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The Construction of Rational Iterating Functions

By W. F. Smyth

Abstract. Suppose integers n > 1 and o > 2 are given, together with n distinct points
Zys s 2y, in the complex plane. Define ‘DM = @M(o; Zysenes zn) to be the class
of rational functions ¢p, q(z) = gp(z)/hq(z) (where g and h are polynomials of degree
p = 1 and q > 1, respectively) such that (1) p + ¢ + 1 = M, (2) ¢ when iterated con-
verges with order o at each Zpi=1,...,n Then if M < on, Dy is null; if M =

on, ® M contains exactly on elements. For every M > on, we show how to construct
all the elements of ®,, by expressing, for each choice of p and g which satisfies p +

q + 1 = M, the coefficients of &p and h_, in terms of M — on arbitrarily chosen values.

q
In fact, these coefficients are expressed in terms of generalized Newton sums S]’ =

S]’ (T zn), 1<j<nk > n, which we show may be calculated by recursion
from the normal Newton sums SL’". Hence, given a polynomial f,(z) with n distinct
(unknown) zeros zy, . . ., z,, we may construct all ¢p, q(z) which converge to the z;
with order o: in the case 0 = 2, the choice p = n, ¢ = n — 1, yields the Newton-
Raphson iteration ¢n n—1 € P3,; the Schroder and Konig iterations are shown to be
elements of @, (20-3)(n—1)+2 and @2(0_1 Yn—1)+2 respectively. We show by ex-
ample that there exist cases in which ¢n n—1 has an undesirable property (attractive

cycles) not shared by other iterating functions in the same class ®,,,.

Introduction. This research has its original motivation in the work of Julia [1],
Fatou [2], and Montel [3], [4] on the global convergence properties of iterations of
meromorphic, particularly rational, functions. It appears that, for cases of practical
interest, convergence of the sequence of iterates z, ¢(z,), ¢2(zo), ..., is assured for
every choice of starting point z, in the extended complex plane, except when z, is a
point of a certain nowhere dense perfect set £ [5]. Usually, of course, we have con-
structed ¢ in such a manner that the sequence of iterates will converge to a zero of a
given function f(z); that is, we have replaced the problem of finding z such that f(z)
= 0 by the problem of finding z such that ¢(z) = z. (The most common form of ¢ is

#z) =z — FQ)If @),

the Newton-Raphson iteration.) It may happen, however, that for choice of starting
point z, in a certain domain, convergence takes place, not to a zero of f(z), but to a

set of r > 2 distinct points (e, . . . ,.a,) such that
¢(al)=a2""’¢(a—1)=ar9 ¢(ar)=a1;
so that, in fact, for each k = 1, ..., 7, z =0y is a solution of ¢"(z) = z. The best-

known example of this phenomenon is due to Turing and Brooker [6], who pointed
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812 W. F. SMYTH

out that the Newton-Raphson iteration applied to the seemingly innocuous function
fz) = z* —6z% - 11

gives rise to the attractive cycle (+ 1, —1) for starting points z,, in a certain neighbor-
hood of either +1 or —1.

Indeed, on the basis of the general theory of global convergence of rational
functions, it is not surprising that such attractive cycles should sometimes exist. For
let g = g,(z) and h = h,(z) be polynomials of degree p and g, respectively, with no
common factor. Then a basic result of the theory is that, in the immediate domain
of convergence of each attractive fixpoint or attractive cycle of the rational iterating
function

05,4 = £,@)/h, (2),

there exists at least one critical point of the inverse iteration ¢~ [7]. Since these
critical points are just the solutions of

¢'(2) = (g'n — gh")/n* = 0,
we see that in general they shall be p + ¢ — 1 in number. In other words, convergence
of the sequence of iterates of ¢ may take place to at most p + g — 1 distinct attrac-
tive fixpoints or attractive cycles; the attractive fixpoints will be solutions of ¢(z) =
z, hence of g — zh = 0, and the attractive cycles (if they exist) will be solutions of
¢"(z) = z, for certain values of r > 2. In practice, as observed above, we shall have
constructed ¢(z) in such a manner that, of the max(p, ¢ + 1) fixpoints of ¢(z) =z, n
shall be attractive fixpoints and also solutions of a given equation f(z) = 0. Hence,
in general, there remains a possible total of (p + g — 1) — n attractive fixpoints or
attractive cycles, to which convergence may take place from starting points in certain
domains of the complex plane. In the case of the Newton-Raphson iteration, p = n,
q =n — 1, and we see that up to n — 2 such cases may occur.

