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The Inverse Sturm-Liouville Problem
and the Rayleigh-Ritz Method

By Ole H. Hald

Abstract. In this paper we present an algorithm for solving the inverse Sturm-Liouville
problem with symmetric potential and Dirichlet boundary conditions. The algorithm
is based on the Rayleigh-Ritz method for calculating the eigenvalues of a two point
boundary value problem, and reduces the inverse problem for the differential equation
to a nonstandard discrete inverse eigenvalue problem. It is proved that the solution
of the discrete problem converges to the solution of the continuous problem. Finally,
we establish the stability of the method and give numerical examples.

Introduction. In this paper we will present a numerical method for solving the
inverse Sturm-Liouville problem. We will prove that the algorithm converges, and
will give numerical results.

The inverse Sturm-Liouville problem is primarily a model problem. In essence
it amounts to determining the density of a vibrating string from its fundamental tone
and overtones, see Borg [4, p. 83] and Krein [19]. Similar, but more complicated,
problems occur in geophysics and engineering. One of the fundamental problems
in geophysics is to determine the variation of the density within the earth from the
eigenfrequencies of the earth, see Backus and Gilbert [2]. These data can be ob-
tained from seismograph recordings after major earthquakes. In mechanical engi-
neering inverse problems arise in the design of driving shafts. Here it is important
that the eigenfrequencies of the shaft do not coincide with the contemplated rota-
tional frequency, see Niordson [25].

The basic paper on the mathematical aspects of the inverse Sturm-Liouville
problem is that of Borg [4]. Later more elegant uniqueness proofs have been given
by Margenko [23], Levinson [21], and Hochstadt [15]. Alternate constructive
methods have been suggested by Krein [18], Gel'fand and Levitan [10], Levitan [22],
Niordson [25], Barcilon [3], Friedland [8], Hochstadt [16], and Hald [13].

The algorithm presented here is based on the classical Rayleigh-Ritz method.
The idea is to expand the potential and the eigenfunctions in Fourier series, truncate
the series and reduce the problem to a nonstandard finite dimensional inverse eigen-
value problem. The existence of solutions to this problem is easily proved by the
contraction mapping theorem. The difficult step is to show that the solutions of the
finite dimensional problems converge toward the correct solution of the continuous
problem. This crucial point is missing in the discrete algorithms presented by
Gantmacher and Krein [9], Anderson [1], Hald [12] and Morel [24].
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The problem studied in this paper is a special case of the inverse Sturm-Liouville
problem. First, we only consider Dirichlet boundary conditions. Secondly, we assume
that the potential is symmetric around the midpoint of the interval; and finally, in
order to prove that the method converges, the potential must be sufficiently small in
norm. Alternative methods for more general problems have already been proposed by
Hald [13] and Hochstadt [16]. Presumably, the basic idea in this paper can be ex-
tended to some of these cases, but it seems unlikely that the third restriction can be
removed.

1. The Rayleigh-Ritz Method and an Inverse Matrix Problem. In this section we
will derive the algorithm and indicate why it works. We consider the Sturm-Liouville
problem
(1.1) =Y+l =N
on the interval 0 < x < m, with the Dirichlet boundary conditions

(1.2) »(0) = y(m) = 0.

Here q is a real, square-integrable function. This problem has an infinite number of
eigenvalues A, with A,, = %, and a corresponding set of eigenfunctions y, (x), see [6,
pp. 189—201]. The inverse Sturm-Liouville problem amounts to the reconstruction

of the function ¢ from A}, A,, . . . . Borg has shown that the eigenvalues determine
the potential uniquely provided it satisfies the symmetry condition
(1.3) q(x) = q(m - x)

for almost all x in [0, 7], see [4, p. 69]. We will therefore construct our solution
such that Eq. (1.3) is fulfilled.

By multiplying Eq. (1.1) with y(x), integrating by parts and using the boundary
conditions (1.2), we see that the eigenfunctions y,, are the stationary points of the
Rayleigh quotient

f" 2 2
oy taqy

m™
2
Jov
cf. Courant-Hilbert [7, p. 402]. To compute the critical points we take a classical

approach and use trigonometric polynomials as trial functions. If y = Z7 w; sin jx,
then the Rayleigh quotient reduces to the quadratic form

Ry =

R[w] = wTAw/wTw.

Here wT = (w,, - . ., w,) and the elements of the symmetric n x n matrix 4 =
(aj;) are given by

. 2 (m o
(1.4) a; =%, + ;fo q(x)sin jx sin Ix dx.

If the potential is constant, then 4 is a diagonal matrix and the differential equa-
tions (1.1), (1.2) have the same eigenvalues as 4. Otherwise, we extend the potential
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as an even, 2m periodic function and represent it by its Fourier series
m

where m < . Here all odd Fourier coefficients vanish because of the symmetry con-
dition (1.3). Borg has shown that the eigenvalues of the differential equation have the
asymptotic expansion A; = 2+ oy +o(1), see [4, p. 11]. In the inverse problem
the A; are given; and we may therefore assume that @, vanishes.

