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Cyclotomic Invariants and E-Irregular Primes

By R. Ernvall and T. Metsidnkyla

Abstract. We prove some general results about the Iwasawa invariants N and u

of the 4pth cyclotomic field (p an odd prime), and determine the values of these

invariants for p < 104. The properties of A and u are closely connected with

the E-irregularity (i.e. the irregularity with respect to the Euler numbers) of p.
A list of all E-irregular primes less than 104, computed by the first author, is
included and analyzed.

1. Introduction. Let p be an odd prime. For a natural number m prime to p,

consider the p-class groups of the cyclotomic fields K,, of mp"t1

th roots of unity
(n=0,1,...). For all sufficiently large n, the orders of these groups equal p*(™)
with e(n) = M + pp" + v, where A = ), p and u = u,, , are nonnegative integers
that (as well as v) do not depend on n. The same holds true when K, is replaced by
its maximal real subfield; let us denote then the corresponding invariants by A* and
pt. Put A=X\"+ AT, p =y +u*. Then the invariants X~ = N, and 4~ = Wy, ,
are related to the exact power of p dividing the first factor 4}, of the class number
of K,,.

Iwasawa [10] has conjectured that u = O for every choice of m. This has been
proved only for p = 3 [5]. Note that AT <X, u* <y~ (see e.g. [5, p. 63]) so that
the results A = 0 and u = O are implied by A~ = 0 and u~ = 0, respectively. We
also know that X~ = u~ = 0 if and only if p does not divide 47 /Ay (see [9, p. 95],
where A~ and u~ are denoted by A and w).

Suppose that m = 1. Then the condition X~ = y~ = 0 is also equivalent to the
fact that p is a regular prime [9, p. 96], i.e. p1 hy, or, equivalently, p does not divide
the numerator of any of the Bernoulli numbers B,, B,, . . ., Bp_3. For irregular
primes p, the invariants >\; and p, (and Ap up) have been determined with the help
of computers up to p < 125,000 [11], [14], [23]. It has turned out that u, =0
for all these p.

In this paper we shall be concerned with the case m = 4. Although this case is
rather similar to the case m = 1, some new features appear. We shall prove that
Map = Up if p is E-regular, i.e. p does not divide any of the Euler numbers E,, E,,
R e Furthermore, using results obtained by computer, we shall show that
Mgp =0 for every prime p < 10%, and determine the value of A, for these p.
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We note that the connection between the E-regularity of p and the divisibility by
p of the class number of the 4pth cyclotomic field was discovered by Gut [7] (see
also [21]). Gut [6] has also found that the E-regularity of p is connected with the
;ol\;ability of the diophantine equation x2?7 + »2P = z2P,

The list of E-irregular primes produced by our computation procedure is also in-
teresting in its own right. This list is included at the end of this paper and analyzed
in Section 2. Among other things, it may be compared with the corresponding list
of ordinary irregular primes (called B-irregular below).

Section 2, together with Section 7 containing a report of the computations, is
due to the first author, who also prepared the computer programs. Sections 3—6
concerning Xy, and py, are work of the second author.

2. E-Irregular Primes. Euler numbers £, (n = 0, 1, . . . ) can be defined by the
symbolic equations
E+DY'+E-1)'=2 forn=0,

=0 forn=>1
(see,e.g. [19,p.25]). It follows that all the E,, are integers and those with an odd
index equal zero. Moreover,
) m+E+1P2" +(m+E-1)2"=2m2"  (n>1),

where m is an arbitrary integer. Take an odd k. Letting m run through odd integers
from 1 to 2k — 1, we get from (1)

@) Fyy =3 0@ (mod K2),
a=1

where 6 is the unique Dirichlet character with conductor 4. Almost all the proper-
ties of Euler numbers needed in the sequel are based on this congruence.

We say that a prime p > 5 is E-irregular if there exists an even integer 2n such
that 2 < 2n <p - 3 and p divides E,,,. We then say that (p, 2n) is an E-irregular
pair. For each p, we call the number of such pairs the index of E-irregularity of p
and denote it by ig. Carlitz [3] has proved that there are infinitely many E-irregular
primes. The first author [4] has shown that the number of the E-irregular primes
# %1 (mod 8) is infinite. It is not known whether there are infinitely many E-regular
primes.

