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The Resultant Iteration for Determining
the Stability of a Polynomial*

By James Lucien Howland
Abstract. The square root iteration x; .y = (x; + xi_l)/2 is known to be convergent
to +1 from starting values X in the open right half-plane, and to —1 from starting
values in the open left half-plane. The resultant of the quadratic z2 — 2wz + 1 and
a given polynomial P(z), of proper degree n, is a polynomial R(w) whose zeros, ex-
pressed in terms of the zeros z; of P(z), are just w; = (z; + zi_l)/2. The construction
of R(w) is thus equivalent to »n independent applications of the square root iteration,

with unknown starting values z;. Repetition of this construction generates a sequence

of resultants whose zeros are inldependently convergent to either +1 or —1 according as
the initial zero of P(z) lies in the open right or left half-plane. When the given poly-
nomial, and each of the resultants, is written as a linear combination of the n + 1 poly-
nomials (z + 1), (z + l)n_l(z -1),z + l)n_2(z -n? ..., (z + 1)z - l)n_l,

(z - 1)". the sequence of resultants is ultimately convergent to one of the elements

(z + l)n—p (z - l)p of this basis, whence it follows that P(z) has p zeros with positive
real part and n — p zeros with negative real part, and the Hurwitz stability problem

for P(z) is solved. By an application of the principle of argument it is, in general,
possible to determine p at a finite stage of the resultant iteration.

When formulated in terms of this basis, the resultant iteration becomes formally
identical with the root-squaring process. This fact may be exploited to establish the
properties of the resultant iteration, and to show that root-squaring may be applied
to solve the Schur stability problem for a given polynomial. Although precise results
are not available, numerical results and the general properties of this iteration suggest
that, for the purpose at hand, it is unaffected by the progressive deterioration of con-
dition that sometimes occurs in other applications of root-squaring.

1. Introduction. The two stability problems for a polynomial—the first, that
of determining the numbers of its zeros with positive, zero, and negative real parts,
and the second, that of determining the numbers of its zeros within, on, and without
the unit circle—are important in connection with the determination of the stability of
linear differential and difference equations, respectively. Numerical methods for solv-
ing these problems must be simpler and more efficient than algorithms for evaluating
all the zeros of a polynomial, since both stability problems are solved when the nu-
merical values of the zeros are known. This paper is concerned with an iterative proce-
dure, called the resultant iteration, for the solution of either of these stability problems
which, to the extent that iterative procedures can be contrasted, appears to be more
efficient than available methods for computing all the zeros.
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The results reported here were motivated by the properties and applications of
the matrix sign function [5], which suggest the possibility of constructing an analogous
“polynomial sign function”. Such a polynomial would have zeros *1, distributed ac-
cordingly as a given polynomial of proper degree n, with which it is associated, has
zeros with positive or negative real part. The “polynomial sign function” would, thus,
be one of the n + 1 polynomials (z + 1)"7(z — 1)/, 0 < j < n, namely
(z + 1)"7P(z — 1)P, whenever the given polynomial has p zeros with positive real parts.
Such a polynomial might be computed by an appropriate adaptation of the iteration
(1) SGE + 1) = [SG) +S7'@1/2, S(0)=4,
used to calculate the sign matrix associated with a given matrix 4.

The resultant procedure, developed and investigated by E. H. Bareiss [1], [2] in
connection with root-squaring, may be adapted to the computation of polynomials
analogous to the matrices S({). For, the resultant R(w) of a given polynomial P(z)
and the quadratic polynomial

) 0(z)=z%-2wz + 1
vanishes when, and only when, P(z) and Q(z) have a common factor. Thus, if P(z) =
Q(z) = 0, it follows from (2) that
©) w=(z+z 172,
whence it is seen that the zeros of R(w) are related to those of P(z), respectively, by
the formula (3), analogous to (1), which defines an iteration convergent to the square
roots of 1. Iteration of the resultant procedure, justified by the known convergence
properties of the square-root iteration, thus supplies the required polynomials and, ul-
timately, the associated “sign polynomial”.