An ultimate aim of our research is therefore to find a means of constructing
rational iterating functions which do not give rise to attractive cycles or superfluous
attractive fixpoints, and which, therefore, converge globally—that is, almost every-
where in the complex plane—to solutions of the given problem f(z) = 0. In this paper
we take a step toward this goal by showing how to construct all the rational iterating

functions ¢ = which converge with given order of convergence ¢ to n given

%0.q
distinct points z;,i = 1, . . ., n; in particular, how to construct all the ¢p, q which
converge with order o to the distinct (but unknown) zeros z; of a given polynomial

f,(2). Denote by

Q) = Pp(03 24, ..., 2,)

the class of rational functions ¢, q such that (1) p +q +1=M, (2) the sequence of
iterates of ¢p o cOnverges with order ¢ at each z;; then our construction technique
opens up to us the new possibility of inspecting the iterating functions of each ®,, to
determine which give rise to attractive cycles, and which do not—or, indeed, to
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determine which may or may not have other desirable or undesirable properties. In
this paper we do not propose any techniques for inspection of the elements of ®,,;
but we do show, by an example derived from Brooker’s, that, even though the Newton-
Raphson iteration ¢, ,,_, € ®,,, gives rise to attractive cycles, there may nevertheless
exist other functions in the same class which have no such cycles.

Rational Iterating Functions With n Given Fixpoints. Consider

p.q@) = 8,@I D= X o2 T B2,

0<j<p 0<k<q

where p = 0,49 = 0, o, #0, 8, #0, and the polynomials g and # have no common
factor. In this section we try to choose the coefficients (a]., B,) to satisfy n given
conditions

0 ¢p,q(z,-) =z;, i=1,...,n
where i #i' = z; # z;. That is, we must find (a;, f;) such that
2 8(z;) — z;h(z;) = 0;

in other words, such that

G ay + (0 =Bo)z; + -+ (@, — B,y)zf + (0 - B,)PT!
+...+(0_ﬁq)zg+l =0

for each z;, where if ¢ <p, we define g, =0,k =q +1,...,p.

Setting
(4) 7](1)Eaj_ﬁj—1’ j=0’---ym,
where m = max(p, ¢ + 1), and defining §_; =0, o =0forj=p+1,...,m, we
rewrite (3) as
1 zyt Zrln 781)
=0.
1z, 'Zr'tn 7$r})
Introducing the notation
P ARIEEEE ) ¥
Z;;,S = . . . , I‘r’s = R
+1 ... 1
Zn Zn Zn 7D
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for integers r and s, 0 < r <5, this becomes
(%) Zy" Tom =0,

a set of n homogeneous linear equations in m + 1 variables 7](1). We observe that for
m + 1 = n, det(Z,;,) is simply the Vandermonde determinant

D,= JI (-zn+#o.
n>i>i'>1
Accordingly, for m <n, the only solution of (5) is I, ,m = 0, which implies o =
{3]._1 ,J=0,...,m,hence that ¢p,q(z) = z, identically.