We used a computer to find all E-irregular pairs (p, 2n) with p < 10%. The
table at the end of the paper lists all these pairs. There are 495 E-irregular primes
in all. It should be noted that, as was to be expected, they are quite evenly distri-
buted mod 8. Furthermore, i = 2 for 86 primes and i = 3 for 15 primes. The
case i = 4 occurs for the primes 3673 and 8681 and the case i, = 5 for 5783. No
prime with i 2 6 was found. (For these and the following results, compare the
corresponding results concerning B-irregular primes [12], [14], [23].)

Gut [6] has proved that the condition Ep_3 =E, s EE'p_7 =E, g =E, || =
0 (mod p) is necessary for the equation x2P + y2P = z2P (p4 xyz) to be solvable.
Vandiver [22] has given a proof of the fact that if xP + y? = zP (ptxyz) is satisfied,
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then (p, p — 3) is an E-irregular pair. In our range we found that (p, p — 3) is an
E-irregular pair for p = 149 and 241, (p, p — 9) is such a pair for p = 19, 31, and
3701, and (p, p — 11) for p = 139 only, while there is no example of an E-irregular
pair of the form (p, p — 5) or (p, p — 7). No consecutive E-irregular pairs (of the
form (p, 2n) and (p, 2n + 2)) were found.

For each E-irregular pair (p, 2n) we also computed E,, mod p?. It appeared
that E,,, is never divisible by p? for p < 10% (cf. [13], [14], [23]).

Denote by mg(x), mg(x), and 75 5(x) the number of those primes, not exceeding
x, which are B-irregular, E-irregular, and both B- and E-irregular, respectively. Siegel
[20] predicted that the ratio mg(x)/m(x) approaches the limit 1 — e"1/2 = 0.3934
... as x > . This result can be obtained by assuming that the numerators of the
Bernoulli numbers B,, B,, . . . ,Bp_3 are randomly distributed mod p. The same
hypothesis on the Euler numbers E,, E,, . . ., Ep_3 leads to the conjecture that
Tg()/a(x) > 1 = ¢ 12 and mpp(e)/n(x) > 1 - 2712 + ¢1 = 0.1548 . . . as x >
o, The information obtained from our computations seems to support these hypoth-
eses, as is seen from the following table. (The values of 7z and mg/m are appended
in this table for the sake of comparison. In calculating 75 and mg, we used the
table computed by Johnson [14].)

x | mg mg mgp W/m  wg/m mggl/m

2000 | 113 121 56 0373 0.399 0.18
4000 | 213 218 91 0387 0.39% 0.17
6000 | 308 300 126 0393 0.383 0.16
8000 | 397 400 169 0394 0.397 0.17
10000 | 497 495 218 0404 0403 0.18

As in the case of B-irregular primes, one is also led to the conjecture that the
E-irregular primes with index k satisfy the Poisson distribution t*¢~%/k! with ¢ = 1.
The table below compares the actual number of primes of each index within our
range with these predictions.

Index 0 1 2 3 =4 | Total
Observed | 732 391 86 15 3 1227
Expected | 744.2 372.1 930 155 22| 12270

3. Preliminaries About the Iwasawa Invariants. We shall treat the invariants

A;p and Ugp ON the basis of the theory of p-adic L-functions, due to Iwasawa [9,
Section 6].

Denote by Zp the ring of p-adic integers. For a rational integer a prime to p,
let w(a) € Z, be the p-adic limit of the sequence {@®"}. Then

3) w(@) =aP”  (mod p"* 'z,)

for all # > 0, and w can be viewed, in a natural way, as a Dirichlet character that
generates the character group mod p.
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For each n > 0, let g,(a) denote the residue class mod 4p™*! determined by
the integer @, and put

T, = {0,(@) la=1 (mod 4p)},

A, = {0,(@) | a odd and aP~! =1 (mod p"*1)}.
It is easy to verify that the multiplicative residue class group mod 4ap"*1 s the di-
rect product of its subgroups T, and A,. Denote by A4, the set of integers @ with

1 <a<4p"*t! and (g, 4p) = 1. Fix p" (= the order of I,)) integers c,, so that 1 <
c, <4p"*! and, for eacha € 4,,

