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To Compute the Optimal Interpolation Formula

By P. W. Gaffney

Abstract. The purpose of this paper is to explain how to compute the function
which interpolates values of a function of one variable f(x) at n distinct points xq
<xp <+ <x,, <Xx,, and which, whenever IIf(k)IIm is bounded and the value
of the bound is unknown, provides the smallest possible value of B(x) in the error
bound

e - 261 < BE)Ir®.,.

1. Introduction. Gaffney (1976b) and Gaffney and Powell (1975) considered
the solution to the following problem.

Given values of a function of one variable, f(x), at n distinct points: x; <x,
<+ <x,_; <x, and given that |F®||,, 1 <k <n, is bounded, but that the
value of the bound is unknown, identify the interpolating function € and the func-
tion B, which satisfies the inequality

(1.1) IFtx) = Q)| < BEIFPI...

where for all x in the range x;, <x <x,, B(x) is as small as possible.

They solved this problem and they called the solution, §2, the ‘Optimal Interpo-
lation formula’. They proved that the function & is a spline of degree k — 1 with
exactly n — k knots, and they proved that the corresponding function B is the modu-
lus of a perfect spline of degree k with the same n — k knots as Q. The fact that B
is the modulus of a perfect spline was also discovered by Micchelli, Rivlin and Wino-
grad (1976).

The purpose of this paper is to explain how to compute the functions $ and B.
Our method of computation uses B-splines. Therefore, in Section 2 we define B-
splines. In Section 3 we describe how to compute Q and in Section 4 we describe our
method for computing B. Finally, in Section 5 we discuss the choice of a suitable
value for k, and we consider the interesting case when the data points are equally
spaced.

The calculations in this paper were performed, in single precision, on the IBM
370/168 computer at Harwell.
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764 P. W. GAFFNEY

2. B-Splines. A B-spline of degree k — 1, k > 1, is a spline function, of the
same degree, with k + 1 knots. It has the important property that it is identically
zero outside the range defined by its knots. Consequently, B-splines give rise to ma-
trices of band structure which are computationally advantageous.

For the definition of B-splines we use the function

@ -0 x<y,

(2.1 &x:») =0 -0 =

0, x =y,
and denote a sequence of k + 1 knots by
2.2) X <Xppy < <Xppger <Xigk

The B-spline of degree k — 1, or order k, is denoted by M, {x) and is defined in the

following way. We regard g, (x; y) as a function of y; and, in particular, we consider
this function when y takes the values x;, . . ., X;, ;. We form the kth divided differ-
ence, with respect to y, over these values, and using Steffenson’s (1927) notation, de-
note it by g,(x;x;, . . ., X;44). Then, for k > 1, My (x) is the function

(2.3) My (%) = g5, . .oy X500

The B-spline Mk,i(x) is nonzero only over the interval x; <x <x;, , for the follow-
ing reasons. By definition Mk,,(x) = 0 when x > x;, ;. Moreover, when x < x;,
Mk,,-(x) is the kth divided difference of a polynomial of degree k — 1 and, therefore,
vanishes identically.

For computational purposes it is sometimes useful to use the B-splines

2.9 N dx) = (e~ x,-)Mk,,.(x),

which are called ‘Normalized B-splines’ (see de Boor (1972) and Cox (1975) for in-
stance). Greville (see the supplement in Schoenberg (1967)) has proved that these B-
splines have the property that

(2.5) 2N ) = 1.

3. To Compute the Optimal Interpolation Formula. In this section we describe
how to compute the optimal interpolating function Q which is the solution to the
problem defined in Section 1. We begin by reviewing the properties of £ which were
proved by Gaffney and Powell (1975) and Gaffney (1976b).

The function  which interpolates values f,, . . ., f,, of a function f at n dis-
tinct points x; <x, <---<x,_; <x,, and which provides the smallest possible
value of B(x) in the error bound

(3.1) 1) = Q)| < BN,

where Ilf(")llw is bounded, but the value of the bound is unknown, is a spline func-
tion, 2, of degree k — 1. It has exactly n — k knots
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(3.2 nt<my < <miopy <M
which satisfy the inequalities
(3.3) X, <n¥<x,e i=1,...,n-k
and are defined by the conditions

¥ i1 ,
(34) Z (_l)fn;‘ Mk'i(x)dx*_—o, 1= 1,...,n—k,

j=0

where n§ = x, and n¥_, ., =x,. We note that the definition (3.4) implies that the
knots {n}} do not depend on the function f.