To motivate our algorithm for the inverse Sturm-Liouville problem we consider
a typical case, say n = m = 6. By inserting (1.5) in Eq. (1.4), we obtain

l—a a, —a, , — oy T
2 _ - -
2% —a, o — oy a, —a,
o 32 —q o —a
17 % 3 17 %
(1.6) A=
a —ay 42 -y, o — o
a —«o a —a 52-a
2 T %3 170 5
a, —a o —a 62 —q __J
L 2T % 17 % 6

In the direct problem the eigenvalues of 4 approximate the eigenvalues A; of the
differential equation (1.1). In the inverse problem A; are given, and we will determine
a;, such that A; are the eigenvalues of A. Thus, we expect that the eigenvalues of the
differential equation (1.1) with the potential (1.5) are close to A; and hope that the
potentials converge toward the solution of the inverse Sturm-Liouville problem as n
and m increase. Observe here that if m << n, then A will be a band matrix; whereas
if n is fixed, then all matrices with m = n are identical.

We can now formulate our inverse matrix problem. Let D = diag(1, 22, 32, . .. ).
Find a matrix E such that A; are the eigenvalues of A = D + E. Here the off-diagonal
elements of £ depend on the diagonal elements. This problem has much in common
with the so-called additive inverse eigenvalue problem which has been studied exten-
sively; for recent results see Morel [24] and Friedland [8] ; for older results see the
survey by Hald [12].

Before presenting our algorithm we observe that the eigenvalue problem for the
matrix 4 can be reduced to the eigenvalue problems for A7 and A”. Ifm>n =6,
then

l-a o T o o

I_ 2
A= o ~a 32-q a —a, |,

- = 2 _
@ -0y o —@ S5°-a

5
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-

2—‘ — —
-0, oy-a; o,-a,

7 _ _ 2 _ _
A L

- - 2
0~y o —as 6

- asJ
This splitting is a consequence of the symmetry condition (1.3) and implies that
the eigenfunctions are either odd or even functions around n/2.
It is easy to suggest several algorithms for solving the inverse matrix problem.
Our choice is influenced by the convergence proof presented below. Let A\ be the
lowest eigenvalue of A7 and partition 47 — \ as

a;; — A a;

a, A, -

If X is not an eigenvalue of 4,, then det(47 — \) = 0 is equivalent to a,, ~ A=
aT(Al -2\ 'a,. Since a,; =1 —a,, this is a nonlinear equation which &, must
satisfy. Similar arguments for the higher eigenvalues lead to:

The Basic Nonlinear Equations. Let X\, \,, . . ., X, be the eigenvalues of 4 =
D + E, then

(1.7) a,=v2 -\, —al(4,-2) g,

forv=1,2,...,m Ifpis odd, then 4, is a submatrix of AT and obtained by de-
leting the (v + 1)/2th row and column of A7, The vector a, is the (v + 1)/2th
column of A7, except for the diagonal element, which is deleted. If v is even, then
A, is the submatrix of A obtained by deleting the »/2th row and column of A%,
and the vector a,, is the »/2th column of AT except for the diagonal element, which
is deleted.

We have now reduced the inverse Sturm-Liouville problem for a differential equa-
tion to finding a solution of a system of m nonlinear equations a = F(a)). We will
show that if Z(A; —j2)? is small then the functional iteration new a = F(old a) will
converge. We can then prove the intricate part namely that the potentials which are
defined by the Fourier coefficients a converge toward the solution of the inverse
Sturm-Liouville problem as the dimension of the space of test-functions increases.

2. Eigenvalue Estimates. It is well known that the eigenvalues of the differential
equation (1.1) with the Dirichlet boundary conditions (1.2) are simple, but this may
fail for our Rayleigh-Ritz procedure. In this section we will find that if the L? norm
of the potential is less than (3/4)y/27 then the eigenvalues in the Rayleigh-Ritz ptoce-
dure are simple. Moreover, we will show that the eigenvalues of the matrix 4 have
the same asymptotic behavior as the eigenvalues of the differential equation. Roughly
speaking, it is this property which ensures the convergence of the solutions of the
discrete problems.

LEMMA 1. Let )\, be the eigenvalues of A and set of = (@, -..,a,). Here
Qpiy =-..-=0a, =0incase m <n. Ify=lal, <O0.5, then
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Remark. A slightly sharper result can be obtained by using the Temple-Kato
brackets, see [17]. Borg has shown that the eigenvalues of the differential equation
(1.1) satisfy A, = »* — @, + o(1/v), see [4, p. 11]. Thus the eigenvalues of the two
problems have the same asymptotic behavior.

Proof. Let A = D + E where D = diag(1, 22, . . .) and let e, be the vth
column of the identity matrix I Since A is symmetric we find that each disk
=2 [l Ee, ||, contains an eigenvalue. Here x|y = Z xI?. It follows from the
definition (1.6) of 4 that the Fourier coefficient ; can occur at most twice in each
column of A and consequently ||Ee,|l, <2y. We can therefore conclude that if
v < 3/4, then the eigenvalues of A are simple and satisfy

21 , —»?1< 2y
for all ». Since A, has the same structure as 4, we find that if j # v, then each disk
I\ = j21 < 2y contains exactly one eigenvalue of 4,. By using these estimates and
v < 1/2, we obtain
1
4v — 1.5)
for » > 3. The bounds for » = 1 and 2 are equal to the bounds for » = 3 and 4. To

complete the proof we use the inequality (2.2) to estimate the last term in Eq. (1.7)
and note that [la,|l, <27v.

(2.2) 104, =2,) 7, <

3. Boundedness of the Successive Approximations. To use the contraction
theorem for & = F(a) we must prove two facts. The first is that F maps a sphere
into itself and the second is that F is a contraction in the sphere. In this section we
will show that if (A; —j?)? is sufficiently small then all successive approximations,
new o = F(old ), stay within a small sphere whose radius is independent of n and m.

