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On Some Families of Imaginary Quadratic Fields

By F. Diaz y Diaz

Abstract. This paper gives a method of obtaining imaginary quadratic fields whose
class groups have at least three invariants divisible by 3. Complementary calculations
have yielded a large number of imaginary quadratic fields having class groups with four

invariants divisible by 3. Some numerical examples, previously unknown, are included.

Introduction. In this paper we are presenting a method of calculating a large
number of imaginary quadratic fields having a 3-rank of the class group which is
equal to 3 or more. Very simple complementary calculations furnish some quadratic
fields whose 3-rank of the class group is 4.

The first section summarizes the results of [3]. We subsequently learned that
the essential content of Lemma B had already been established by Kuroda [4].

The second section deals with the properties upon which this method is based
(Lemmas 3, 4 and 5), corresponding to a particular case of the method developed
in [3]. Independently of our research, the properties established in these three
lemmas were discovered and studied recently by Buell [1]. Although Buell imposes
more restrictive hypotheses than those adopted here, the essential part of our second
section is covered by Buell’s paper. This permits us to state some results without
proof, except for Lemma 5 for which we give our original proof based on the method
of composition of ideals into a quadratic field. This proof is substantially different
from the one given by Buell’s geometric approach. His proof is based upon the fact
that the composition of ideal classes (or forms) coincides with the group law of a
certain elliptic curve associated with the quadratic field.

The third section describes our calculation procedure. Sufficient conditions for
the 3-rank of an imaginary quadratic field to be at least 3 are stated in three different
formulations (Theorems 2, 2" and 2"). The conditions imposed in these theorems
may be easily verified with a computer.

The fourth section gives numerical examples of interest previously unknown.

A final observation: In this paper we never deal with real quadratic fields.
However, the manipulations made with Eq. (1) are also valid when the discriminant
of the quadratic field is positive. Among the results obtained in the first and second
sections, only the corollary to Lemma B is not valid in the real case. Lemmas A
and B, as well as Lemmas 4 and 5, are true without any modification when the dis-
criminant of the field is positive. In order that Lemmas 1, 2 and 3 be valid in the
real case, it suffices, when stating these lemmas, to eliminate the hypothesis concern-
ing the inequality between m and y.
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1. Notations and Previous Procedure.

1.1. Let D be a positive squarefree integer and k£ the imaginary quadratic field
O/~ D). The discriminant of k is — d, where:

D if D =3 (mod 4),

d= 4D otherwise.

The 3-rank of the class group of k is designated as » and H denotes the subgroup
of the class group generated by the classes whose cube is the principal class.
If M is an ideal of k generated by the positive integer m and the algebraic integer
Y%(a + b /— d) we write:
M=<m;a, b).

In the numerical examples, b = 1 will always be chosen; in this case, we simplify
the notation and write:

(m;a) forim;a, 1).

Let us assume that m, y and z are nonzero integers which, for a certain fundamen-

tal discriminant — d, satisfy:
am3 = y? + 724,

The triple s = (m; y, z) will be named a solution of the Diophantine equation:
(1) 4x3 =v? + 7Z%.
We always chose the value of z in s to be positive. (The value of m must necessarily
se positive if we deal with imaginary quadratic fields.)

1.2. The following lemmas give a relation between the ideals of k¥ and the solu-
ions of (1) [3], [4].

LEmMMA A. Let N be an ideal of k of norm m whose cube is principal. Then,
Fq. (1) (with — d as the discriminant of k) has a solution.

LEMMA B. Let s = (m;y, z) be a solution of Eq. (1) and let ¢ be the greatest
‘ommon divisor of m and z. If the following conditions are satisfied:

(i) c divides d,

(ii) ¢ is squarefree,
hen

() the ideal (m) decomposes in k in the form:

my=N- W, where ! = (m; y/c, z/c),

(b) M has no integral rational factors,

(c) M3 is principal.