The resultant procedure may be reformulated in terms of the polynomial basis
(z + 1)"#(z = 1Y, 0<j < n, so that, once P(z) and Q(z) are written in terms of the
elements of this basis, all the resultants are similarly expressed. Thus, if

Pz)=ayz + 1) +a,(z+ 1) '(z-1)

@ +~~°+a](z+l)"_j(z—l)i +--+a,(z-1)",

the resultant of Az) and Q(z) is
(5) RE@=A,z+1D)"+ - +AL+1D)"T-1Y+ - +A4,(-1),

where
n—k .
6) Ay =CDFlai +2 Y - Vay_a, |, 0<k<n
i=1
If, now, there is an integer p such that
n
7 1> > 14,
J=03#p

then (z + 1)"7P(z — 1)P and R(z) have the same numbers of zeros in the open left
and right half-planes. Since it may be shown that all the polynomials in the resultant
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sequence have the same numbers of zeros in these half-planes, it follows that the inte-
ger p supplies the solution to the first stability problem for the given polynomial, and
that (z + 1)"7P(z — 1) is the required “sign polynomial”.
The formulae (6) define the root-squaring algorithm as applied to the polynomial
aozn +alzn—1 4. +ajzn—]' +:4a,.

This fact may be developed to establish the properties of the resultant sequence, and
to verify the fact, apparently not well known, that the root-squaring process can be
applied to solve the second stability problem for a given polynomial. Thus, the in-
vestigation of polynomial resultant sequences leads to iterative algorithms for the so-
lution of both the first and second stability problems.

These algorithms will clearly fail when, in the case of the first problem, the given
polynomial has zeros lying exactly on the imaginary axis or, in the case of the second
problem, the exceptional zeros lie on the unit circle. These cases are characterized by
the failure of any single coefficient in the successive resultants to dominate, in the
sense of the inequality (7). This possibility of failure, in turn, suggests the possibility
of almost arbitrarily slow convergence whenever the given polynomial has zeros lying
near, although not exactly on, the boundary separating the domains of convergence.
In the case of the first problem, zeros with small real part, especially when associated
with relatively large imaginary part, will give rise to slow convergence while, in the
case of the second problem, zeros with modulus near 1 will have a similar effect.

When nonconvergence, or unacceptably slow convergence, is encountered, there
seems to be little choice but to apply a direct or noniterative method, such as that
of A. Cohn [4, Section I], which is formulated for the second problem, but may
easily be adapted to the first.

2. The Calculation of the Resultants. To form the resultant of the polynomials
) P2)=az+1)"+ - +az+ )T~y +- - +a,z- 1)

and

) Q(z)=22—2wz+l=—w;1(z+l)2+w;1(z—l)2,

Sylvester’s dialytic method of elimination (see [3, Vol. 2, Section 154, p. 75]) may be
adapted to obtain the resultant in the form of the (n + 2) x (n + 2) determinant

a, a, a, as a4, 1 a, 0

0 a9 a a, @43 8y n
—w-1) 0 w1 0 0 0 0

0 —w-1) 0 w+l... 0 0

R(w) = det

0 0 -(w-1) 0 0 0

0 0 0 0o ... 0 w+l O

0 0 0 0 ...-w-1) O w1
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The important property of this function, for present purposes, is that R(w) = 0 when,
and only when, A(z) and Q(z) have a nonconstant common factor [14, p. 84].