0,(@) = 0,(c,)0,(d,),  0,(c,) ET,, 0,(d,) €A,

In the following x will denote an even character whose conductor fx equals p
or 4p. Let R be the inverse limit of the group algebras Z,[T',,] with respect to the
natural homomorphisms, induced by o,,(a) - 0,(a) (m=>n). For n > 0, write

@) £, =£,00="0"")! X ax(@w (@)o,c,) .

a€A,

We know that §, € Z, [T',] and that & = lim &, is a well-defined element of R (see
[9, pp. 72-76], where 0,(c,) and 0,(d,) are denoted by v,(a) and §,,(a), respec-
tively). Moreover, there exists an isomorphism 7 from R onto the formal power
series algebra Z  [[x]] such that the image of & under 7, say

oo

;0 =2 ax* €Z,[Ix1],

k=0

has the following connection with the p-adic L-function Lp(s; X):

Ly(s5%) =2f((1 +4p)y — 1;%)

for all s € Zp (see [9, pp. 69, 77]). This implies, among other things, that f(x; x)
does not vanish identically. Consequently, there are unique nonnegative integers
A(x) and u(x) such that

fle; %0 =P 30 bx* (b €2,)
k=0
with b, =0 (mod pZ,) for 0 <k <A(x) and b, (,) # 0 (mod pZ,). Then
5) Np =2M0 wg, = 2o H00,
X X

where x ranges over all even characters with f, = p or 4p [17, p. 65].
Let X stand for the set of all even characters with conductor 4p, that is,

X={00""! Imevenand 0 <m <p —3}.

We rewrite the equations (5) as
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(6) Np =Nt 2 M. g, =k X MO
XEX XEX
To obtain information about A(x) and u(x) we have to investigate the divisibility
by p of the coefficients a,, a,, . . . of f(x; x). For this purpose we need a relation-

ship between f(x; x) and the generalized Bernoulli numbers (for the definition of
these, see, e.g. [9, p. 9]). Indeed, for n > 1 and x € X we have

@) 211+ 4p)' " = 15 %) =~ (1 — (xw ")P)P" "B, (x5 "V,

where B, (/) denotes the nth generalized Bernoulli number belonging to the character
¥ [9, p. 78]. Below we shall employ this formula for n = 1 and n = 2 only; then
it will be useful to know that

f

) B(W) =Y W@ (¥ odd),
a=1
f

©) B,(W)=f"''Y W@ (Y even),
a=1

where f=f, > 1 ([9, p. 14] and [17, p. 67]).
In studying A(x) and u(x) for x = 0w™ ! € X we have to distinguish between
the cases m = 0 and m # 0.

4. The Zero Case.
THEOREM 1. u(w) = 0.
Proof. Write the formula (4), for x = 6w, in the form

£, =2 S(eo,(c,)™,  S,e)=—@"tIY Y w6(a),
cn a€4 ,(cp)

where c,, ranges over all its p” values and

A,(c,)={a€A, l0,a) €Eo,lc)A,}.
Assume that u(6w) > 0. From a result proved in [17, p. 69], we then infer that
S,(c,)=0 (mod pr)

for all n >0 and all ¢,,.

Leta€ A4, with1 <a< 2p"* 1. Then it is seen that a € A, (c,) if and only
ifa+2p"tl e A,(c,). Indeed, suppose that a € 4,(c,); there is an integer d,,
such that

a=c,d, (mod4p"*t!), 0,(d,) €A,
and then
a+2p"t =c,(d, +2p"t1) (mod 4p"t1),

where, furthermore, o,(d,, + 2p"th e A, . The converse is verified by a similar
argument. Observing that 8(z + 2p"* ') = — 6(a) we thus obtain
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S (c,) =—@p" 1Y Y [a6@) + (@ + 2p" 1)o@ + 2p" )] = 4712 60(a),

where the sums are extended over those numbers a € 4,(c,,) for which 1 <a <
2p"*1. The last sum consists of p — 1 terms 6(a) = +1. Being divisible by p, it
must therefore vanish. Consequently, £, = 0 for all » = 0. This in turn implies that
£ =0, and so f(x; 6w) = 0, which is a contradiction.