However, if we choose m = n, the rank of Zg"" is also n, and, therefore, (5)
possesses a nontrivial solution in the 7}1) which is unique but for multiplication by a
constant factor. Thus the minimum value of m leading to a nontrivial iterating func-
tion ¢, . is m = n. Rewriting (5) for m = n, we get

_ o , 1
Zg'" 11-~0’n_1 - _Z’r: n7$1 )’

which yields the (unique) solution
7](1)=_(D’;;+l’n/Dn)7$11)7 j=0’~~~an_1>

where in general D’;;k is the determinant obtained by replacing the jth column of
D,, with Zﬁ’k. In the Appendix we show (Theorem 5) that the quantities

Sy =C0"7DL"D,, 1<j<n,
are the familiar Newton sums

1,n _ e n—1,n _ n,n
Sn’ =212, Zps e ’Sn = Z ZiZy's Sn

i#i' 1<i<n

I
™

We write then for the case m = n :
6 Y = sy j=0,.. .01,

and we observe that the ’y}l) are always symmetric functions of the z;.
More generally, for m = n conditions (1),

(7) Zg’n—ll-‘o,n—l = _Z:’ml-‘n,m>

and we see that each element of the solution Ty »n—1 Mmay be expressed as a linear
combination of m — n + 1 arbitrarily chosen values 'yf,l), ., 'yf,}). If corresponding
to each K =n, ..., m, we choose these m —n + 1 values so that 7§<‘) #+0; 7&1) =

0 for k # K, we derive m — n + 1 linearly independent particular solutions
7](11() =_(D£1+1’K/Dn)7§’(l)a j=0"' "n_l’

each dependent on a single arbitrarily chosen value 7§<1). We may then reconstitute a
general solution of (7) by forming a linear combination of these m — n + 1 particular
solutions. Accordingly, summing the 7](}() over K and making use of the generalized
Newton sums S{;" defined in the Appendix, we write the general solution of the sys-
tem (5) as
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@®) YW= X siFUEYD, =0, 01,
n<K<m

where the ¥{!) are arbitrary complex numbers, not all zero. The quantities S/ 1K
are by definition symmetric functions of the z;, and may be calculated as indicated
by the Algorithm and Theorem 7 given in the Appendix. Hence we state

THEOREM 1. In order that a rational function ¢, ,(z) satisfy the n conditions
(1), it is necessary that m = max(p, ¢ + 1) > n. ¢p,q(z) satisfying (1) may be con-
structed by arbitrarily choosing m — n + 1 “combined coefficients” 7}1) as defined
in (4), and then using (8) or an analogous system to find the remaining n combined
coefficients, which are then uniquely determined as symmetric functions of the given
points z;,i=1,...,n

We have thus found a way to generate all rational functions which as iterating
functions have fixpoints at n given distinct points.

Rational Iterating Functions With n Given Attractive Fixpoints. The conditions
now to be satisfied may be expressed as follows :
) bp,qz) =2 Bp4(2) =,
for some 0 < lel <1 andeveryi =1, ...,n These are 2n independent simulta-

neous linear constraints on the p + ¢ + 2 coefficients (a]., Bi), which we may re-
express in the form of (2):

(103) g(zi) - Zih(zi) = 0’

(10b) g(z;) —zh'(z) = €.

From (10b) we obtain after some manipulation a set of equations analogous to (3) :

(1 Y G+Doy, —G+eBlz=0, i=1,...,n
0<j<m-1

It is convenient to define

(12) YW =G+ Dy, ~(G+eB, j=0,...,m—1,

analogous to (4). Then (11) simplifies to

(13) > Zh®=0, i=1,...,n,
o<j<m-1

a set of n homogeneous linear equations in m unknowns 7}2) which is identical in
form to (5). Proceeding as in the previous section, we observe that for m <n + 1
there are only trivial solutions of (13), and that for m = n + 1 there is a unique
solution

(14) Y = ISR, j=0,... 01,

analogous to (6). Then for m = n + 1, we may show as before that general solutions
7](2), j=0,...,n—1,of (10b) may be written
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(15) YD =T X SEVED, =0, 01,
n<K<m-1

identical in form to (8). The solutions (8) and (15) taken together are 2n linear ho-
mogeneous equations in p + g + 2 variables (¢;, §;) equivalent to the original
2n equations (9); they will possess a solution if p + g + 1 > 2n, a condition in
some respects stricter than m = n + 1, but which allows us to solve the equations (8)
and (15) in the important “Newton-Raphson” case, characterized by n =m =p = ¢
+ 1 and e = 0. We have then