In order to compute Q we first calculate the n — k knots {nFri=1,...,
n — k. This calculation is a special case of that considered by Gaffney (1977a). How-
ever, in this case, because the knots {n}} depend only on the data points {x;}, there
are some simplifications and it is easier to illustrate the type of results that can be ex-
pected. Therefore, we include in this section a description of our method for com-
puting the knots n¥,. .., n%_,. Itis given in subsection 3.1. When the knots have
been calculated the remaining parameters of Q are linear and we explain how to com-
pute them in subsection 3.2.

3.1. To Compute the Knots of Q. Since conditions (3.4) yield n — k equations
for the knots {n}}, i = 1,...,n — k, we solve the system of equations

n—k (M1
(3.5) ZE)(—I)’fni M (0)dx =0, i=1,....n—k
]=

where ng = x,; and n,_, ., = Xx,. Gaffney (1976b) has proved that there exists a
unique solution to the equations (3.5).
The integral in the middle of Eq. (3.5) may be calculated by using the formula
of Gaffney (1976a) together with Cox’s (1972) algorithm for evaluating B-splines.
When k = 1 Eq. (3.5) is linear and in this case it is straightforward to show that
the knots {n}} have the values

(3.6) po Gt 2y

Uk 2 s i=1,...,n—1.

We now consider the solution of Egs. (3.5) when the value of k& is greater than 1. In
this case the equations are nonlinear and it is convenient to write them in the vector
form

where F is the mapping whose ith component Fy(n) is the left-hand side of Eq. (3.5)
and n is the vector of unknowns n = [n,, ..., n,_;] T, To solve Eq. (3.7) we use

Newton’s method with some additional precautions. Thus, we require the Jacobian
matrix J(n) of the system (3.7). It is straightforward to show (see p. 319 in Gaffney
(1976b)) that the element in row p and column g of J(n) is the quantity
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— . -1
(3.8) Tp,qM = 2=1)7"'M, (1),

where 1 <p, q<n -k
To apply Newton’s method we choose an initial approximation n{®) =

[n(lo), e, nﬁ,o_)k] T to the solution n* and then for 7 = 0, 1, ... we solve the sys-
tem of linear equations

3.9 JmP)s6® = — pp(®
to obtain a new approximation
(3.10) (1) = (0 4 5@

We terminate this iteration either, when the sum of the squares of the residuals

(3.11) SS(n(?) = ni)k [F(n(™)]?

i=1

is less than a prescribed tolerance €, or when the inequalities

k 1/2 n—k 1/2
(3.12) (ni lst(t)] 2) < e<z [nl(t)]2)
i=1 i

i=1

are satisfied. In practice we choose € to be the relative machine accuracy, and we
let €, be the value 100(n — k)2e2.
In order to solve Egs. (3.9) the successive matrices J(n(?), z =0, 1, . . . , must
be nonsingular. Therefore, (see Gaffney (1976b)) the components of n(?, r = 0, 1,
., must be distinct and they must satisfy the inequalities

(3.13) x; < nf® <Xy i=1,...,n-k;t=0.

To ensure that J(n(®) is nonsingular we choose the components of the initial approx-
imation to be the quantities

i+k
(3.14) (°)=k—+——lzx,, i=1,...,n—k

which are the arithmetic means of the knots of the B-splines Mk,i(x), i=1,...,n-
k. In this case when the data points {x,}, i=1,. .., n, are evenly spaced, and k = 2,
it can easily be verified that the optimal knots {n}}, i = 1, ..., n — 2, have the val-
ues given by (3.14). Furthermore, when k = 3, we have found that the Newton
iterates {nt(’) }, t > 1, are in ascending order

(3.15) 7{? < n(t) <- n(') , < P, t=1;

they satisfy conditions (3.13) for all # > 1; and they converge rapidly to the solution
nf,i=1,...,n—k. However, when the data points are not evenly spaced the
above method sometimes provides an approximation which does not satisfy conditions
(3.13); and, thus, the iteration breaks down. Therefore, in order to ensure convergence
to a solution of Egs. (3.7) we use a continuation method (see p. 230 in Ortega and
Rheinboldt (1970)) together with Newton’s method. For example, if the above
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iteration breaks down at the rth step and J(n(" ~l)) is nonsingular, then we partition
the closed interval [0, 1] by a sequence of distinct points

(3.16) 0=2N_y <A< <Nypg <Nyp=1

and determine suitable values for {\;}, s =r, ..., r + p — 1, so that Newton’s meth-
od, for solving the equations

(3.17) T, ) = Fn® — (1 = \)Fp©~D = 0
will converge when the starting approximation is the solution of the equation

(3.18) T(n®~Y,A,_,) =0.