THEOREM 2. If p =3 (mod 4), then M0w) = 0. If p =1 (mod 4), then
AMOw) > 0.

Proof. By setting n =1 in (7) we get

ag = f(0; 0w) = — (1 = 0(p))B,(6)/2.

It follows from (8) that B,(0) =—%. Henceay, =% if p =3 (mod 4),and a, =0
if p =1 (mod 4). In view of Theorem 1 this proves our assertion.

The proof of Theorem 2 also gives an easier proof of Theorem 1 in the case
p =3 (mod 4). As a consequence of Theorem 2, one finds that N > 0ifp =1
(mod 4). We remark that the weaker result Nap t g, >0, forp=1 (mod 4),
follows also directly from [16, Satz 10] which concerns the divisibility by p of the
first factor of the class number of the 3p™*!th and 4p™*th cyclotomic fields.

THEOREM 3. Let p =1 (mod 4). Then N0w) > 1 if and only if the Euler
number E p—1 18 divisible by p*.

Proof. Since in this case f(x; 0w) = a;x + a2x2 + ... and py(6w) = 0, the
condition N(6w) > 1 is equivalent to p | a;. Puta=(1 +4p)y! -1 =
— 4p(1 + 4p)~!. Equation (7) gives, for n = 2, the relation

4f(o; 0w) = — B,(0w™1).

Accordingly, p | a; if and only if B,(0w™") =0 (mod p*Z,).
We shall show that

(10) Bz(Gw_l) =E, (mod p2Zp);

by the above this proves the theorem. Using (9), we obtain

4p
B,(07) = (4p) ! 3 6(@)w ()
a=1

2p 2p
==X 0(@)w Y@ -p > 0(a)w 1 (a).
a=1 a=1
The last sum here vanishes, as 6(2p —a) = 0(a) and w(2p — @) = — w(a). By (2) and
(3) we, therefore, see that (10) is equivalent to
2p
> 0@ (wl@a + w@aH=0 (mod pzZp).

a=1

The validity of this congruence follows from the identity
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2p
> 0@w @a(l - w@a )2 =0 (mod pzZp)

a=1

on noting that p = 1 (mod 4) implies £22,0(a) = 0. Hence, our theorem is proved.

Note that for p = 1 (mod 4), E,,_, is always divisible by p. This can be seen
either from the preceding proof or, of course, directly from (2). — On checking by
computer all primes p less than 10 and congruent to 1 (mod 4), we found that
E,_, was never divisible by p?. Hence, we have the result: if p =1 (mod 4), then
NOw) = 1 whenever p < 10%.

5. The Remaining Cases. In the following the statement m # 0 will mean that
m is even and 2 < m < p — 3, so0 that the character x = ™! belongs to X and
is different from fcw. It should be noted that the considerations in this section (as
well as above in the proof of Theorem 3) are partly similar to those presented in
[17, Section 6], where the case of the pth cyclotomic field was discussed.

THEOREM 4. If x = 0™t m # 0, then Nx) = u(x) = O if and only if the
pair (p, m) is E-regular.

Proof. The same arguments as before give now

4a, =—-2B,(0c™) = - (2p)! % 6(a)w™(a)a

a=1
2
B éle(a)wm@ =E,, (modpZ,).

On the other hand, p+. a, if and only if A(x) = u(x) = 0.

THEOREM 5. Let X = 0™ ™!, m # 0. If the pair (p, m) is F-irregular and the
congruence
a1 Ep=Epip (mod p?)

does not hold, then N(x) = 1 and u(x) = 0.
Proof. By Theorem 4, it suffices to show that p la, implies (11).
Let p la, and choose « as in the proof of Theorem 3. Then

f0;0w™*!) = f(a; 00™* ) (mod P*Z,).
Since

4@ 0™+ 1) = = B0y = 3 0(a)™ kg

a=1

the above congruence can be written in the form

i{: 8(a)w™ (@) (w(@) —a) =0 (mod p2Zp).

a=1

This yields

%_D: 0(@)a™ (@ —a)=0 (mod p2Zp),

a=1
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and so the assertion (11) follows by virtue of (2).

Our computer search indicates that (11) does not hold for any E-irregular pair
(p, m) with p < 10*. Consequently, N@w™*1) = 1 and u(@w™* 1) = 0 whenever
m # 0 and the pair (p, m) is E-irregular with p < 10%.