LEMMA 2. Assume that \/Z ()\j -j 2)2 < 0.192 and consider the functional
iteration scheme

(3.1) 611 = V2 - >\V - aVT(AV - xV)_.lala'

forv=1,2,...,m Horem<nand,, ,=...=0,=0incase m <n If
lall, < 0.32, then ||B]l, < 0.32.

Proof. Lety = |lall, and k% = Z —j2)2. We observe first that the proof of
the bound (2.2) uses the fact that \, are the eigenvalues of A; but it enters only via
the inequality (2.1), and this can be replaced by I\, — »?1 < 0.192. The bound (2.2)
is therefore still valid, and by using the arguments from Lemma 1 we get

1 1 1
O, A Sy — b — 4+ Y ——— |
(3.2) v v 1.52 252 >3 (- 1.5)2
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The second factor on the right-hand side of (3.2) is less than 25/16, and we conclude
by using the triangle inequality that ||B]l, <k + 1.25 v2. The proof is then complet-
ed by inserting the specific values of vy and k.

In the next section we will show that there exists a solution « of Eq. (1.7) with
llall, < 0.32. It then follows from Lemma 1— or Eq. (3.2) with @ = § — that
ly = k1 < (5/4) » 0.32y and we obtain the well-posedness result

COROLLARY 1. Let \; be the eigenvalues of A. If llall, < 0.32, then

0.6llall, <VZ QN —72)* < L4llall,.

This corollary is false without the bound on «. For example, if n = m = 3, then
the matrices corresponding to a = (0, 0, 0) and a = (- 4, 0, 4) have the eigenvalues
1,4 and 9.

4. The Lipschitz Condition. In the previous section we have seen that if
vEQ; - 72)? < 0.192, then the function F defined by (3.1) maps the sphere S =
{llall, <0.32} into itself. Since F depends continuously on @ we conclude from the
Brouwer fixed point theorem that there exists at least one & in S such that a = F(a).
We will now prove that F is a contraction in §. Thus F has exactly one fixed point
in S and it can be obtained by the method of successive approximations.

Let « and & be given, and define 8 and B~ by

41 By=1"-N,—al(4,-2)"a,
4.1)

4.2) B,=v2 -2, -aT@, -\ )G,

THEOREM 1. Let /2 (O —7*)* <0.192, and assume that ||all, < 0.32 and
II3[II2 < 0.32. IfBand B are defined by Eqs. (4.1) and (4.2), then

18=Bl, <0.81lla~al,.
Proof. By subtracting (4.2) from (4.1) we get
~ o~ T ~ —_1~ —_ ~
Bv —ﬁv - (av—av) (Av _7\1:) lav +aVT(AV —7\11) l(av —ap)
“4.3)
+ald, -\ 4, - 4,14, -2)7'a,.

Let 8 — ﬁ~ = ¢ + n + { where the vth terms of £, and { are given by the right-hand
side of Eq. (4.3). Since the coefficient & — oy occurs at most twice in the vector
a, = a,, we conclude by using Eq. (2.2) that ¢, | and In,| are less than
0.32]la — all,/(v — 1.5) for » > 3. We can now use the arguments from Eq. (3.2) and
this leads to
44 IEN, + linll, <O0.8lla—all,-

It is more difficult to estimate the last term in Eq. (4.3). The reason is that
4, - Z,,II2 cannot be bounded independently of n and m. To circumvent this problem

we let D, = diag(. .., (v — 2)?, v+ 2)2,...) and define two real, diagonal matrices
A, and I, by
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4.5) A, =D, -2,

Here the diagonal elements of /,, are either =1 or +1. By writing 4, = D, + E,, and
dropping the index v whenever convenient we get
A, -\, = A, + A2(02 —2,) + ATTEATA,

(4.6) $, =alA'(1, +. )‘IA’I(E—E)A—I(] F

Let [4llp = (24 ,])1/ 2 be the Frobenius norm of a matrix 4. Since the Euclidean
norm is dominated by the Frobenius norm, we obtain the very useful estimate
(4.7) 1A EAT ), < IAMI A7 I max IEe;l,.

i

This result can also be derived by using Gershgorin’s theorem. We will now show that

the bound (4.7) is in essence independent of n and m. From Eq. (4.5) it follows that
1

4v-1)

for v 2 3. For v =1 and 2 the values are 1/8 and 1/12. To estimate IIA—IIIF we

consider Zlj2 — 27!

—1)12 —
na, "y =

. Here j # v and the sum is taken over all positive integers j
which have the same parity as ». By expressing (j2 — »2)™! by partial fractions and
cancelling as many terms in the sum as possible, we find that

1 1 1 -1)Y
(4.8) 1AM 12 < [1+—+... P b
2v 2 v—1 a2
v
for v 2 2. The bound for » = 1 is 1/4. The largest value of the right-hand side of
(4.8) occurs for » = 3 and is 10/36. We also observe that | A7!|l, is less than 1A/8
for all ». By combining these estimates with Eq. (4.7) and using that o — Ek can
occur at most twice in a given column of E — E , we conclude from Eq. (4.6) that

(4.9) It 1 < 2052

for v > 3. The bounds for {, and §'2 are equal to the bounds for {; and §,.
using (4.9) we find that ||{|l, < 0.053|la — « ||2. The proof is then completed by
combining this result with the estimate (4.4).

