this method was later compared with the table
of approximations to A*(p) given in Pajunen [9]. These values were also subjected to
stringent divisibility conditions imposed by the second method. Newman’s results for
p < 200 were recomputed in 90 seconds, as opposed to 30 minutes by Newman’s
method, and no discrepancy was found.

3. Second Method. This method is based on a norming procedure as applied to
the fundamental factorization formula

0] ey= I .

ef=p—1;fodd
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The positive integer /,(p), called the relative class number of degree e, is given by

5) ho(p) = pt/P~DIN, (W, (p))/Q,(2)".
Here
e
r=1e)= ind,2)’

where g is any primitive root of p. Q,(x) is the monic polynomial of degree ¢(7)
whose roots are the primitive rth roots of unity and

v = (e) = ¢(e)/¢(7)-
Finally,

(r—1)/2 n
We(p) = Z (En - En-—l)a H

n=1

where a = exp{2ni/e},

1 ifg” - ple"/p] <p/2,
0 otherwise;

and N,(W,(p)) is the norm of W,(p) in the cyclotomic field of eth roots of unity.
This elaborate and relatively expensive formula is effective in factoring A*(p).
Furthermore, it is shown in [5] and [6] that if

he(P) =q19, " " " 4,

is the canonical factorization of 4,(p) into a product of distinct prime powers q; (i =
1(1)¢) then each g; prime to e is of the form ex + 1, a valuable condition for several
methods of factorization.

In (5) the function Q,(2) is readily evaluated by

0,2 =11 @ - 1™,
S|t

where u is the Mobius function. Thus, the real expense of this method is that of the
calculation of the norm

p—1
©  Nwoen= Il 3% @ -ei= 11 W o
(t,e)=1;t<e {n=1 (t,e)=1

Metsankyla [7] has suggested a straightforward approach via multiprecise approximation
of each factor of (6) using floating-point arithmetic followed by the recognition of the
huge integer NV,. Instead, it was decided to follow a suggestion of Spira [11] and use
a vector manipulation method with exact fixed point multiprecision arithmetic.

We begin the norming program by determining the coefficients
A,=¢€,—€,_, =210

n n

of W,(p, 1) in a prelude to the main routine which generates a table of powers of a
primitive root g (mod p). We can then think of W, (p, 1) simply as a vector of dimen-
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sion (p — 1)/2
We(p, 1) ~ [Al’ A2, “ .. ’A(P'—l)/2]‘

Since

an+e — O[n, Clr+e/2 — __ar’

this vector can be compressed to one of dimension e’ = ¢/2

@) W.(p, 1)~ lay, ap, . .. ,a.1],

where the a’s are small integers. The corresponding vectors for the other factors
W,(p, t) have the same set of components but in a different order.

To compute N,(W,(p)) we multiply the several vectors together in the Cauchy
sense. Thus, in multiplying (7) by any other vector

6y, by, ..., b,]
we first obtain a vector

e, eqs o]
of dimension e with
= D ab; (n=1()e).
i+j=n
This is then compressed into a vector of dimension e’ by replacing c,, by ¢, — ¢, e
for n = 1(1)e’. (In case e = p — 1 this whole procedure involves only addition and
subtraction since ¢; = 4; = *1, 0.) Accumulating factors in this way, we obtain a
vector representing the product of the first ¢(e)/2 factors in (6). Since the factors for
t and e — t are complex conjugates, the vector for the second half-product has the
same components as those of the first but in reverse order. Multiplying these two
vectors together, we obtain a vector for N, (W,(p))

(Ao

with large integer components. To find the integer thus represented we change notation
slightly, replacing C; by f(i — 1), and write

N W) =f0) + f(Dax + -+ + fle — Do

Let & be any divisor of e and let e = e, 8. If ¢; (i = 1(1)¢(e,)) are the numbers < e,
and relatively prime to e,, then o® 1 are the primitive e, th roots of unity and their
sum is u(e,). Since they are algebraically indistinguishable, their corresponding coeffi-
cients f(§¢;) must be equal and equal to f(5). Hence, we have

N (W,(p)) = £(0) + 82; ue,)f(8) = f(0) + ; u(®)1(e/s),
e Sle
a formula that is easily programmed.

5. Irregular Primes. Kummer called a prime p irregular in case p divides a
Bernoulli number B,, with 22 <p. Of the 51 primes in the range of our table 20 are
irregular. As a result of a recent paper by Ribet [12], it follows that p | (p) where
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e=(p—1)/(p — 1, 2a — 1). This affords a welcome check on the computed value of
h,(p). The following table lists these cases.

4 2a e 4 2a e
233 84 232 389 200 388
257 164 256 401 382 400
263 100 262 409 126 408
271 84 270 421 240 420
283 20 282 433 366 432
293 156 292 461 196 92
307 88 102 463 130 154
311 292 310 467 94 466
347 280 346 467 194 466
353 186 352 491 292 490
353 300 352 491 336 98
379 100 42 491 338 490
379 174 378

The evidence in the main table supports the conjecture that the product B,B, ... B,_
and A*(p) contain p to the same highest power.

6. Description of the Tables. Table 1 gives for each of the 51 indented entries
p with 200 < p < 521 the value of the first factor #*(p) of the cyclotomic class num-
ber of Q(exp{2mi/p}). This table and the next appear in the microfiche section of this issue.

Table 2 gives the factorizations of the entries in Table 1 as given by (4); one line
is devoted to each & (p). The first entry in each line is e itself. Each unmarked factor
is a prime. If a factor is followed by * it is intrinsic, i.e. all of its prime factors divide
e. If a factor is followed by # the factor is a power of a prime, ¢%, @ > 1, such that
e divides ¢* — 1. For example, for p = 313, e = 24, the entry 1369+ is 372 and 1368
= 24-57. Oversize entries are put in two Appendices in order of size. The first of
these is for primes designated by P followed by the number of its digits; a number
greater than 37. The second Appendix is for composite numbers designated by C. For
each of these numbers a space is left in the main Table 2 for writing in whatever factors
may be discovered in the future. All such prime power factors are known to exceed
10t

The following procedures were followed in preparing Table 2. As soon as h*(p)
was computed by the first method it was searched for factors less than 105 to discover
all its intrinsic factors and the factors that are powers of small primes. The residual
factor N was next tested for pseudo-primality by seeing whether

®) 13¥ =13 (mod N).

If (8) fails to hold, NV is composite and all its extrinsic prime power factors are of the
form ex + 1. In this case a search for small factors of N was made using the Illiac IV
which makes 64 trial divisions simultaneously, up to the limit 10'*. After removing
such factors, if any, from N and applying (8) to the residual factor, a more serious
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attempt at factorization was made. For numbers up to 30 digits the Delay Line Sieve
was used and for numbers up to 38 digits the Pollard Rho method and, if necessary,
the Brillhart-Morrison method were applied by M. Wunderlich of the Northern Illinois
University. As a result, we can say of the 26 composite numbers in the appendix that
none has a prime factor < 10% and if any prime factor exists between 10% and 10!
its square must also be a factor. Any pseudoprimes discovered were sent to H. S.
Williams at the University of Manitoba, who carried out the final tests for primality in
all cases.
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