When the conditions (i) and (ii) of Lemma B are satisfied we say that the ideal
L = (m; y/e, z/c) is the ideal corresponding to the solution s = (m; y, z) of Eq. (1).
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COROLLARY. If s = (m;y, z) is a solution of (1) satisfying conditions (i) and
(i) of Lemma B, and if 1 < m <~/d/4, then the ideal N of k corresponding to the
solution s is of order 3.

1.3. Following the same procedure as in [3], for the search for imaginary qua-
dratic fields k having a 3-rank of the class group greater than 1, we look for solutions
of (1).

From a numerical point of view, the search for two solutions s = (m; y, z) and
s'=(m';y’, z") of Eq. (1) is easier if we insist that z = z'. (This is often the case in
practice.) We then have

4m3 =y? + 224,
am'3 = y'? + 22q,

and if we set

m —m=t,
Y —y=2
we obtain
34m3 =y? + 2724,
2
@ t3m? + 3mt + t*) = v(v + y).

Henceforth, we will assume that the integer value of m is fixed. Thus, concerning
the first equation of (2) we may state the following:

LEMMA 1. For each value of y which satisfies the inequality 4m> > y?, we can
factor the integer y?* — 4m3 uniquely as a product of a square and a fundamental
discriminant.

It is sufficient to factor 4m3 — y? in primes.

The symbol M(¢) (or simply N if no ambiguity exists) will represent the value of
the expression

N(@t) = 3m? + 3mt + ¢*

where the variable ¢ takes only integer values.

Let us assume now that the value of ¢ can be written as a product of two integers
t = ¢'t" and that the same holds true for N(r) = N'N". In this case the second equa-
tion of (2) becomes ¢'1"N'N" = v(v + y); and if we insist that v = ¢"N", it follows
that y = ¢'N' - £'N".

We may, therefore, state the following:

LEMMA 2. Let us assume that integers t and N can both be factored in the form
t=1"t" and N = N'N". If the expression y = t'N' —t"N" satisfies the inequality
am3 > 2, then Eq. (1) has the two following solutions

sy =(m;p,2), sy =(m+1ty+2'N',2).

The value of d in Eq. (1) and the integer z which appears in s, and s, are the integers
described in Lemma 1.
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2. The Case t' = 1. A particular case of interest is the one where we take for
¢ and ¢” the values ' = 1 and ¢" = ¢ (see also [1]). We then obtain the following
lemma which is more precise than Lemma 2:

LEMMA 3. Let us assume that the integer N(t) can be decomposed as a product
of two factors in the form N = N' N". If the expression y = N' — tN" satisfies the
inequality 4m3 > y2, then Eq. (1) has the three following solutions:

s, =(m;y,2), s,=(m+t;y+2uN",2), s;=(m+ Ty +2IN", 2).
The values of d and z are the integers described in Lemma 1 and the value of T in S5
is given by
3) m+(m+0)+(m+t)=N".

The proof of this lemma can be found in [1] for the case z = 1. The proof for
the general case may be easily deduced. The solution s; can also be interpreted [1]
as the third point of intersection of the straight line passing through the points (m, y)
and (m + t, y + 2:tN") in the x-y plane with the elliptic curve Y2 = 4X3 - z%d.

LEMMA 4. In order that the three solutions of Eq. (1) described in Lemma 3
satisfy the conditions of Lemma B, it is necessary for N" to be the norm of an

integer of Q(/— 3).

LEMMA 5. Let us assume that the three solutions given by Lemma 3 satisfy
the conditions of Lemma B. If M, (resp. §R2,3ﬁ 3) is the ideal corresponding to the
solution s, (resp. s,, s5), then the product MM, M is a principal ideal.