At this point, we are halfway through the investigation. Our main result so far
is that the inverse matrix problem has a solution. Clearly, it may have many solutions,
but the successive approximation method with zero initial guess singles out the solu-
tion with the smallest norm. Our method of proof has been inspired by the work of
Hadeler [11], Laborde [20], Oliveira [26] and Morel [24]. The main difference
occurs in the formulation of the inverse problem. It should also be observed that our
estimates are independent of the number of Fourier coefficients and the dimension
of the space of trial functions. Finally we mention that Borg solved the inverse
Sturm-Liouville problem by a method of successive approximations, see [4, pp. 71—
81]. His proof is based on the Volterra integral representation of the differential

Ila all,

equation (1.1), and our approach can be considered as a numerical interpretation of
Borg’s idea.
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5. The Fourier Coefficients Converge. Roughly speaking, the solution of the in-
verse matrix problem is just some numbers o which are used in Eq. (1.5) to define
a potential. The data )\i are not the eigenvalues corresponding to this potential. In
this section we will show that each Fourier coefficient oy converges as the dimension
of the space of trial functions in the Rayleigh-Ritz method increases. It follows from
this result that )\j are the eigenvalues corresponding to the potential which is defined
from the limits of the a;.

LEMMA 3. Let A, ..., A, be given and consider the solutions o and o of the

nonlinear equations

— 2 T -
5.1 @ =vi -, e, (4,-1,) lav’

~ ~T /% _ —1~
(5.2) a, =12 -\ -a,d,-\)71a,,
forv=1,2,...,m Herea, = 07,, = 0 for k = m. Let the dimensions of the
space of trial functions be n, and n,, respectively. Then
~ 4
“a - "2 <

2 + min(n,, ny)
Proof. Assume that n; > n,. For each v we partition the matrix 4, — A, and

the vector a,, as
A BT f
and .
B C g

Here the partition is chosen such that A4 and Zu have the same dimension. Clearly,
A, B, C, f and g depend on v but we suppress this dependence to simplify our nota-
tion. By solving (4, — \,)x = @, we can express the last term in Eq. (5.1) as xTaV

and get
T4 - BTc'B)y ' f-2fT(4 - BTc~'B)"'BTC g

+gTc g +g7Cc'BA -BTC'B)"'BTCc g
If n, > 3m, then g = 0 and the expression simplifies considerably. In practice the
solutions become acceptable for much lower values of n,, and we will therefore not
use this possible shortcut in the proof. It is natural to compare the matrices 4 and

A, =\, and by using the above result we find by subtracting Eq. (5.2) from Eq.
(5.1) that

o =&, =3 (A, -2\)7'7, - fTA7'f
(5.3) ~fT(4 - BTC™'B) ' BTCT'BATf + 2f (4 - BTC'B)1BTC g
—gTC g —gTC™'B(4 - BTC~'B)"'BTC g
Leta—0o = n(l) +...+ n(6) where the vth term of n(l), ey n(6) are given
by the right-hand side of Eq. (5.3). The matrix A4 is equal to the matrix which we

would have obtained if n, and n, had been equal. Theorem 1 is therefore applica-
ble and we conclude that
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(5.4) I + 2@y, < 0.81)ja - &1,

To estimate the last four terms in Eq. (5.3) we modify the technique used in
the proof of Theorem 1. Let = be the diagonal matrix defined by T2 = diag((n + 1)?
-v2,(n+3)>=v?,...). Here n =n, + 1if v and n, have the same parity and
n = n, otherwise. Since v <m < n, we can choose ¥ such that its diagonal elements
are positive. We will now factorize the matrices 4 and C in the form

A=A, + A720% -2) + ATTEATA,
C=X( +Z72p2-\) + 7 'Fz Nz,

Here A and I, are defined by Eq. (4.5). By letting W = = 1BA™! we can rewrite
the third term on the right-hand side of Eq. (5.3) as

(5.5) —fTATMI, +R-WTA +S)T' w1 WT(Q + 8)" (T, + Ry £

Here R = A™2(» —\,) + A'EA™! and S is defined similarly. Since [|A7]l, < 1A/8
and ||A7Y| r <+/10/6 for all v, we conclude from Eq. (4.7) that ||R|l, <0.024 +
\/§ « 0.16/3. This bound is also valid for (151, , simply because X is a submatrix of

a very large A. To estimate the norm of W we use that the Frobenius norm domi-
nates the Euclidean norm and obtain

(5.6) Wl <NZ7HI, 1A ]z max I Be;ll, -

j
This generalizes Eq. (4.7). It follows from the definition of = that || 71|37 <
1/[(n + 1)®> = »?] where r = n,. We remember now that any Fourier coefficient
o can occur at most twice in a column of B and, hence IIBe]-II2 <2-0.32. By
using Eq. (5.6) and the bounds for R, S, A and X we find from (5.5) that the third
term on the right-hand side of Eq. (5.3) can be estimated by

0.0095
(n+ 1)2 -2 '
The fourth, fifth and sixth terms on the right-hand side of Eq. (5.3) can be estimated
in the same manner, and we state without further ado that
. 0.0095
0.068 , Inl(,s)l < 0.48 , |’f?,(,6)| < 00095
n+1)2 -2 (n + 1)2 =2 (n+1)2 -2

lnf,3)| <

In{M1<

Since l<v<m<nand(n +1)2 —v2 > (n +2)(n + 1 —v), we see that

& 1 1
~ .
v=1 [(n + 1) - »2]? 6 n+2
By combining this result with the estimates of the »th component of n(3), AN n(6)
we conclude that
0.73

(5.7) I3+ .. +9®), <

n+2°
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Finally, it follows from Eq. (5.3) and Eq. (5.4) that 0.19||a — &'II2 is less than the
bound given in Eq. (5.7). This completes the proof.