By repeated application of the Laplace expansion it may be shown that R(w)
may be written

RW) = X (- 1) *det

a. a:
i J+1 B(,'_i) W),

;i j

where the sum is taken over all possible choices of the columns i (0 <i < n), and
j (G <i;0<j<n) of the determinant, and B(j_,.)(w) is the product of the three

minor determinants

“w-1)

0 w+1 0
0 -w-1 0 0 .
det| ' ‘ = - - D]
0 0 0 -w-1)
of dimension i,
0 w+1 0 0 0
-w-1 0 w+1l, ., 0 0
det 0 -w-1) o 0 =Dy,
0 0 0 ...-w-1D o
of dimension j — i, and
w+1 0 0 .0 0
0 w1 0 ..0
deti-(1-w) 0 w+1...0 0 =w+ 17
0 0 0 ...0 wtl1

of dimension n —j. The determinants D,

D,=w-1Ww+1D,_,;

whence it follows that

D; ;(w) =

Thus

[ow = Dw + 1] D72

7

_i(w) satisfy the recurrence formula

D, =0, Dy=1,

if j —iis odd,

if j — i is even.

(Similar expressions are discussed and illustrated by E. H. Bareiss [1, pp. 364, 365].)
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Do) = LECU (6~ 1y + 1y 6012

and, setting k = (i +j)/2,

4 8yl

R(w) = Y (- 1Ydet #(W + 1" F(w - 1)F.
4G, 4
Noting that i = 2k —j, 0 <k <n, k <j <n, and defininga; = 0 fori <Oori>mn,
this sum may be written

n n . Qak—i  %i+1
Rw)= Y k(— 1)/ det w + )" *w - 1)k

k=0| j=
5" Y Qp—jor G

n
= Y A (w + 1" F(w - 1),
k=0
where the coefficients

n ) Drk-j  %G+1
Ay = 3 (- 1)det

=k
QG k—j—1 4

n—k
=(-1)F¥ l},i +23 - 1)"ak_,ak+,.] .

O)
i=1

The formulae (5) and (6) are the means of constructing the consecutive elements
of the resultant sequence, starting from a reformulation of P(z) in terms of the poly-
nomials (z + 1)*7(z — 1)/. It should be noted that the formulae (6) define the root-
squaring process, a situation that will be seen to be perfectly natural when the proper-
ties of the square root iteration are developed below.

The root-squaring process has been extensively discussed and analyzed, with his-
torical notes and references, by Bareiss [1], where the formulae (6) are derived.

3. The Conversion from Maclaurin Form. A polynomial P(z), given in the con-
ventional or Maclaurin form

® Pz) = boz" +byz" -+ b, 2 +b,

may be rewritten in terms of the polynomial basis (z + 1)*7(z — 1)/ by a procedure
described by Duffin [6, pp. 204—206] and, in a slightly different form, by Lanczos
[8, pp. 3739 and Appendix, pp. 509—-512]. By setting

9 z=Ww+D/w-1)
in P(z), the rational function

w—=1D)"[byw+ 1) +b,w+ 1) ' w-1)+---+b,(w-1)"]
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is obtained, whose numerator may be expressed in Maclaurin form to obtain
W-1D)"[agw" +g w4+ 4aq,].

Now, the transformation (9) is involutory, so that

(10) w=@EZ+1D)/(z-1), w-1=2/(z-1),

and, substituting these expressions, P(z) is obtained in the required form

(4) P2)=2"agz + 1) +a,z + )"z -1+ +a,(z-1)"].

The coefficients a; are, thus, those obtained when P(2) is written in powers of w, under
the transformation (9), and multiplied by (w — 1)”. They are linear combinations of
the coefficients b; of P(z), involving the binomial coefficients appearing in the expan-
sions of (w + 1)"/(w — 1) in powers of w.

An algorithm for the computation of the coefficients ; in terms of the coeffi-
cients b; may be adapted from the results obtained by Duffin (loc cit.) as follows:

(A) Define the matrix I' = (I';;) by the generating functions

. 3 n .
w+1D)"iw-1 =¥ Tw, 0<i<n
=0

Then
n . n . .
Pz) = Z biz"" =w- 1)_"Zb,(w + 1" (w - 1)
i=0 i=0
=(w- )—nz Z bl iV .’
i=0J=
so that
an a; —Zb, y» or a=bl.