Gaffney (1976b) has proved that this method converges to the solution of Egs. (3.7)
in a finite number of steps. A Fortran subroutine has been written for this compu-
tation and it is described, in a companion paper, by Gaffney (1977b).

To solve Egs. (3.9) we note, from Eq. (3.8) and the definition of the B-spline
My ,(x), that the Jacobian matrix J(m(") has a band structure. Therefore, our method
of solution takes advantage of this fact. Specifically we use Gaussian elimination,
without interchanges, to solve (3.9). It is unnecessary to perform any interchanges in
the elimination process because of the properties of B-splines (see de Boor and Pinkus
(1977)). Thus, we take advantage of the sparsity in J(n(") by treating it as a band
matrix.

To illustrate the type of results which can be expected, we present three exam-
ples.

Example 1. For the first example we use the equally spaced data points x; =1
i=1,...,6,andletk =4. In this case the equations (3.5), for the knots n% and
n% are

1 n2 6.0
F.(n) Ef:OM‘,,l(x)dx —fn M, ((x)dx + fn2 M, (x)dx =0, and
: 1
(3.19)

nq Ny 6.0
Famy=J " M, 50 ax —fnlM‘,’z(x)dx + . My, =o.

We used Newton’s method to solve Eq. (3.19), and terminated the iteration
when the corresponding sum of squares of residuals (3.11) became less than or equal
to 4.10712, Newton’s method gives sufficient accuracy after two iterations. The
successive iterates are presented in the first two columns of Table 3.1, and the corre-
sponding residuals and sum of squares of residuals are given in the remaining three col-
umns.

Example 2. For the second example we use the data points

exp((i + 38)(0.001)), i=1,...,11,

(3.20) Xy
[exp(0.971 + (i — 12)(0.001)), i=12,...,24,

which are unequally spaced, and we choose k¥ = 6. In this case the Newton iteration
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(3.9)—(3.10), for solving the corresponding Egs. (3.7), with the initial approximation

i+6 /
(3.21) nf® = < > x,.> / 7.0,
j=i

breaks down. The reason for this is that the correction §(®), which is the solution
of Egs. (3.9) with # = 0, is such that the approximation 7(®) + §(®) does not satisfy
the inequalities

(3.22) X <nf® +500 <x,

foralli=1,...,n—k. Thus, we use the continuation method (3.16)—(3.18) for
solving (3.7). Specifically, we chose \; = % and solved the equations (3.16), namely

(3.23) T, %) = Fp) — 10 = o,

using Newton’s method with the initial approximation (3.21). After four iterations
the corresponding inequality (3.12), with e = 1.0 x 107°, was satisfied; and we
terminated the iteration. We now used this solution as the starting approximation in
the iteration (3.9)—(3.10). After a further three iterations we obtained the solution

shown in Table 3.2.
TABLE 3.1

o] 0 [ w0 Fa®™ | fa®™]  ssa®)

0| 3.0000 | 4.0000| 0.0833 | 0.0833 | 0.138889.107"
1| 2.9500 | 4.0500 | 0.0013 | 0.0013 | 0.332678.10°°
2|2.9492 | 4.0508 | 0.0000 | 0.0000 | 0.696332.10712

TABLE 3.2

! 1 % | M2 | %3 | X4 | Rias | Kies | Xie7

1] 1.0398( 1.0408| 1,0419) 1.0429( 1.0439( 1,0450 | 1.0460{ 1.0471
9 | 1.0481| 1.0492| 1,0502 | 2.6406| 2.6432| 2.6459 | 2.6485| 2.6512
17 | 2.6538| 2.6565| 2.6591 | 2,6618 | 2.6645| 2.6671 | 2.6698| 2.6725

e 8] of | ol ] n{8) | efs) | | (3 ssa™)

3 1 ] 1.0427) 1.0439| 1.0450 [ 1.0461| 1.0473( 1.1270
7 1 1.3488| 1.6693| 2,0251 | 2,3456 | 2,5674 | 2,6481
13 | 2.6510| 2.6538| 2.6565| 2.6592 | 2,6620 | 2.6650 0.185445.10-7

Example 3. This example illustrates the form of the solution, when the data
points are evenly spaced and #n is very much larger than k. We chose n = 100, k = 4
andx; =i,i=1,...,100. Then, with the initial approximation

(3.29) D =i+2 i=1,...,96,

Newton’s method obtains, after three iterations, the vector n* whose components nf,
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i=17,...,90, rounded to 4 decimal places, are the values
(3.25) nF=i+2, i=7,...,90.