An inspection of the preceding proof shows that one can prove even more,
namely that p |a, is equivalent to (11). Put

Ko =3 - 1)"<;)E2,,+,.(p~l) r=0,1,...).
i=0

Then (11) can be written as K, (m) = 0 (mod p?). By Kummer’s congruences [18,
Chapter XIV], K,(2n) = 0 (mod p") for 2n > r, so that the preceding congruence is
always true mod p.

If (11) did hold for some E-irregular pair (p, m), it would be rather easy to
check whether p |a, or not. Indeed, the second author has proved that generally
2y =a; =...=a, =0 (mod pZ,) if and only if K,(m) = 0 (mod p"*') for r =
0, ...,k provided that kK < m. The proof will appear elsewhere.

6. Summary of Results About the Iwasawa Invariants. Summarizing the results
from Theorems 1—5 and from our computer search we may state, by (6), that

() ug, = W, if either p is E-regular or p is E-irregular and less than 10%;

(i) Ay, =X, if p =3 (mod 4) and p is E-regular;

(iii) Az, =X, +ig if p =3 (mod 4) and p < 10%;

(iv) Az, =X\, +1ifp = 1(mod 4) and p is E-regular;

() Nz, =X\, +ig +1ifp=1(mod 4)and p < 104,
Note in this connection that, by known results, My = )\; = 0 if and only if p is B-
regular, and p; = 0 and A, equals the index of B-irregularity of p for all B-irregular
primes less than 125,000 (see [14], [23]).

7. The Computations. All the computations were performed on the UNIVAC
1108 computer at the University of Turku, and they took about 26 hours. Only in-
tegers and vectors consisting of integer components were used, and so the possibility
of round-off errors was avoided.

We used the following criterion in order to find out the E-irregular pairs (p, 2n).
The powers of integers needed here were calculated by the aid of a primitive root
gp» which was computed first (the values of g, were checked from a table).

THEOREM 6. A necessary and sufficient condition for (p, 2n) to be an E-
irregular pair is that

127 422" + ..+ [p/4]1*" =0 (mod p).
Proof. Puts = (p—1)/2. By (2),
E,,=2{1>"-32"+ - .+ (D' (p-2"}

=12 22" -4 4 -+ DT - 1))

= (- 1)122r 1 (12n 227 4 — |+ (- 1) 152"} (mod p).
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E-irregular pairs (p, 2n) to p < 10*

62

) 2n ) 2n P 2n P 2n
19 10 761 104 1531 472 2203 606
31 22 769 246 8u8 194y
43 12 773 498 1559 1402 2213 572
47 T 811 726 1583 438 2030
61 6 821 622 1601 52 2221 558
67 26 877 286 1621 782 2239 1792
71 28 887 560 1637 590 2293 392
79 18 907 318 1663 1626 2341 72
101 62 818 1693 1600 2377 576
137 42 929 722 1697 606 2411 666
139 128 1 686 1723 592 2417 2360
149 146 804 1166 2459 916
193 74 967 12 1733 482 2473 2000
223 132 971 824 1759 1002 2477 104
241 210 983 556 1787 396 2531 1366
238 1013 410 962 2543 160

251 126 1019 88 1801 868 2579 234Y
263 212 288 1831 348 2591 164
2717 8 500 1867 262 2609 90y
307 90 1031 278 1873 1704 2617 950
136 1039 292 1877 924 2633 2354

311 86 1049 342 18789 198 2659 10
192 1051 360 422 2671 472
349 18 1069 Shy 1889 1612 2677 2078
256 612 1901 1478 2687 1290

353 70 1151 114 1907 368 2310
359 124 1163 870 1931 1762 2699 282
373 162 1187 166 1933 1800 2711 1728
379 316 334 1951 256 2729 1472
419 158 1223 364 1987 932 1886
433 214 1229 930 1993 178 2731 1034
461 426 1231 766 1997 1730 2749 54
463 228 1277 480 2011 982 2797 1912
491 428 1279 508 1600 2803 1834
509 140 1283 1028 2039 68 1924
Su1 46l 1291 674 852 2748
563 174 1307 1070 1698 2819 252
260 1319 1186 2063 1976 2686