THEOREM 2. In order that a rational function by, q(z) satisfy the 2n conditions
(9), it is necessary thatp +q + 1 > 2n. b, q(z) satisfying (9) may be constructed
by arbitrarily choosing (p + q + 2) — 2n of the coefficients (a;, By), and then using
(4), (8), (12), and (15) to find the remaining 2n coefficients, which are then uniquely
determined as symmetric functions of the given points z,i=1,...,n

We have thus found a way to generate all rational functions which as iterating
functions have attractive fixpoints at n given distinct points. If € = 0, the generated
iterating functions will have convergence of order 2 at each of the given points.

Rational Iterating Functions of Given Order ¢. Evidently, the above results
may be generalized. Given n distinct points z,, . . . , z,, and any integer 0 > 1, we
may construct rational iterating functions bp.q with order of convergence o at each
of the given points by finding solutions to the on linear homogeneous equations

(16) ¢p,q(zi) = Zi)
¢I(,s’;1 z)=0, s=2,...,0,
where i = 1, ..., n. If we introduce the notation g(°) =g, h(®) = 1, we may briefly

reexpress these equations in the form of (10) :

17) g5 z) - zh V() =0,
fors=1,...,0i=1,...,n If consistent with (4) and (12), we define

j4+s—1 j+s-2
(18) 7/(S) = < s—1 )aj+s—1 - < s—1 Bits—2>
fors=1,...,0,j=0,...,m—s + 1, then we may rewrite (17) in the form
(19) > =0,

o<j<m—-s+1

fors=1,...,0,i=1,...,n,and, as before, derive general solutions
(20) YO =T X SRy,

n<K<m-s+1

s=1,...,0j=0,...,n—1,valid provided p + g + 1 > on. We have
THEOREM 3. In order that a rational function by, q(z) satisfy the on conditions
(16), it is necessary that p + q + 1 = on. ¢p’q(z), satisfying (16), may be constructed
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by arbitrarily choosing (p + q + 2)-on of the coefficients (e, B), and then using (18)
and (20) to find the remaining on coefficients, which are then uniquely determined as
symmetric functions of the given points z;, i =1, . . . , n.

In terms of the iteration classes ®,, defined in the Introduction, Theorem 3
tells us that ®,, is null whenever M < on. Moreover, for M = on, each of the on
possible choices of p and q yields a single unique iterating function ¢, . ; in other
words, ®,, contains exactly on members. For M > on, each choice of p and g yields
an infinite subclass of iterating functions with coefficients dependent on the particular
choice of the excess (p + g + 2)-on coefficients. The case M = on is, therefore, of
particular interest, not only because it is a minimum (hence minimizing time required
for function evaluations, as well as number of possible attractive cycles), but also be-
cause &, is finite.

Rational Iterating Functions for Zeros of a Polynomial £, (z). As mentioned
earlier, it is shown in the Appendix that the quantities S{;k = S{';"(z1 , .. .,2,) used
to compute the coefficients of ¢, . may themselves be computed from the Newton
sums. Since the Newton sums may in their turn be computed from the coefficients
only of a polynomial [8, p. 453], without direct knowledge of the roots, it is natural
to seek to apply the method to construct rational iterating functions convergent to
the unknown (but distinct) zeros of a given polynomial f,(z). Such an application is
straightforward, and an example is provided in the next section.

In this section we establish a connection between our iteration classes ®,, and
one or two well-known iterating functions (or classes of iterating functions) which are
applied to the zeros of polynomials. We observe first that for o = 2 the iterating
function ¢, ,_; € ®,,(2;2;, . . ., z,) is exactly the Newton-Raphson iteration ap-
plied to a polynomial f, (z) with n distinct roots z,, . . ., z,,. This result is a direct
consequence of the uniqueness of ¢, ,_; (Theorem 3), but may also be proved direct-
ly.