Proof. Let us say that
y,=y=N-tN", y,=y+2uN", y,=y+ 2N’
my=m, m,=mtit, my =m+t~,
nd note that the identities
dm mym, = 4m3 + 4m3 (¢ + 7))+ am T
=4m3 + 4m*(N"? = 3m,) + 4m t(N"* = 3m, — 1)
= (4m} - y?) +y% + 4m3N"? + 4m,(tN"? ~ 3m? - 3m,t — 1*)
=22d + y? + 4miN"2? — 4m N"(N' - tN")
ive the formula
4) dm mymy = (v, = 2m;N")? + z%d.
The ideal corresponding to the solution s; is the ideal M, = (m;;y;/c;, z/c;),
there c; is the greatest common divisor of m; and z, fori =1, 2, 3.
Let us assume that the prime number p divides the product M, %, M, and that p

oes not divide d. Because none of the ideals I, have integral rational factors, the
leal (p) is not inert in the extension k/Q. Consequently, we have in k a factorization

@) = pp
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and p and p never divide the same ideal at the same time. We can now assume that
b divides M, and b divides L, (the other possible cases can be verified in an analogous
manner). The norms m; and m, of these ideals must be divisible by p. Thus, p
divides ¢ and we obtain the congruence y, =y, (mod 2p). This implies that the ideal
b which divides the integer %(y, + zv/=d) also divides the integer %(y, + zo/= d)
in contradiction with the fact that §JR2 has no integral rational factors. Thus, if b
divides the product I, M, M, the same does not hold true for .

Let us now consider the case where g is a prime which divides d, and let us
assume that the ideal q, which divides (g), divides at least one ideal in the product
M, M, My, It is clear that ¢ divides the norm of this ideal; consequently, g also divides
the integer z. We now deduce, by using formula (4), that g2 divides the product
m;m,ms. Now,according to condition (ii) of Lemma B, the ideal ¢ must necessarily
divide at least two ideals among the three ideals :,. In the particular case where the
ideal q divides each one of the three ideals I, we deduce from (3) that ¢ also divides
N".

Let ¢ be the greatest common divisor of the integers ¢, ¢, and c5,and let¢; =
cc’|. According to the above, the product ¢’ c,c5 is a square which will be written
as follows:

¢"? =cleye;
The product of the three ideals
)M, =leymys v (1=1,2,3)

is equivalent to the product T, M, M5, as well as to the product ;M5 M5 (the ideals
; are defined by the formulae:

(DM =lemy;p,, 2, ()M =(my; 9y, 2, (c3) My = (my; s, 2),

because the ideal I, I, M, only differs from the ideal M, M} by the product of
a square of a ramified ideal.
Since ¢ has no square divisors, ¢ therefore divides N” and we have the following
congruences:
¥y, =y, —2mN" (mod 2cm,),

Y, =y, —2mN" (mod 2m,),

y3 =y, —2mN" (mod 2m,).
We deduce that the integer
w=%[(y, —2mN") +zv/-d ],

!

whose norm is given by formula (4), is divisible by the ideal M; M, M. If we
compare the norm of the integer w/c” and the norm of the ideal MMM, we
obtain:

MM, My = (w/e").

Consequently, the product M, M, M is principal and the lemma is proven.
To obtain fields k with r greater than 2, we must find more solutions to Eq. (1).
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3. Families of Imaginary Quadratic Fields. The notations used in the proof of
Lemma 5 are maintained in this section.

3.1. We know that if N” and ¢ are two integers for which the conditions of
Lemma 3 are satisfied, then Eq. (1) has three solutions.

If we wish to speak of ideals corresponding to these three solutions, it is neces-
sary that these solutions also satisfy the conditions of Lemma B.