(B) Note that the first row of " is generated by the binomial (w + 1)”, and
that the first column of I' consists entirely of 1. Further, from the generating functions,

W+ Dw-1)" ZF,]W"—J zr‘_” i

whence it is seen that
Fijer =Ty jpr — Ly = Ticyj
and the entire matrix I' may be constructed from its first row and column by the al-
gorithm described by the formula
=b-c—-d

and the array

QO
(SIS
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Related matrices are tabulated by Lanczos (loc. cit.) for 1 <# < 12, and relevant co-
efficients are listed by Peltier [12, pp. 228—239] through n = 20.

Thus, by performing the vector x matrix multiplication (11), the row vector b
is converted to the row vector a and, apart from the common scale factor 2", the
polynomial P(z), given in the Maclaurin form (8), is converted to the form (4). This
is a once-only computation, as the resultants subsequently obtained from (4) are all
in this form.

It is well known that, via the mapping (9), the first and second stability prob-
lems for a given polynomial are entirely equivalent (see Duffin, loc. cit. p. 204). Thus,
the investigation of the second stability problem may be undertaken by transforming
the problem to the first stability problem for a related polynomial, and applying the
resultant iteration. Since the transformation (9) is involutory, the first step in the
solution of the first problem for the related polynomial is to apply the transforma-
tion (9), which will, apart from trivial scale factors, recover the coefficients of the
original polynomial; only now as the coefficients of a polynomial in the form (4).
Thus, to solve the second problem, this double transformation may be omitted en-
tirely, and the root-squaring iteration, plus the termination criterion (7), applied di-
rectly to the Maclaurin coefficients of the given polynomial.

4. Termination of the Resultant Iteration. The following application of the
principle of argument supplies a criterion for terminating the resultant iteration.
THEOREM. Suppose that

(5) R@ =44+ D"+ +A4+ D)1+ - +4,c-1)"
and that, for some integer 0 < p <n,
n
@) 4, > > 14;l.
Jj=03j#p
Then, R(z) has exactly p zeros with positive real part, and n — p zeros with

negative real part.
Proof. R(z) may be written

A A -
R(z) = A,z + 1)"P(z - 1),,[;9 <z—+—1>p +;4—‘<z + 1),, BT
p

z—1 pz—l

+Ap+1<z+l> +_”+fg.<z+1)!’-"],
Ap -1 Ap z-1
According to the principle of argument (see [9, Theorems 1.2, 1.6, 1.3]), R(z) and

(z + 1)""P(z — 1) have the same numbers of zeros in the open right and left half-
planes whenever

_{1_0 z+1p+“'+Ap—1 z+1 p+l z—1
A, \z-1 4, \z-1 <z+1

p
A z—1\"P
A +A—(z+1)

<1,
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when z lies on the imaginary axis x = 0. In this case, however, |(z + 1)/(z — 1)| =1,
and the inequality is satisfied whenever

4o
A

Ap+1

4,

n

4,

A,

4,

+...+ + +...+

<1,

which is just the condition (7). Q.E.D.
This theorem was formulated, in the case of the unit circle and the second
stability problem, by D.-E. Mayer [10, p. 111].

5. The Square Root Iteration. It follows from the formula
(12) Zier = (z; + 27 D)/2,

which defines the square root iteration, that

Zipq, +1 =<zi+1>2
Zjpq, — 1 z;— 1

so that, if {; = (z; + 1)/(z; — 1) is the image of z; under the conformal transformation

(13) (=@ +DIz-1,
then
(19 $iz1 = f,z

The square root iteration is thus conformally equivalent to successive squaring. It may
be concluded at once that

(A) If z; lies in the left/right half of the z-plane, §; lies inside/outside the unit
circle in the {-plane. Then, {;, ; also lies inside/outside the unit circle, whence, since
the transformation (13) is involutory, z; ., lies in the left/right half-plane.

(B) If z; lies on the imaginary axis in the z-plane, {; lies on the unit circle in
the {-plane. Then, ;. | lies on the unit circle and, as before, z;, ; lies on the imag-
inary axis in the z-plane.