571 388 1361 440 2069 504 2843 1852
5717 208 1381 608 2081 590 2879 1582
426 1399 1114 2083 2028 2897 2030

587 Ly 1409 362 2099 1682 2917 2076
619 370 1423 652 2129 1548 2957 1372
542 1427 1314 2131 2070 2963 1610

677 528 1410 2137 2y 2971 2368
691 548 1429 626 2141 182 2999 520
709 492 1439 1192 2143 694 2472
739 49y Tuy7 1080 2161 2082 3001 310
751 296 1453 322 2179 738 3061 304
710 1523 264 1558
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TABLE (continued)

P 2n P 2n P 2n P 2n
3067 2294 3911 2106 4799 2302 5807 3408
3079 7086 3917 3330 4813 1422 5454
3089 2604 3923 1312 4817 2136 5813 3168
3119 1492 3989 316 4861 2638 5827 3372
3121 358 4003 1876 4871 2662 5843 3734
3137 2070 4007 3136 4933 1094 5849 1202
3163 1308 4021 1576 4937 734 5857 2354
3167 1690 2908 4ou3 4194 4716

2186 4051 3496 5009 2016 5867 2554

3169: 1216 4057 2622 5101 1014 5879 2874
3187 418 4093 2918 5107 4870 5881 5374
2298 4099 898 5113 310 6011 260

3217 696 3912 5147 682 6037 1438
1700 4129 1000 1246 6043 124

3257 262 4133 1282 5108 6047 4960
1054 4153 34 5153 3794 6053 3768

2598 802 4542 6089 4570

3301 1748 4241 4108 5209 4270 5492
3313 650 4259 2426 5227 3994 6121 3712
3331 2352 4271 1386 5233 3602 6131 5028
3343 146 2684 5279 766 6211 5074
166 4283 2824 3766 6229 1786

3449 2752 4289 1128 5303 56 3118
3058 1446 5351 4088 3932

3467 1288 4337 356 5393 2296 6247 5812
3491 1512 4339 198 4128 6263 182
3517 2176 4349 292 5399 4328 6269 1340
3539 1266 2254 5084 5980
3541 318 4357 230 5413 4458 6271 2486
3547 2144y 4373 3678 5521 5454 6301 5880
3571 780 4391 1542 5527 872 6329 976
1106 4397 84 5531 604 6337 5722

3581 2288 1042 5557 1748 6359 3896
3623 2074 4421 2206 498y 6379 4778
3631 1086 4463 134 5563 42 6397 5456
3671 740 4481 978 1286 6072
3673 204 1568 3860 6421 2754
382 4493 2740 5569 778 5524

1650 4082 5591 580 6427 1326

2740 4523 1606 656 64L9 4528

3677 208 4549 3684 5623 208 6473 6456
326 4591 4490 5639 50 6571 294y

3701 3692 4603 1526 5641 704 6577 1128
3727 416 4643 4o5u 2052 6607 3074
3733 1196 4657 243y 5659 5446 6619 1110
3761 311y 4g73 4430 5689 5442 6653 3738
3793 204 4679 568 5711 5432 6659 5896
2918 4691 3630 5783 1232 6691 1510

3797 1438 4703 2714 4630 6709 2680
3821 4oy 4721 4570 4892 6719 5142
3833 1380 4729 3608 5662 6737 2034
3847 3202 4733 3120 5704 6779 154
3851 2886 4789 uou 5801 1808 6791 3866
3853 816 942 6793 6542
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TABLE (continued)

627

P 2n P 2n P 2n P . 2n
6803 1406 7589 4002 8L4u7 4546 9323 4ou6
6833 2542 4290 8226 eu8L
6863 62 7591 976 8501 6842 8802