In this case, one necessary condition for the ideals I, M, and M, (whose re-
spective norms are m,, m, and m,) to be reduced is that their norms satisfy the in-
equalities:

1<m;<~dB  (i=1,2,3);
the relation (3) and the inequality 1 <d < 4m3 give

5 T <N" <3 Yamd/3 < 28m?.

On the other hand (Lemma 4), N” must be the norm of an integer of Q(v/~ 3)
ind at the same time a divisor of the number
N =3m? + 3m,t + 1%
“onsequently, N" is necessarily a number of the form
5) N" = 344%p,
vhere the integers (positive) u, @ and b are subject to the following conditions:

— u only takes the values O or 1;

— if p* is the greatest power of the prime p which divides a, then p* also divides
n;

— if the prime p divides b, then p is a prime of the form p =1 (mod 6).

We will call norms suitable for m, all integers which are of the form (6) and
vhich also satisfy the inequalities (5).

It should be noted that if, for a certain value of N" Eq. (1) has three solutions
nd the corresponding ideals are reduced, then N" is necessarily a norm suitable for
n.

Let us now assume that the value of m, was chosen in such a way so that the

et of the suitable norms for m; not be empty (this is always possible for sufficiently
arge values of m,).

Let N” be a norm suitable for m,, and then let us determine a complete system
f residues mod N" which will be designated by R(N").
The congruence

7) 3m? +3m;t+t>*=0 (mod N"),
rerefore, has solutions. Let ¢, € R(N") be a solution of (7). To this value of ¢y,
/e associate the integer
2 2 2 ~
3my +3mt, + 5 ) 3my —tyt,
N — N = Y

Yo =

I "y _
where ty = N 3m, —t,.
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Every integer congruent to £, mod N" may be put in the form #; = £, +iN "
(i € Z); and we will associate to this value of ¢; the integer

2 2
3mi +3mt; + t;

Vi = N - tiNna
which we will write in the form
®) y;=yo Hilty — 1) +i2N"  (i€2).

3.2. According to the symmetry between ¢, and t~0, it is clear that ¢ is a solu-
tion of the congruence (7) if and only if ?;, is a solution of (7).

Let? € R(N") be the residue congruent to to mod N" and let us consider the
family {y } (i € Z), which may be associated to the pair (N t ) in a way similar to
that of formula (8). We immediately see that the family {y } and the family {y;}
associated to the pair (V" ty) only differ in the order of their terms. To avoid repe-
titions, we » will only take into c0n51derat10n the values of i for which ¢y +iN" =
t; < ti = to iN", that is, whenever #, < to —2iN".

Moreover, in the search for imaginary quadratic fields, we will only take into
account the integer values of y; in the family {y;} which satisfy the inequality

©) y; | </4m3.

We will associate to each pair (N", ¢,), where N" is a norm suitable for m; and

to €ER(V ") a solution of congruence (7), a subset of Z defined in the following
manner:

[=IWN", ty) = {i € ZIly;| <\fAm3; 1y <To = 2iN" }.

If I is not empty, we obtain, for each integer i € I:

— one integer y; defined by formula (8) and satisfying inequality (9);

— two positive integers z; and d;, uniquely determined (Lemma 1), and defined
by the equality z?di = 4m? —y?;

— three solutions of Eq. (1) (with d; instead of d) explicitly given by Lemma 3.

With every set of indices I, we define the following subsets:

—I' =I'(N", t,), subset of the set I containing all i € I for which the solutions
of Eq. (1) satisfy the conditions of Lemma B.

—I"=1"(N", t,), subset of I' containing all i € I' for which at least two ideals
among the three ideals corresponding to the three solutions of Eq. (1), are reduced
and different.

— I* = I*(N", t,), subset of I" containing all the values i € I" for which the
following conditions are satisfied:

(a) the three ideals corresponding to the solutions of Eq. (1) are reduced;

(b) the norms of the three ideals corresponding to the solutions of Eq. (1) are
different from each other.
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(Let us note that condition (b) above, can also be expressed in the form

() t;#0,t; #N"* - 3m,.)

Whenever I* = I*(N", t,) is not empty, we will name the family {y;} (i €1%),
family of abscissas associated to the pair (N", t,).