Lemma 3 shows that the sequence of vectors a which depend on the dimension
n of the space of trial functions is a Cauchy sequence in R™ and hence converges.
Let g(x) be the potential corresponding to the limits of the Fourier coefficients, and

let g,, be the potential determined by (1.5). By using Lemma 3 and Parseval’s
theorem we see that

10
(5.8) lg —q,ll, < 12

This result is true for all n > m. However, it follows from the proof of Lemma 3
that if n > 3m, then the bound in Eq. (5.8) can be replaced by 0.16/(n + 2). The
reason is that the vector g in Eq. (5.3) vanishes. Finally, numerical experiments in-
dicate that both estimates are quite generous, but this is to be expected.

6. Proof of Ellipticity. In the previous section we have seen that the potentials,
which correspond to the computed Fourier coefficients, converge in L? to a potential
q(x), as we increase the dimension of the space of trial functions. In the next sec-
tion we will show that )\1. will be the eigenvalues corresponding to this limit potential.
The proof will be based on some simple upper and lower bounds for the quadratic
form a(u, u) = fJu'? + qu?. The topic of this section is to establish those bounds.

LemMA 4. Assume that q(x) = q(m — x) for almost all x. If u(0) = u(m) = 0
and |lqll, < 0.32+/27, then

™
028 [ u? <a(w, wy<1.72 [ u.

Remark. This result shows that \/a(y, u) is a norm on the space of smooth
functions which vanishes at 0 and 7 and equivalent to ( fgu'z)l/ 2, We denote the
completion of this space by H!. Note that we do not assume that q is a bounded
function, cf. Ciarlet, Schultz and Varga [5].

Proof. Let u and v be smooth functions and vanish at 0 and 7. It follows from
the Cauchy-Schwarz inequality that

o 2 m o
fo quv | < fo lg PP lul? fo lvl2.

The last factor on the right-hand side of (6.1) can be estimated by [ Iv'I2, see [14,
p. 185]. To estimate the first factor we note that lu(x)12 < (7/2)f g/ 21’12 for all
x in [0, m/2]. A similar Sobolev inequality holds for the interval [n/2, n]. By

combining these results and using the symmetry of g(x) we conclude from Eq. (6.1)

that
Joaw|" <X [Tar fTwefTwe.

We can now establish the upper bound. Let u = v. Since lIqll, < 0.324/27, we
find from Eq. (6.2) that

(6.1)

(6.2)
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a(u, u) = f;'lﬂ + qu? < <1 +£ 032\/27r> 112

The lower bound is obtained in a similar manner, and this completes the proof.
Lemma 4 shows that the operator — u” + qu is elliptic and that the lowest
eigenvalue y, is greater than 0.28. More precisely, it follows from Corollary 1 that

M; = 0.55. Both results have been derived by using the symmetry assumption for
the potential, and it is not clear whether Lemma 4 is valid without this assumption.

Let ¢ be a symmetric potential and define the quadratic form @ by a (u, u) =
JTu'? +qu*. We will now show that if ¢ — g is small, then the ratio a/a’ of the
quadratic form is close to one.

LEMMA 5. Let u be in H' and satisfy the boundary conditions u(0) = u(r) =
0. Assume that q(x) = q(7 — x) and q (x) = q (1 — x) for almost all x in [0, 7].
If liqll, and (|||, are less than 0.32v/27, then

a(u, u)

= 1|<32llg -9,
a(u, u

Proof. 1t follows from the definition of @ and @ that

(6.3) T u)=a( u)+ [ G - qu?.

According to (6.2), we can estimate the last term in (6.3) by (\/7/2)llg — q I, llu’lI2.
The proof is then completed by using the lower bound in Lemma 4.

7. Solution of the Inverse Sturm-Liouville Problem. We have seen that given
Ays - . .5 A, the inverse matrix problem has a solution for each space of trial func-
tions with dimension greater than or equal to m. The corresponding potentials have
been constructed such that A; are the eigenvalues obtained by the Rayleigh-Ritz
method. However, in general )\j will not be the eigenvalues of the differential equa-
tion (1.1) with boundary conditions (1.2). Instead, we have shown that the poten-
tials converge to a limit potential as we increase the dimension of the space of trial
functions. In this section we will prove the main result of this paper, namely that
A; are the eigenvalues corresponding to the limit potential. In practice we will never
find this potential, but according to Eq. (5.8) we can approximate it arbitrarily well.
It is in this sense that we solve the inverse Sturm-Liouville problem;

THEOREM 2. Let\/Z(\;—j?)* < 0.192 and let q,,(x) be the potential (1.5) de-
fined from the solution of the inverse matrix problem. Here n is the dimension of
the space of trial functions. Let q(x) = lim q,(x). Then )\I. are the eigenvalues of
the differential equation (1.1) with boundary conditions (1.2).