The remaining components are given, to 4 decimal places, in Table 3.3. The corre-
sponding residuals are less than 2.0 x 10~ and are not shown.
TABLE 3.3

1 * * * * * *
TN Ni4] Ni+2 N3+3 Ni+4 Ni45

1 2.9332 | 3.9838 | 4.9958 | 5,9989 | 6.9997 | 7.9999
91 | 93.0007 | 94.0003 | 95.0011 | 96.0042 | 97.0162 | 98.0668

We note that away from the ends of the range the knots are almost at the data points.
This behavior is typical when the data points are equally spaced and # is large. In
fact, numerical experiment has shown that in this situation the optimal knots, towards
the center of the range, have the value

(3.26) n¥ =x, + kh/2

to four decimal places, where A is the distance between data points.

3.2. To Compute the Linear Parameters of Q. When the knots ny, .. ni_k
have been calculated, the remaining parameters of § are linear, and there are n of
them. Their values are determined from the interpolation conditions

(3.27) Qx)=f, i=1,...,n

In order to compute the linear parameters we write Q as a linear combination of n
normalized B-splines, (see Cox (1975), for example). Thus, we introduce an additional
2k knots {p;}, i=1,...,k n+1,...,n +k, such that

(3.28) M =My =" =p, =%,
and
(3.29) Bpsk =Hpyrt = = lypq =Xp;

and we define intermediate values of u; by the equation

(3.30) Mig=nf Jj=1,...,n—k
We now let Nk,](x) denote the normalized B-spline with knots u;, t;y 1, - - -, iy
and write £ as the sum
n
(3.31) §Ux) = ngaiNk,i(x)’
The constants a, . . ., g, are calculated by solving the linear equations

n

(3.32) > aV x) =fx), i=1,...,n

=1
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Schoenberg and Whitney (1953), have proved that because the knots n* satisfy
conditions (3.3) the coefficient matrix

[ N () Ny y(xy) Ny )]
Nk,l(x2) Nk,2(x2) ... .Nk,n(x2)

‘_Nk,l(xn) Ny ox,) - .. .Nk,n(xn)_‘

is nonsingular, and thus Eqgs. (3.32) have a unique solution.

In order to solve Eqgs. (3.32) we note that the structure of NV is similar to the
transpose of the Jacobian matrix J(n). However, in this case, because the additional
knots satisfy conditions (3.28) and (3.29), the first and last rows of NV always have
only one nonzero, namely Ny ,(x,) and Ny n(x,), which have the value 1. Because
N is a band matrix, we use the same algorithm for solving Eqgs. (3.32) as we used for
solving Egs. (3.9).

Finally, we note that because the knots of only depend on the data points
X4, ..., X, the calculation of all the optimal interpolation formulae for several
functions that share the same data points x,, . . ., x,, can be greatly reduced, since
each approximation has the same knots, namely the components of n*. Furthermore,
if we calculate the linear parameters of one such formula, by for example the above
method, and retain the triangular factors of the matrix N, we can compute the linear
parameters of the remaining formulae by forward and back substitution.

Example. To illustrate our procedure for computing the linear parameters of Q
we apply the above method to the data of Table 3.4, for the case when k = 4.

TABLE 3.4

x | 1.0|2.0] 3.0[ 4.0/ 5.0| 6.0
£(x) | -1.0 | 1.0| 6.0 | 0.0 3.0 | -6.0

The optimal knots for the data points x = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0] 7 are given in
Table 3.1, and they have the values

(3.39) nt =2.9492, 1% = 4.0508.
To determine the linear parameters of §2, we solve the linear equations
10000 00 00 00 00 00 ][4 | [-10]
0.1155 0.5214 0.3295 0.0336 0.0 0.0 a, 1.0
(3.35) 0.0 0.1132 0.6178 0.2690 0.0000 0.0 a; |_| 6.0
0.0 0.0000 0.2690 0.6178 0.1132 0.0 a, 0.0
0.0 0.0 0.0336 0.3295 0.5214 0.1155|] a5 3.0
| 0.0 0.0 0.0 0.0 0.0 1.0000] { @ ] [-6.0

and obtain the values
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a, =-10, a, =—6.5350, a, = 14.5919,

(3.36)
a, =-84579, a5 =114852, a, =-6.0.