(C) If z, lies in the left/right half-plane, so that §o lies inside/outside the unit
circle, then {{;} is convergent to 0/e and {z;} is convergent to — 1/+1.

This last result is the justification for the entire resultant iteration, and shows
that difficulties may arise when a zero of P(z) is on, or near, the imaginary axis. It
follows from (13) and (14) that

z,+1 =<Zo+l>R=§R

z,—1 zg— 1

where R = 2", whence
2, = 1=2/¢§ - 1; z,+1=2%R/¢R -1).
If z,, lies in the left half-plane, so that z,——1and {ff —> 0, then

lz, + 1] = 250 R/RR = 11 <205, R /(1 = [§,1®) <e,
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whenever [§,R < /(e + 2) <¢/2. Similarly, if z lies in the right half-plane, so that
z,— +1 and §'§ —> oo, then

lz, = 11 = 2/lk§ = 1< 2/(l§oIR — 1) <,

whenever [§| R < ef(e + 2) < e/2. Thus, the rate of convergence of the square root
iteration is entirely dependent on the modulus of the initial value §,, and the rate of
convergence of the resultant iteration is governed by the rate of convergence of the
square root iteration with slowest convergence, where the respective initial values are
the zeros of the given polynomial.

To identify the circumstances under which the slowest convergence might be
expected, it is relevant to note that, with z = x + iy and { given by (13),

15 _ X — 1
(15 F x=1| |b—1]
is independent of y, and

y—i 1
1 A2 B
(16) \r ~t =L

is independent of x [7, p. 13, No. 4.4]. Thus, when x # 1 is held constant, and y
varies, the point { describes the circle (15), with center x/(x — 1) and radius |x — 1]71.
When y is held constant, and x varies, the point ¢ describes the circle (16), with cen-
ter 1 —ify and radius [y|~!. Rough sketches of these circles, and of the unit circle

I§1 = 1, show that the slowest convergence may be expected when a comparatively
large value of [y is associated with a small value of [x,|.

6. Numerical Examples. The polynomial Pg(z) = 28 + 20427 +151.32% +
490z° + 687z% + 71923 + 15022 + 109z + 6.87 is quoted by Scarborough [13,
Example 2, p. 253], where the equation Pg(z) = 0 is solved by root-squaring. In the

course of this solution, the following results are obtained:

Ay, 1.0 1.0 1.0

A, 204 - 1.1 x 10? -43 x 103
A, 1513 43 x 103 4.0 x 10°
Az 490 -6.1 x 10% -5.5x10*
A, 687 - 1.9 x 10° - 15 x 10'°
As 719 -4.2 x 10° - 1.3 x 10!
Ag 150 -1.2x 10° 74 x 10°
A, 109 -9.8 x 103 - 1.1 x 108
Ag 687 4.7 x 10 2.2 x 103

The coefficients of the original polynomial do not satisfy the termination criterion
(7) for any value of p. The coefficients of the first and second iterates do, however,
with p = 5, indicating that Pg(z) has five zeros outside the unit circle. This is con-
firmed by the computation of the zeros, which gives the values z, = —7.78,2, 3 =
—5.604£1.891i,z, 5 = —0.6678 £ 1.322}, z, , = 0.002818 + 0.413i, zg = —0.0674.
Since five applications of root-squaring, plus further computation, were required to
obtain these values, it is realistic to state that the solution of the second stability
problem for this polynomial, which is completed after the first root-squaring, is avail-
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able with significantly less effort than is required to evaluate its zeros.

This example, plus the general fact that the root-squaring procedure (6) ordinar-
ily produces either very large or very small numbers, suggests the necessity of employ-
ing some type of scaling with the resultant iteration. A simple scaling procedure,
which generates no arithmetic truncation error, is the reduction of the floating point
scale factor of each coefficient such that the scale factor of the largest coefficient is
zero, after each root-squaring. This procedure will be applied in the iterations given
below.