Proof. The proof is based on the technique developed for the finite element
method, in particular see Strang and Fix [27, Chapter 6]. Let u; be the eigenvalues
of the differential equation (1.1) with the potential g(x). We will show that y; i =N
Let S; be an I-dimensional subspace of H', where H! is defined in the remark following
Lemma 4. According to the minimax principle [27, p. 221], we can characterize the
Ith eigenvalue by
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(7.1) min max alu, u)
. M= PR

! s, ues, @ u)
Letq, = g and let @ be the corresponding quadratic form. By interchanging the
role of @ and @ in Lemma 4 and using Eq. (7.1) we find

(7.2) u; < +3.2llg = q1l,) min max ZE‘_»L)_

S; uEes; (u, u)
Let S be the space of functions # of the form E{’wj sin jx. If u isin S, then @ (u, u)
= wTAw where A is defined as in Section 1. We choose now S, to be the subspace
of § which is spanned by the first / eigenvectors of 4. The potential g,, has been
constructed such that )\j are the eigenvalues of A. We can therefore conclude from
the minimax principle and Eq. (7.2) that u; < (1 + 3.2llg — q,,ll,)7,. Since g, ~ q,
this inequality shows that u;, <\, for/=1,2,...,m

It is more difficult to prove the opposite inequality. Let u be in H' and define
the projection Pu of u onto S by
(7.3) a(u—=Pu, v) =0
for all vin S. It can be shown by a standard variational argument that |lu — Pull, -
0 as the dimension of § increases, see [27, p. 166 and p. 229]. The argument is
known as Nitsche’s trick, and the proof is based on expanding the function u in a
Fourier sine series and uses Lemma 4.

Let E; be the space spanned by the first / eigenfunctions y,, . . ., y, of the
differential equation (1.1) with the potential q(x). We assume that all y; are normal-
ized and denote the unit sphere of E; by E;. Let

0, = n;ale(u, u— Pu)— (u— Pu, u— Pu)l.
1
Since each u in E; can be expressed in the form E{cjyj with 20]? =1 and I[yj— Pyill2
- 0 as n = o, we conclude that o, = 0 as n - °o. Moreover, it can be shown
that the dimension of PE| is I if 0, < 1, see [27, p. 229]. We can now characterize

the Ith eigenvalue of the matrix 4 by the minimax principle and find by using Lemma
5 that

(7.4) N < +32lg -7ll,) min max au, u)

s, ues; (W u)
The minimum is taken over all l-dimensional subspaces of S. Let now S, be the
space PE,. It follows from Lemma 4 and the definition (7.3) of P that a(Pu, Pu) <
a(u, u) for all u. Since (Pu, Pu) > 1 — ¢, for all u in E,, we infer from Eq. (7.4)
that

(7.5) N<( +32lg-q,ll) max M .
E

1
Since a(u, u) = Zic]? u; with Ec]? = 1 we see that the last factor on the right-hand
side of (7.5) is less than w/(1 — o). Finally, by letting n > ° and using that o, = 0
and |lg — g, I, = 0 we conclude that \; < y;. This completes the proof.

-0
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8. Infinitely Many Eigenvalues Prescribed. So far our approach has been consis-
tent with the manner in which inverse problems occur in practice. For example, in
geophysics only a finite number of the eigenfrequencies of the earth are measured
and used in the inversion procedure. To obtain unique results the number of param-
eters must be less than or equal to the number of data. In our formulation the
uniqueness of the potential is obtained by representing it as a trigonometric poly-
nomial. Clearly, a different representation yields a different potential.

In the classical formulation of the inverse Sturm-Liouville problem it is assumed
that all the eigenvalues corresponding to a given potential are known and then slight-
ly perturbed. Borg has shown that there exists a unique nearby potential which
corresponds to the perturbed spectrum. Assume, therefore, that all the eigenvalues
are given, but that only the first m have been used in our construction. In this sec-
tion we will show that the effect of the remaining eigenvalues is small. This state-
ment must be taken with a grain of salt, because the whole theory is a perturbation
theory. Indeed, there are examples, with large perturbations of the eigenvalues, for
which the distance between two potentials cannot be estimated in terms of the difference
between the spectra, see Hald [13].

LEMMA 6. Assume that \/Z - i$)? <0.192. Let « be the solution of
the inverse matrix problem with data \, . . . , \,, . and let & correspond to
Ao )\mz with 1 <m,; <m,. If the spaces of trial functions have the same
dimension, then

ma
le —all, <5.3 N\ — %)% +0.54
2 mll] 2—-15)(m1—15)
Proof. We will use the technique developed in Section 4. Since a and & are
solutions of the inverse matrix problem we can replace 8, and 'EV in Egs. (4.1) and
(4.2) with @, and @, It follows from the proof of Theorem 1 and Eq. (4.3) in
particular that

my
(8.1) 2 (a, —a@,)? <081fla—all,.
1

Since the a, are set equal to zero for » > m,, we must estimate 'oTv from Eq. (4.2),
directly. By using (2.2) and the triangle inequality we find that

m2 m2 m2 1
(8.2) 2 @rP< /¥ - +032 /) Y —— .
m+1 mi+1 mi+1 (v — 1.5)?

The proof is now completed by estimating the last sum by an integral and combining
Egs. (8.1) and (8.2).