A general class of iterations was discovered by Eggers and Schréder [9] about
a century ago and has been connected in a recent paper [10] to a number of more
modern iterations. Given a polynomial f,(z) of degree n, Schroder described a method
of finding a rational iterating function of any desired order of convergence o > 1 con-
vergent to the zeros of f, ; his iterations took the form

#ol@) =z - b, D@ + -+ CD o @If@1°7

where b,(z) = 1/f(2), b(z) = bg_l_)l(z)/ [sﬂnl)(z)] ,§=2,...,0—1,and turn out
to have numerator of degree (20 — 3)(n — 1) + 1 and denominator of degree one less
(they are Newton-Raphson-like in form). In our terminology Schroder’s #l°1(2) is
one of the infinitely many iterations

P(20-3)(n-1)+1,(20-3)(n-1) € P2(20-3)(n-1)+2>
and we see that ¢{°] actually depends upon an implicit arbitrary choice of
220 —3)n — 1) + 2 — on or (0 — 2)(3n — 4) coefficients. For 0 = 2, ol21 =

¢n,n—l *
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Householder [11, p. 103] describes another general class of iterations due to
Konig, which are also designed to converge with order o to the zeros of polynomial
f,,- Konig’s iteration takes the form

WI9(2) = 2 + (0 = DL ™7 @1 7D,

is also Newton-Raphson-like, and has numerator of degree (0 — 1)}(n — 1) + 1.
tp[”](z) is one of the infinitely many iterations

Do-1)(n-1)+1,(0-1)(n—1) € P2(o=1)(n-1)+2
and depends upon an implicit arbitrary choice of (0 — 2)(n — 2) coefficients.

Application to f,(z) = z* — 4z% — 5. This polynomial, suggested by Brooker’s
example [6], shares the property that the Newton-Raphson iteration applied to it
gives rise to an attractive cycle. It has zeros i\/g and %, and the Newton sums may
be read off from the coefficients :

Syt=-5 Sp*=0, 53*=-4, sp*=0.

With these values as our only input data, and making use of Theorem 3 and the Algo-
rithm and results developed in the Appendix, we generate all the rational iterating
functions Pp.q which converge wi_th ord_er o = 2 to the zeros of f, and which belong
to the minimum class ®4(2; +/5, =\/5, +i, —i). Table 1 displays the results : ob-
serve that while ¢, 5, for example, gives rise to the attractive cycle (+ \/5/_7, —\/ﬁ),

the iterations ¢, 5, ¢¢ 1, ¢; ¢, and ¢, o converge to some root of f, from each crit-
ical point.

TABLE 1

Iterating functions for f,(z) = 2% — 422 - 5 which belong to
minimum class ®¢(2; +/5, /5, +i, i)

m p q iterating function ¢p,q g:'ii(tiii%gi:%]zints fle};gﬁ%tsﬁ%rmc)(’:g:s
4 4 3 (3% -422 +5)/(42° - 82) £/2/3. +/517, =V/517)

5 3 4 (8% +202)/(z* + 422 + 15) ++/15/2i (70, =\/Ti)

5 5 2 (2% -122% - 252)/(-82% - 20) +(5/\/6)i o

6 2 5 (92z% - 40)/(3z25 - 2023 + 109z) +/218/207i +i

6 6 1 (z5-62%-3322 + 10)/(-362) +/2/5i +i

7 1 6 —180z/(2z% - 212* + 4222 - 115) ++/23/10 +/5

7 7 0 (227 -212% + 4223 + 2457)/180 /12 /5

8 0 7 —-900/(23z7 - 174z° + 33z° + 1130z) ++/226/161 (+0.9285, —0.9285)

*The roots i\/§, *1i are critical points of each ¢;,'q. Thus, in each case, two other critical points remain
to be specified, and these may possibly belong to the immediate domain of convergence of an attractive
sycle, if such exist, or of a root. Note that “convergence” to o is possible.
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Table 2 displays 5 of the 12 iterating functions in ®,,(3;+ \/-5_, —\/E , +i, —i); that
is, the minimal class of rational iterating functions which converge with order o = 3
to the zeros of f,.