For each abscissa y; belonging to the family of abscissas associated to the pair
V", ty), we obtain the field

k= QW2 - 4md) = O/ 22 d) = OW=T);

the family {k; } (i €1*), will be called family of fields associated to the pair (N", t,).

We can now state:

THEOREM 1. The 3-rank r for each field of the family associated to the pair
WN", t,) satisfies r > 2.

3.3. Let C (resp. C', C", C*) be the set of pairs of the form (N, ¢,) for which
the set I (resp. I', I", I'*) is not empty.

Let us now assume that C* contains at least two different pairs: (V" ty) and
W’ 7,). We will denote by 7 the set I(N", t,) and by { the set I(N", ty)- Inan
analogous manner we will designate by I', I", I* the subsets of I defined above and
by I', I", I* the corresponding subsets of I The indices belonging to I will be desig-
nated by the letter i and the indices belonging to I, by the letter . Thus, {y;} (i €
I*) will designate the family of abscissas associated to the pair (V", #,) and {y; }
Ge I *), the family of abscissas associated to the pair (1\7 " ?0). We will also note:

t; =ty +iN",

~

S 7 "y _ _
t; =ty iIN =N 3my —¢;

1

Ger*)
and

t=ty +iN",

~ o Nn2 . ]
t;=N"2=3m, —1, (€I,

We can now state:
THEOREM 2. If there are indices i € I* and j € I* such that:
@ ly;1= lyl-l and
(ii) the integers t;, t~, ti ?; are different from each other,
hen the 3-rank of the field Q(\/y,?- 4m3) isr > 3.
Proof. Equation (1) has the following solutions:
sy =(m;y;2), s, =(my +t;;9,+26N", ),
53 = (m1 +t50t 2tiN", Zi), Sq = (m1§y]', Z,'),
ss = (my + 159, + 2;N", 2), sg = (m, +7f;y]- + 2?}]9'", z;).

The ideals corresponding to these solutions are, respectively, T, M ,, M, M ,,
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Ms, Mg According to condition (i), the ideals M, and M, are either equal or con-
jugates. R

From condition (ii) and from the definition of the sets /* and I*, we deduce
that in the set constructed with the ideals ,, % ,, M, M, M, and their conjugates,
all the ideals are different from each other. We deduce that the 3-rank of the field
oWy} - 4m?) is greater than 2.

3.4. We now make a few observations concerning the practical utilization of this
method.

Remark 1. The most difficult verification to make is to ensure that an index i
which belongs to the set I also belongs to the set I*.

To simplify the calculation, we can use, instead of Theorem 2, the following
theorem, the statement of which is equivalent to the one of Theorem 2, but in which
we have established a different order for the verifications of the conditions imposed
on the indices. This theorem is valid whenever C contains at least two different pairs.

THEOREM 2'. If there are indices i € I and j € I such that

@ ly;l= Iy]. l, N N

(i) the integers Lty t;, t;are different from each other,

(iii) i €I*andjET*,
then the 3-rank of the field Q(Vy?— 4m3) is r > 3.

Remark 2. Instead of considering the set C*, we may use the set C". In that
case, we obtain a greater number of fields having a 3-rank r = 3 (cf. example in 4.1),
but the calculation for obtaining sufficient conditions so that the 3-rank of the field
be r 2 3 is much more complicated.

The following theorem indicates the method to be used with C":

THEOREM 2". Let us assume that C" contains at least two different pairs
", ty) and ", fo)- If there are indices i € I and j € I such that

@ Iyil = ijl,

G) i€I"andjET",

(iii) the class of ideals represented by T 5 does not belong to the subgroup of

the class group generated by the classes represented by the ideals M, and N,

then the 3-rank of the field Q(/ y?— 4m?) isr=3.

3.5. The program for this calculation can, therefore, be established in two
different ways, depending upon the choice of the theorem (Theorem 2" or Theorem
2.