It is of interest to apply the resultant iteration to solve the first stability problem
for Pg(z). The matrix I in this case is

8 28 56 70 56 28 8 1
6 14 14 0 -14 -14 -6 -1
4 4 -4 -10 -4 4 4 1
2 -2 -6 0 6 2 -2 -1
6 o -4 0 1/{,
-2 -2 6 0 -6 2 2 -1
-4 4 4 -10 4 4 -4 1
-6 14 -14 0 14 -14 6 -1
-8 28 -56 70 -56 28 -8 1

|
I
e e T T e S S S S
o
|
»
o

whence 4, = 2.33457,4, =—-1.03136,4, =—1.92884, 4, =-0.20032,4, = 1.6599,
Ag =-0.46752, 4, = —0.71604, A, = 0.94784, A; = —0.34223, apart from ines-
sential scale factors. These coefficients do not satisfy the termination condition (7)
for any value of p. After eight iterations, 49 = 3.2 x 1071, A, =-20,4, =37,
and the remaining coefficients are less than 1071%. The termination criterion (7) is
thus satisfied with p = 2, indicating that Pg(z) has two zeros, z4 , in the right half-
plane. The comparatively slow convergence of the resultant iteration is doubtless due
to the particular numerical values z4 , = 0.002818 + 0.413i of these zeros.

It has been shown [5, pp. 74—76] that, as a consequence of arithmetic trunca-
tion error generated by the root-squaring procedure, the zeros of the successive result-
ants do not always correspond closely to the zeros of the original polynomial. The
danger, in the present context, is that this lack of correspondence will be so substan-
tial that zeros will, effectively, cross the unit circle, or imaginary axis, and give false
information with respect to the original polynomial. While this possibility cannot be
absolutely denied, it does appear that the repulsive nature of the points of these loci,
which separate the regions of interest in stability calculations, is effective in preventing
any iterate from crossing them. Thus, in the elementary example [15, p. 74], the
true zeros +0.96950824 of the quadratic 0.93254613z2 — 0.12346723 x 1078z —
0.87654321 correspond to the zeros 0.96962413 and —0.96939237 obtained from the
first iterate, and one of these is, indeed, larger in absolute value than its correspond-
ent. It is still within the unit circle and, after four further iterations using 10-digit
(pocket calculator) arithmetic, the coefficients 1.07, 0.79, 0.15 are obtained, which
satisfy the termination criterion (7) with p = 0, showing, correctly, that no zeros of
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the original polynomial lie outside the unit circle.

This same conclusion is justified by the more complicated examples cited. The
polyngmial P, ((z) (loc. cit. p. 74) has six zeros within the unit circle and ten without.
The largest modulus of a zero within the unit circle is 0.79, the smallest modulus of
a zero without is 1.06. After three iterations, the polynomial obtained also has six
zeros within the unit circle and ten without, although they do not correspond well
with the zeros of P, (z). However, the largest modulus of a zero within the unit
circle is now 0.15, and the smallest modulus of a zero without is 1.65, so it would
appear that, despite the lack of correspondence in terms of numerical values, the solu-
tion of the second stability problem is proceeding correctly.

Finally, the polynomial Q, ((z) = 1250162561z + 385455882z +
84594769621 + 240775148213 + 247926664212 + 64249356z ! + 41018752210 +
9490840z° + 417826028 + 83786027 + 2672322° + 4418425 + 10416z% + 128823
+ 22422 + 16z + 2 is reported [11, p. 396] to be such that “the root-squaring pro-
cess fails to determine all the moduli even if twenty figures are retained in the initial
transformations”. Two transformations, using 10-digit (pocket calculator) arithmetic
produce values which round to 4, = 2.44,4, = 0.273, 4, = 0.821, 4; = —0.128,
A, = 0.028; remaining coefficients are negligibly small. It is seen that the second
stability problem is solved, correctly, at this stage, with the conclusion that p = 0,
so that all the zeros lie within the unit circle.
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