TABLE 2

Iterating functions for f,(z) which belong to ®,,(3; +/5, =/5, +i, —i)

m p q iterating function bp.q

6 6 5  (492°% —12z% + 67522 — 200)/(87z5 — 20423 + 6452)

7 5 6 (12925 + 204z3 + 4352)/(82° + 135z% + 1222 + 245)

7 7 4 (827 —231z% — 25223 — 8052)/(—273z* + 842z% — 435)

8 4 7 (1443z% — 822022 + 3225)/(49z7 — 5762° + 336323 — 8900z)
8 8 3  (29z% —280z% — 1050z* + 4760z% — 2275)/(—201623 + 5760z)

The determination of the coefficients (a;, 8;) for this example involved the solution
of the simultaneous equations (20) in accordance with Theorem 3. This solution was
facilitated by the fact that these equations are sparse in the (o;, 8;); and an estimate
of the maximum density of the matrix representing the equations may, therefore, be
of general interest. (20) represents on equations in p + q + 2 variables. The left-
hand side of (20) specifies at most 2on nonzero coefficients (ai, B;), hence represents
at most that many matrix positions. The right-hand side specifies at most

2 <s<o (m—5s+1—n+ 1) nonzero coefficients. Maximum nonzero entries in the
coefficient matrix are, therefore,

20n +Y_(m—s—n+2)=(0/2)2n +2m -0 + 3),

out of a total on(p + q + 2) positions. The maximum ratio of nonzero positions in
the matrix representation of the Egs. (20) is, therefore,

Q2n+2m—-0+3)2np+q+2).

If we let m take its maximum value on, and confine ourselves to the “minimal”
case p + g + 1 = n, this ratio becomes after some manipulation

1/n+ (2n— o + 1)/2n(on + 1),

which, since o > 2, is less than 3/2n. The system (20) will thus, in general, be fairly
sparse.

Extension of Results to Multiple Fixpoints. In the preceding development it
has most obviously been the definition of S{;k in terms of an expression with denom-
inator D,, (vanishing whenever z; = z;/, i # i') which has precluded consideration of
multiple fixpoints. In this section it will be found that the vanishing of D,, is not in
itself a fundamental problem, but that other difficulties, similar to those encountered
when applying the Newton-Raphson iteration to a function with multiple zeros, inhibit
full extension of the results to the multiple fixpoint case.
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We begin by considering Eq. (2), which, it has been remarked [12], expresses
the condition on g(z) — zA(z), a polynomial of degree m, that it have n <m roots z;
that is, that

[ > 7}‘>zf] = &(z) - zh(2)
0

<j<m

=0z JI @-z)= [C(z) > (—1)""'Sjl+1’"z'],

1<i<n 0<i<n
where the S,',“’" are as before simply the Newton sums, S:,'“’" =1, and
— .« . m-n-—1 m-n
C2)=c, tc,pz+ + 12 +c,z"", ¢, #0,

is a polynomial with arbitrary coefficients introduced so that the bracketed polyno-
mials should be of equal degree m. We recall, however, that some of the left-hand

coefficients—to be precise, 'nyl ), K =n, ..., m—may also be arbitrarily chosen; and
we realize then that we may either express the 72) in terms of the cx., K =n, .. .,

m, or vice versa, simply by equating the coefficients of like powers of z. We find
then

¥ = (-1)'SE ",

7D = )82 e, + (- 1)SE e,

(A)
7 = 2z ORISR L
0<K<min(n-1,m-n)
,),511) — Z (_ I)KS;:-K+1’ncn+K
0<K<min(n,m-n)
(B)