The following procedure is common to both:

— we fix the desired value of m, ; then, we take for N" all the norms suitable
for this value of m,; ’

— for each norm N”, we look for all the solutions of congruence (7) in R(N").
We can then easily construct the set C;

— we determine (depending upon the available memory in the computer) a
partition

Yo=1,Y,,...,Y,=E\4m}) + 1
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in the interval [I1, E(\/4mf)]. (Here E(x) denotes the integer part of x.) Every sub-
interval of the form (Y, Y, ; — 1] defines a subset, in each set I associated with
each pair (V", ¢,) € C, which we designate by /; this set 7, is defined as follows:

L={€eElY,<lyl<Y., }.

We may now use either Theorem 2" or Theorem 2", with the set /, instead of
theset I, fors=1,...,n

The results obtained through the utilization of Theorem 2’ are well-adapted for
the construction of extensive tables of discriminants of imaginary quadratic fields
having r > 3. Nonetheless, the utilization of Theorem 2" seems to be better suited
for the search for imaginary quadratic fields having r > 4 as well as for the search
of small values of d corresponding to fields with r = 3.

4. Numerical Results.

4.1. We systematically analyzed all the values of m, in the interval 11 <m; <
2000, and also certain values of m, in the interval 2000 < m,; < 10000 when using
Theorem 2" (these values of m, are, on the one hand, all the prime numbers and,
on the other hand, all the square-free numbers having only prime divisors congruent
to 2 mod 3). We thus obtain several thousand values of d for which the correspond-
ing quadratic field has r = 3.

Certain values of d appear repeated either because they are obtained for two or
more different values of m,, or because there are for the same value of m,, more
than two pairs belonging to C" satisfying the conditions of Theorem 2" or 2".

Whenever we have seven or more solutions for Eq. (1), it is easy to verify whether
or not r > 3 for the corresponding value of d.

Concerning the difference between the utilization of Theorems 2 and 2", we may
consider the example of the field k£, = 0(\/- 63199139), discovered by Shanks [8],
which served as the lower bound for the discriminants published in [3].

We found the field k; for the value m; = 683, for the pairs (37, 5) and (169, 1)
and for the indices — 11 € 1*%(37, 5) and — 1 €1"(169, 1). It is easy to verify that
-1 & I*(169, 1), and this shows that the field &, cannot be obtained in the interval
[1 <m, <2000 if we use only Theorems 2 and 2".

4.2. We found 156 quadratic fields & having r = 3, unknown thus far [3], [10],
‘or the values of d belonging to the interval

3321607 < d < 63199139.

Among these fields, there are five for which the value of d is less than 107. In
Fable 1, we give these values of d, the class number of the corresponding imaginary
juadratic fields and three reduced ideals generating the group H comprised of the
lasses whose cube is the principal class. We also give the structure of the class
roup of these fields using the notation

' ”
nXxXn xn X...