The above proof did not depend explicitly on the dimension 7 of the space of
trial functions although the Fourier coefficients , and o , do. It follows from Lemma
3 that the components of « and @ converge as n = . We can therefore conclude
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from Lemma 6 that the potentials Q,, (x) and sz(x) associated with the limit of
o and & form a Cauchy sequence in L”. By using Parseval’s theorem and letting m,
tend to oo, we obtain from Lemma 6 the following result:

COROLLARY 2. Assume that \/Z 0= 22 <0.192. Let Q,, be the potential
which has the eigenvalues \, . . . , \,, and let Q be the potential corresponding to
ANy, ... Then

3 : 1.4
12 @l <13.3\/_E_—(:_,2—)z‘+ |
m+1 /—m ~15

One might object that we have not shown that the limit Q of the potentials 0,
has the eigenvalues A, A,, . ... However, according to Eq. (5.8) each potential 0,
can be approximated arbitrarily well by a potential which corresponds to a solution
of an inverse matrix problem. Thus, the proof of Theorem 2 carries over to the
present case.

9. Continuous Dependence on the Data. In the previous section we have inci-
dentally obtained an existence theorem for the inverse Sturm-Liouville problem in its
classical formulation. Since we perturb around the spectrum corresponding to the
zero potential, our result is only local. The proof is independent of the theory for
the differential equations. The existence proofs due to Borg [4] and Barcilon [3] are
also based on the method of successive approximations, and it is normally easy to de-
rive well-posedness results for these methods. In our case we have

THEOREM 3. Assume that \/E(\; =) and VZ (X, —j?)? are less than
0.192. If q(x) and q(x) are the potentials corresponding to A; and 3\}, then

©.1) lg =g, <133 /20, - X)2.

Remark. This result is valid for the solutions of the inverse Sturm-Liouville
problem and the potentials obtained from the inverse matrix problem. Here we assume
that the potentials are represented by the same number of Fourier coefficients and
that these are computed by using the same space of trial functions.

Proof. Let a and & be the solutions of the inverse matrix problems with data
Af»-. .5\, and 3(1, R ,im. Thus, a,, satisfy Eq. (4.1) with 8, replaced by a,
and @, satisfy Eq. (4.2) with g , and A, replaced by &'V and ?(V. By subtracting Eq.
(4.2) from Eq. (4.1) we obtain Eq. (4.3) with two additional terms, namely A, —’i’u
and

ald -X))7'0, - X)A - A7,

It follows from Eq. (2.2) that the sum of these two terms must be less than
1.00641\, - 'f\'vl. By using the triangle inequality, Lemma 4 and Parseval’s theorem
we obtain (9.1).

Let m be fixed. Since the Fourier coefficients o and @ converge as n - oo, see
(5.8), we conclude that the inequality (9.1) holds for the limit potentials. Finally,
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by letting m - oo it follows from Corollary 2 that (9.1) is also valid for the inverse
Sturm-Liouville problem in its classical formulation. This completes the proof.

10. Numerical Experiments. In the derivation of our algorithm for the inverse
Sturm-Liouville problem we have assumed that the potential is a square integrable
function. The theory does not distinguish between smooth and not so smooth poten-
tials, but the difference is very obvious in practice.

Borg has shown, see [4, p. 11], that if the potential is twice differentiable then
A, = v + const - v2 + O(v~3), otherwise the vth eigenvalue has the asymptotic
expansion A, = v? - o, + o(v™1), where a,, is the 2vth Fourier coefficient of the
potential. Roughly speaking the consequence of these asymptotic expansions is that
a small number of eigenvalues are sufficient to determine the potential if it is smooth,
whereas a considerable number is needed if the potential has any kind of discontinu-
ities.

In our theory we have assumed that the average of the potential has been deter-
mined from the asymptotic expansion of the eigenvalues. However, if only a finite
number of data is available, an ad hoc guess is necessary. This guess may be based on
the behavior of the eigenvalues or on some a priori information about the potential.
We have not been able to find a solution of this very complicated problem.

The algorithm presented in Section 1 has been tested on three different poten-
tials. In all three cases, the eigenvalues used were correct to eight decimal places.

The first test problem is the Mathieu equation with the potential

q,(x) = 2 cos(2x).

The L? norm of this potential is /27, and therefore this case is not covered by our
theory. The potential is atypical because it can be described by a finite Fourier
series. On the other hand, the Mathieu equation is important by itself, and the eigen-
values have been carefully tabulated, see [28].

To investigate the importance of the representation of the eigenfunctions we
tried to calculate the potential from the first six eigenvalues. The errors in the Fourier
coefficients oy can be found in Table 1. We see that the lowest Fourier coefficients
are best determined and that it is preferable to choose the dimension of the space of
trial functions as an even number.

In Theorem 3 we have shown that the inverse Sturm-Liouville problem is well-
posed. However, from a practical point of view the problem must be considered as
ill-posed. For example, for the inverse problem for the earth the higher eigenfre-
quencies are measured with less absolute accuracy than the lower ones, and finally
regarded as noise. To investigate this phenomenon we have perturbed the first, fifth
and tenth eigenvalue of the Mathieu equation by one percent. The results are given
in Table 2. We conclude that a,, is roughly equal to ¥> =\, but that the perturba-
tion spreads out to the nearby Fourier coefficients. In the case where all eigenvalues
are perturbed by one percent the solution is completely dominated by noise, yet
the lowest Fourier coefficients are essentially correct.
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Dimension of the space of trial functions