2438 7603 4352 8527 7446 9337 8942
6869 6356 7607 7258 8573 4332 9341 3784
6899 416k 7639 1928 8609 2310 9371 2060
6947 3050 7669 302 5208 4706
6971 6894 4280 8627 2084 5886
6977 3504 7681 7462 8629 176 9377 5652
6991 3598 7723 4510 8647 102 9391 938
6997 122 7727 7220 126 1798
7019 2904 7741 3460 8663 734 9397 Tul
5826 7753 130 8669 5848 9403 556
7039 870 71757 1662 8244 3676
5188 7789 2240 8681 1552 9413 2400
6432 7853 1548 6406 9473 3308
7043 Lug 5836 7692 9491 9146
516 7907 5684 8258 9511 2220
7069 6214 7937 1938 8689 3774 9539 8304
7079 4506 7949 134y 8693 3270 9547 7380
6568 7993 5830 8713 3908 7532
7103 6622 7298 7362 9587 1600
7121 6992 7928 8719 2186 9601 1702
7129 6048 8038 436 8737 4098 9613 2372
7151 1906 8059 2172 8761 5886 9619 8332
7177 4920 8081 1862 8803 350 9623 4028
7193 596 5786 1840 9629 4310
7207 5052 8089 2864 5102 9631 498
7213 748 7062 8821 5206 9643 5218
7219 2256 8101 2608 8831 8394 9622
7229 3420 8111 6100 8837 4846 9677 5716
7243 5432 8117 4450 8839 8708 3689 6232
7297 710 8123 3456 8863 2296 9733 6850
7307 166U 8171 696 Luy? 9739 8766
7309 6074 8219 2898 8893 28u8 9767 214y
7321 5350 8221 350 8923 626 3794
58u4L 8231 268 8929 4736 9791 5122
7331 5426 790 9001 6954 9811 9106
7351 ueLly 3612 3011 3642 9817 2334
7393 Luyo 8233 3560 9049 4672 9883 5524
7411 356 4736 9067 3264 7982
7417 7336 8237 8116 9091 930 9150
7433 641k 8291 3958 3336 9887 278
7481 5896 8311 5462 9127 6026 9907 2774
7487 418 5868 9133 2098 9967 4522
7489 278 8329 6852 6980 5540
7507 2050 8377 1088 9137 6146
7517 2672 8387 5000 9181 2944
6870 8389 265U 9187 580
7529 2916 8423 3684 3332
7541 4098 6696 7552
7559 2586 8429 655U 9257 36
75717 2006 8431 euBL 3018
4o6u 9277 228
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On the other hand,

p—1

S
23 k"= Y k*"=0 (modp).
k=1 k=1

Combining these congruences, we see that
E,, = (- 1)°2*"+2(12" + 22" + . + [p/4]*"} (mod p).

This proves the theorem.

For each E-irregular pair (p, 2n) we computed E, ,/p mod p and (E,,, 4 p—y ~E3,)/P
mod p on the basis of the congruence (2). Similarly, this congruence was employed
to compute E,_,/p mod p for each p =1 (mod 4). To write (2) in a more suit-
able form, observe first that the Fermat quotient of an integer u prime to p is de-
fined as the least nonnegative integer q,, satisfying the congruence wb~l=1+ q,D
(mod p?). Tt is easy to verify that g, pu=dy t 2uP~? (mod p). Hence (2) yields
the following congruences which were actually used in the computations:

N s
E /=21 Y D'k -12"-4n 3 (- P12k - 1)1 (mod p),

(E2n+p——l - Ezn)/p =2 Z - l)k+l {2k - l)2nQ2k_1 + 2k - 1)2n—1 }  (mod p),
k=1

E, \/p=2 kgl D g, + (k= 1P"2} (modp) (for p =1 (mod 4)).

As a check, we computed the value mod p of the expression
N
S=-63 (2k-1)q,,_,-
k=1

[ndeed, it follows from the known congruence

p—1
B, +2 3 k*q,=0 (modp)
k=1

‘'see, e.g. [15, p. 255]) that § =1 (mod p). A further check was supplied by the value
>f q,, which was also printed and then compared with Haussner [8]. Our value of
1, was different from that of [8] for eleven primes, namely 2437, 4049, 4733, 4969,
5689, 6113, 6997, 7121, 7321, 8089, and 8093. A comparison with Beeger’s tables
(1], [2] showed that in these cases g, is incorrectly given in [8]. We note that
‘here can be more errors in [8] (extended up to the prime 10 009), for we checked
>nly the primes (< 10%) which are either congruent to 1 (mod 4) or E-irregular.

A table including all the results of our computations has been deposited in the
JMT file.
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