o indicate that the group is a product of cyclic groups of orders n, n', n", . . ..
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TABLE 1
class ideal of
i factors of d numbar class group basis for H highest order
ihppon [ 27.3.07.9000 864 | IxIn3xw2r2 L3bs; 6 {5:4% is of
{390; 96> order 24
{538;360»
2760088 22.7.2<1.821 422 | 3x3x3xbx2x2 £658;210% |¢13;6%» is of
£826;742% order 12
& 917;406 »
7eh5160 22.3.17.71.521 1296 | 9x3x3x2x2x2x2 | £1318;774 % £5:4» is of
£ 645;204 > order 18
¢501; 309
872177% | 7.%,11.52859 2160 | 3x3x3xlx2x2x5 | {1464;837% 2;1% is of
42765237 order 60
£1090;875 %
9379703 | b0o.18797 1890 | 3x3x3Ix2x5%7 £ 6263207 {3:1Y» is of
£1412;995 % order 210
L6157y
TABLE 2
d= 653329427 = 8867.73681
class number: 5670
class group: 3xX3x3x3x2X5x7
the ideal <&3;1 is of order 105
<639; 587>  ( 639; 19757, 1) €6499; 1621) ( 6499;1036%68, 6)
<689; 589> ( 689; 25593, 1) ¢7213; 7083%  ( 7213;1203401, 9)
<843; Lol ( 843; Ll7bg, 1) &7203; 1347y ( 72435 B8oci1z2s, 33)
<1139; 389> (1139; 72507, 1) € 7367 7161 ( 7367; 839583, 37)
£1359; 965 (1359; 96883, 1) ¢ 7817; 6233% ( 7817;1382025, 1)
£1649; 457>  (1649;131463, 1) d86u3; 21319 ( 8643; 389281, A1)
<1807; 901%  (1807; 9020, 6) €38563; 1101% ( 8663;1612410, 1)
€2061; 6919  (2061;136693, 5) 48753; 8080% ( 8753; 80046, 64)
€2193; 325>  (2193; 19330, 8) €10053; <1%0)  (10053;2015759, 1)
€2217;1385y  (2217; 42118, 8) €10721; 8397% (10721; 84L738, 80)
£2729; 161 (2720;283977, 1) €11071; 7475) (11031; 988004, 82)
428972635 (2897;235458, 8) £11271; 8927) (112711793284, 62)
< 3117;1999»  (3117;34710¢, 1) {11653; 70719  (11653;2410355, 27)
{3327; 923>  (3327:339547, 7) £11867; 16°1» (118672585355, 1)
¢3593;2015%  (3993;370110, 8) {12321; s6LcYy (1232131556366, 88)
€L563;4L89 %  (L563;615931, 1) <€12513; 707»  (12513; 273301,109)
€5123;1287 »  (5123;310104,26) €13399;12771) (1330033055183, 21)
€6031;4239%  (6031;633391,27) ¢1301;11680%  (13401;309%026, 8)
€6117;2243 9  (6117;956k05, 1) d13773;12L07% (127732074405, 07)
{6157; 875 »  (6157:676267,27) {14279;13713p  (14279;1198791,125)




¢ 7673;1182 »
< 8786;3872%
€ 9351;1378'9
€10213;6720 %
£10393;9114 2
£10737;5518

76733;1077786,16)
878631644024, 2)
(1 9351;1594394,17)
(10313;1934454,16)
(10393;2031590,12)
(1073732222858, 2)

£23214; 412
€23223;178309
<23433; 1486
< 23481;13888 )
<€ 23593; 4808 »
& 25241;10272

(23214;6613376, 50)
(23223;2614406,131)
(23433;7173470, 2)
(23481;6334726, 68)
(23593;2126270,138)
(25241 ;4798074 ,128)
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TABLE 3
d= 2520963512 =23,311.1013249
class number: 14904
class group: 3x3x3x3x4x2x23
the ideal £3;2%» is of order 276
{1361;1148 > ( 1361; 426, 2) {11058; 9772 » (11058; 272584, U46)
41433; 9609  ( 1433; 41070, 2) <¢11241;10448> (1124132381506, 2)
{1662;1040>  ( 1662; 90992, 2) <11799; 1970%  (11799;1866086, 35)
<2126; 848>  ( 2126; 168384, 2) €12241; 7382%  (12241;2251222, 30)
£2802; 536>  ( 2802; 279128, 2) £12322;10388%  (12322; 363800, 54)
< 4127;1300% ( 4127; 397038, 7) £12777; 8720% (12777; 661610, 56)
<4343;1328 > ( 4343; 150426,11) {12879; 3698%  (12879;2763118, 19)
< 524610809  ( 5246; 753264, 2) d 14481103249  (14481;3483754, 2)
{ 596131510 % ( 5961; 914974, 2) {14673; 2800 (146732038550, 58)
4 6066333769  ( 6066; 939544, 2) {18206;11824'%  (18206;4527456, 38)
€ 6801;1634%  ( 6801; 195286,22) {20313;162449  (20313;4071250, 82)
£6977;1520%  ( 6977;1161222, 2) 4 20663;130749  (20663;4422186, 79)
<7169; 416%  ( 7169; 682206,20) € 21071;18550%  (21071;6107166, 7)
{ 743337060 ® ( 7433;1277730, 2) €22129; 3736 ) (2212935999542, 54)
(
(