The result of evaluating the appropriate expression (3.31) for Q(x), at the points
(3.37) t;=1.0+005G-1), i=1,...,10l,

and of passing a smooth curve through the values S_Z(ti), i=1,...,101, is shown
as the broken curve in Figure 3.1. Also, in this figure we show, from Gaffney (1977a),
the range of possible values of the unknown function f when the bound

(3.38) Ir)., < 100

is valid. The figure shows that in this case, the optimal interpolation formula pro-
vides an estimate of the unknown function f, which differs only slightly from the
best estimate (the mean of the two solid curves in Figure 3.1), that can be obtained
using the function values in Table 3.4 and the additional information given by (3.38).

6 /
// \
/ \\
L /
/ \
/ \\
| /,
2 \
\
1 1 1
25 30 35
Figure 3.1

The broken curve is the optimal interpolation formula ﬁ(x) for the data of
Table 3.4. The solid curves define the range of possible values of [ when the
bound ||f"V||., < 100 is valid

4. To Compute the Function B. In this section we describe how to compute
the function B which is associated with the optimal interpolating function £2.

We first state the properties of B which were proved by Gaffney and Powell
(1975) and Gaffney (1976b).

The function B which provides the smallest possible value of B(x), x, <x <x,,
in the error bound (1.1) is the modulus of a perfect spline B, of degree k, which has
n —k knots n¥, . . ., n¥_, and satisfies the conditions
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(4.1 B(x)=0, i=1,...,n
and
1, x, <x<nf,
B®e) =4 1), n<x<nf, i=1,...,n—k-1.

(—- l)n_k, n;kl—k <x <xn.

To compute B we first calculate the knots n¥, ..., ni_ as described in Section
3. We then determine the remaining n + 1 linear parameters of B so that conditions
(4.1) and (4.2) are satisfied. In order to do this we note that any spline function, S,
of degree k, which has the n — k knots 0¥, . . . , n%_,, and which has the properties

4.3) S #0, x, <x<x,,
and
(44) S(x,') = 0, i= 1, N (8

is a constant nonzero multiple of B. Therefore, if x* is any fixed value of x in any
one of the intervals nf <x <nf, ;,0<i<n-—k, where n§ =x, and n}_, ., =x,,
then the derivative

(4.5) SE(x*) = SE)(x)|

x=x*
is nonzero and the equation
(4.6) B(x) = - ISP 'Sk)

is valid for all x in [x,, x,].

Thus, to compute B we first obtain a spline S of degree k, which has the knots
n%¥, ..., nk_y, and which satisfies the conditions (4.3) and (4.4). Then, we let x*
have the value

4.7) x* =Yy +nr ),

where the integer r is for convenience defined by the expression
4.8 n¥ , —n*=  Min (n¥ , —n%,
(4.9 r+1 r 0<i<n—k(nl+l 77,)

and we calculate S®)(x*) by using the formula due to de Boor (1972). Finally, we
compute B(x) from the formula

(4.9) B(x) = |[S®*)] ™' ().

We have applied the above method to compute the function B for the data of Table
3.4 in Section 3. It is shown in Figure 4.1.

5. Discussion. In this section we discuss the choice of a suitable value for k;
and we consider the interesting case when the data points {x;}, i =1, ... ,n, are
equally spaced.
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_FIGURE 4.1
The function B for the data of Table 3.4

When k = n, the optimal interpolation formula ﬁ(x) is simply the Lagrange inter-
polating polynomial of degree n — 1 which passes through the given function values
fi» - -+ » . If the approximation is required to be accurate throughout the interval
[x,, x,], then in general a single interpolating polynomial is unsuitable. For example,
if the data points are evenly spaced and the value of n is large, then the approxima-
tion to f near the ends of the range is often very poor, while towards the center of
the range it is usually better. This is especially true if the function f does not behave
like a polynomial. In general, we recommend that the value of k should be chosen
very much smaller than the number of data points 7. In this way the spline £ is
composed of a number of piecewise polynomials and, therefore, nonpolynomial like
behavior, exhibited by the data, can be accounted for. When the value of k is 1 the

optimal knots are the quantities given by (3.6). Therefore, $(x) is just the piecewise
constant function

fis x, Sx <n%
(5.1) Qx) = fiv1, MESxS<nfiy i=1,...,n—-2,
Fn> nh_y SX X,

which, in general, is not accurate enough to provide a satisfactory approximation to f.
When k = 2 and the data points are evenly spaced, the optimal knots are given by
(3.14) and they have the values

(5.2) g =x, i=1...,n-2.