Errors in 6 7 8 9 10
o 3.1-.107% | 6.1-207% | 3.3.207% | 2.5-20"% | 2.5-107°
a, 5.1-107° | 1.1-207% | 1.5-207% | 3.6-207% | 3.4.207°
o, w.3-007% | 1.7207% | 2.0-2077 | s5.5-207% | 1.3-107°
o 4.0-107% | 2.0-107%{ 3.1:207% | 9.0-207% | 1.9-107°
o v.1-1072 | 2.9-107% | 3.2:207% | 1.6-207% | 8.0-107°
o 3.1.107% | 3.0-2072| 1.7-10°% | 2.0-207% | 2.5-107°
TABLE 1

Errors in the Fourier coefficients

[SEI N Ag Mo ALL )

Errors in: exact pert. pert. pert. perturbed
o 2.5-207°| 8.9.207% -1.3.1073| -4.0-1076| 1.1-1072
o 3.5-107%]-1.3-10"% -1.7-1073|-4.9-1075| 1.9-1072
oy 1.3-207%| 1.1-207%-3.5-1073| -5.6-10"%|-9.8-10"2
o 151079 u.5.207% —2.8-207%| 4. 7-2073] 1.4.2071
oy 2.3-107%| 3.2:107%| -2.5.20" | -5.0-2073]-2.7-10"2
o 0.2.107%] 2.3-107%| 2.8-10"2|-6.0-10"3| 3.3.1071
o, Lo.6-1079] 1.7-107%] 2.1-107"%|-8.6-1073]-5.0-10"%
ag L0.9-107%] 1.3-207%| 9.5-107%-1.2-1072| 6.1-1072
ag L3.6:107%| 1.1-207°| 5.6-207%| 2.6-10"2|-8.0-1071
o, Ly.7-207% | 8.u-1078) -2.6-107% 1.0 1.1

TABLE 2

Perturbation of AjtoA; =001 - ?\i(— 1y

The second potential was chosen as the Hermite interpolation of q,(x) and then

normalized to have zero mean. Thus
_ 2 192 &1
q,(x) = s ;Z x((m—-x)? = ;;— k; ” cos(2kx).

The eigenvalues for this potential were computed by the Rayleigh-Ritz method with
60 sine functions spanning the space of trial functions, and the results were judged to
be accurate to 1078, In Table 3 we give the 12 error of the computed Fourier coeffi-
cients. One piece of information which cannot be inferred from Table 3 is that the

first Fourier coefficients are best determined. Indeed, for the case of 16 eigenvalues
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and 24 basis functions all but the last two of the Fourier coefficients are accurate
to within 1078, This is interesting because the first Fourier coefficient of the part
of the function which we do not take into account is of order 1075, One possible
reason for this is that the higher eigenvalues are well described by Borg’s asymptotic
expansion of the eigenvalues corresponding to a smooth potential, and that the term
const « v~ dominates the Fourier coefficient a,,.

Number of eigenvalues

No. of basis

functions 4 8 12 16
4 7.2-1072
8 1.5-107% 3.9-1072
12 1.6-107% 7.4-1078 2.7-1072
16 1.6-207"% g§.2-1078 9.1-10”"7 2.1-1072
20 1.3-107° 6.4-10"7
24 1.3-1078 3.4-10"7
TABLE 3

Errors in the Fourier coefficients: \/2 (comp oy, — exact o)?

Finally, our third potential was chosen as a piecewise constant approximation of
q,(x), specifically

q; (x) =
otherwise,

)k+l

Z ———— cos 2(2k - 1)x.
k=1

3 if /4 < x < 3n/4,
8
m

Note that the sum of the absolute values of the Fourier coefficients is divergent.

Thus, potentials with jump discontinuities must be excluded in a theory which uses
the classical version of Gershgorin’s theorem to estimate the eigenvalues of the matrix
A in Section 1. This shows the advantage of our L? approach. The eigenvalues corre-
sponding to the potential g, (x) satisfy a transcendental equation involving only elemen-
tary functions, and the first 16 roots of this equation were obtained by using the
ZERP algorithm due to Kahan. This algorithm gives upper and lower bounds for the
roots and the eigenvalues were found with an accuracy of 1078, The eigenvalues were
also computed by the Rayleigh-Ritz procedure with the space of trial functions spanne:
by 60 sine functions, and differed from the correct ones by approximately 1075,

This indicates that our method for solving the inverse Sturm-Liouville problem will
converge slowly for potentials with discontinuities. This is borne out in Table 4. In
the case where we use 16 eigenvalues and the dimension of the space of trial functions
is 24 we find that the errors in all the Fourier coefficients are of order 1074, except
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for the last where the error is 2.8-1073. The corresponding potential is given in
Figure 1, and we note the Gibb’s phenomenon.

Number of eigenvalues

No. of basis 4 8 12 16
functions
4 1.3.107%
8 3.1-1072 |6.1-1072
12 3.2.1072 | 9.6-107% |u.4-10"2
16 3.2-107%2 [1.0:107? |u.6-107% |3.4.1072
20 5.0-107° [2.7-1073
24 5.0.1073 |2.8-1073
TABLE 4

Errors in the Fourier coefficients

FIGURE 1

Discontinuous potential reconstructed from 16 eigenvalues

In our numerical experiments we have used Gaussian elimination to solve the
systems (4, — \,)x = a, and used 20 complete sweeps of the functional iterations
(3.1). Clearly, this could be replaced by a more economical technique. However,
our objective has been to present a method which works and can be proved to work.
The method is only local and it is not clear if one should strive for an optimal imple-
mentation at this stage.
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