Concerning the first two fields of Table 1, we would like to make a few supple-
mentary remarks:

— Q(\/— 4447704) = Q(/~ 1111926). The integer D = 1111926 is the smallest
known number for which the field @(v/— D) has a 3-rank r = 3. It should be easy,
[1], to determine whether it is in fact the smallest number having this property.

— Q(V~5769988). The exponent of the class group of this field is 12. The
smallest exponent previously known for the class group of an imaginary quadratic
field having a 3-rank r = 3 was 18, occurring in the fields Q(v/~ 3640387),

O(v/~5048347) and Q(+/~ 26156083) [3], [10].

4.3. All imaginary quadratic fields having r = 4, for which the discriminant is
explicitly known [2], [9] were discovered by Shanks and Serafin [9] and by Neild
and Shanks [5]; the discriminants of these fields are as follows:

—d, = — 87386945207
—-d, = — 333238519268
—dy = —32330444167844 published in [5].

published in [9],

We now know 52 values of d satisfying d < d, and 80 new values of d with d >
d, (but d,, d, and d4 have not been found), for which the fields Q(+/— d) have a
3-rank r > 4. (For all these fields, 7 very probably equals 4.) In Tables 2 and 3, we
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TABLE 4
Values of d Basis for H Values of d Basis ‘or H
3146813128 < 1489; 972% 7993105123 < 1483; 99
& 14745 1380 { 1517; 1423 )
& 1574; 896Y & 1337: 527%
€1958; 544D & 14827; 8041 Yy
4724490703 {2182; 103% 8308370723 ¢ 1451; 1303
& 11265 127 ¢ 1431; 1181 )
£ 1396; 295% £20067;14455Y
14665 799 £ 1301; 10599
5252241199 & 12505 5999 8418280523 {1787; 1483
¢ 1388; 11699 € 1917; 1285%
& 42405 3799 {1383; 5179
19365 6959 ¢1521; 839y
5288116947 ¢ 2887; 2315 » 9775810067 €1409; 959
£ 2283; 645y ¢ 3093; 1661%
£5881; 1611 £1713; 1141 »
¢ 2301; 2043 % 13475, h75 )
6905985272 {1913; 170 9906365947 4 1357; 1293%
d b226; 160 £2579; 129y
& 2306; 604Y £ 1943; L4873
¢ 1982; 1916 L1469; 217
7311232679 {1250; 1119
¢ 13265 1993
€ 2690; 1991%
{16705 491y

give a description of the two fields having the smallest values of d known to us. In
these tables, we indicate the class number, the structure of the class group and the
40 reduced ideals of these fields, which, with their conjugates and the principal class,
comprise the group H; alongside each reduced ideal, we indicate the corresponding
solution of Eq. (1).

In Table 4 we present all the values of d, known to us, satisfying the inequality
d < 109, for which the corresponding quadratic fields have a 3-rank » = 4. For
each one of these fields, we give four reduced ideals representing classes which gener-
ate the complete group H.

4.4. All the numerical results in Tables 1, 2, 3 and 4, were obtained on the
UNIVAC 1110 computer at the University of Paris XI (Orsay), with the exception of
the class numbers and the structure of the class groups (given in Tables 1, 2 and 3),
obtained with a programmable pocket calculator, following an intermediate method
between Shanks’ method [6], and the exhaustive calcuiation of the reduced ideals
of the field.
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