Thus, it follows that the optimal interpolation formula £Xx), is the piecewise linear
function

— Xip1—X X = Xx;
53 Qx) = Yo% it T fiv1s

X; SX<Xx;,,i=1,...,n—- L

Usually, piecewise linear functions are not suitable for approximating smooth
functions to high accuracy. In practice we have found that, for most functions, the
choice k = 3 or 4 is sufficient to provide an approximation £ which resembles one
that might be estimated by an experienced computer user. The optimal interpolating
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spline & has the further nice property that if the data is taken from a polynomial of
degree less than k, then § reproduces this polynomial exactly.

We now consider the interesting case, which occurs often in practice, of equally
spaced data points.. At the end of Example 3 in Section 3 we noted that when the
data points {x;}, i = 1, . . . , n, are equally spaced and # is large; the optimal knots
{n}}, towards the center of the range, have the value

(5.4) nf~x; + kh/2,

where h is the distance between the data points. We also noted, in Eq. (5.2), that
when k = 2 the knots are at the data points {x;,,}, i=1,...,n —2. In general,
when k is even and greater than 2, some of the knots are almost at the data points.
In order to test the difference between  and a spline S which interpolates the func-

tion values f;, i = 1, . . . , n, and whose n — k knots {n;} are at the interior data
points, i.e.
(5.5) n'=x'+kh/2, i= 1,...,n._k,

we approximated the function
(5.6) f(x) = —xe log, x

over the interval 0.0 <x < 1.0. The graph of f(x) is shown in Figure 5.1.
We chose kK = 4, 6 and 8 with 22 equally spaced, data points. The optimal
knots {n}} and the knots {n;} are given in ascending order, correct to four decimal

places, in Table 5.1. o
09
0-8
07

00 1 1 I
0-00 0-25 0-50 075 100

FiGURE 5.1
f(x) = —xelog, x

0-024

0-018

0-012

0-006

0000 1 1 e~ J

10-00 006 N\ 00— 012 016
-0-006

FIGURE 5.2. —d, and e, — — —
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To measure the difference between the approximations of f we calculated the
srror functions

'5.7) e =f-Q
ind
'’5.8) d,=f-8

‘or some values of x. These results are given in Figures 5.2—5.4. When x is in the
nterval 0.16 <x < 1.0, the functions e, and d,, are zero to three decimal places for
¢ =4, 6 and 8.

Now, because the first derivative of f has a logarithmic singularity at x = 0, we
sxpect the error in the approximation of f near the origin to be relatively large. Fig-
wres 5.2—5.4 show that this is the case, but more importantly they show that the
ipproximations { and S do not differ much. This fact is important because it is
sasier to calculate the spline S. Moreover, although we have tested few problems, we
selieve that if an approximation to a function f(x), x, <x <x,,, is required to be
iccurate in an interval away from the ends of the range then, provided the number
f equally spaced data points in [x,, x,,] is sufficiently large, there is very little to be
sained in preferring the optimal cubic spline approximation £, to the cubic spline S
vhich interpolates the data and has its knots given by expression (5.5).

In this paper we have explained how to compute the optimal interpolation
‘ormula (x). We have shown that the n — k knots of (x) can be calculated easily
)y solving a system of nonlinear equations. Moreover, the » linear parameters of
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Q(x) are obtained, from the interpolation conditions, by solving a system of linear
equations whose coefficient matrix has a band structure. Therefore, the optimal in-
terpolation formula is ideally suited for computer calculation. Our results indicate
that Q(x) is a very good solution to the interpolation problem, where we measure
goodness by the appearance of the fitted curve. Furthermore, although the interpola-
tion problem requires the kth derivative of f(x) to be bounded, the optimal interpo-
lation method has worked entirely satisfactorily for functions which do not satisfy
this condition. For instance there may be singularities at the ends of the range.

A Fortran subroutine for computing the optimal interpolation formula has
been written by Gaffney (1977b).
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