7211 = S:'1+l’ncm—n-l + (_I)Sz'ncm—n

y ) = st

m m-n-

We may imagine, first of all, solving (B) for the ¢y in terms of the YK =
n, ..., m; this we may clearly accomplish by a process of back substitution. Then,
if we substitute the resulting expressions for the cg into (A), we shall be able to
write down solutions which express the 7](1), i=0,...,n-1,in terms of the 7§<1),
k=n,...,m, and the Newton sums, just as in the preceding sections, but this time
avoiding the use of Vandermonde determinants. We do not need actually to carry
out this complex calculation, however, since we already know, from our previous
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work, the result of it. For distinct z;, we shall certainly find, as before, that

®) N GV A D DI AR R A N T

n<K<m

but with the important difference now that the values SZ*1-X are no longer defined
in terms of Vandermonde determinants, but may now be regarded as defined by the
relation (30), found in the Appendix, which states that for k >n>1and 1 <j<n

SfF= T ik,

0<j'<j~1
with the particular case
nk _ 1\ on,k=j'—1 gn—j',n
Sn - Z ( 1) Sn Sn ’
0<j'<n-1

which allows us, using the Algorithm given in the Appendix, to recursively determine
the Sﬁ"‘ , hence the S{;'k , from the Newton sums and Sz’”‘l = 1. Based on this sec-
ond definition of the S’,','“’K , these calculations may now equally be carried out for
the case of multiple z;; and they will, by the continuity of 7](1)(21, ..., 2,),yield
the same result (8). We state then

THEOREM 1'. Theorem 1 holds also in the case that the n given fixpoints z;
are not necessarily distinct.

Difficulties arise, however, when we try to extend Theorems 2 and 3 to the
case of multiple fixpoints. For suppose z; is a fixpoint of exact multiplicity a > 1.
Then

82) — 2h(z) = 2 ~ 7)1 A),
for some polynomial A(z) such that A(z;) # 0. Since
g(2) —zh'(2) = alz — a;)* " A(z) + (z - z,)°A'(z) + h(z)
and
¢'(2) = [8'@) — ¢ (2)] /n(2),

we conclude that if (z — z;)*! is not a factor of h(z),

9(z) = lim [aGz - )" A@) + (2 - 2)°4'@) + hz) - (8(z) — I @] /h(2)

z-—>zl-
= 1’

so that z; cannot be an attractive, but is rather an indifferent [13], fixpoint of ¢. In
this case, then, Eqgs. (10) and (17) are both internally inconsistent, and we cannot ex-
pect a meaningful solution.

Let us suppose then that (z — z,-)"‘l is a factor of h(z), and that ¢ > 1. Then
h(z) = (z — z;)* "' B(z), for some polynomial B(z), and

$(2) = @ = 2)" ' [2B(2) + ( — 2)A@)] [z - 2" ' B(2),
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which, since our construction process makes no provision for cancellation of identical
factors in numerator and denominator, is of the form 0/0 at z = z;. Furthermore,
¢'(z) is of the same form 0/0 at z = z;, and we conclude that in this case also multiple
fixpoints introduce internal inconsistencies into Eqgs. (10) and (17).

It becomes clear then that for multiple fixpoints we require an improved con-
struction process which will somehow cancel the terms (z — zl.)"‘1 to yield

\p(Z) =z+ (Z - Zi)A(Z)/B(Z) and ll/’(z)lz=zi =1+ A(Zi)/B(Zi),

effectively reducing the problem to the case of distinct fixpoints, and enabling us to
solve (10) and (17) as before.

It is nevertheless interesting to see what happens when the equations (10) or
(17) are applied to a particular example of multiple fixpoints. The results of such an
application are displayed in Table 3. Provided both gp(z) and hq(z) are of degree suf-
ficiently large to contain a factor (z — zi)‘”‘l , it seems that the iterating function
¥, q may be used to solve the given problem, but with a lower order of convergence
at multiple fixpoints z;. The case in which (z — z,-)"’1 does not divide x(z) apparent-
ly does not occur. The repeated result y'(1) = % suggests a possible generalization of
the well-known fact [14, p. 53] that for the Newton-Raphson iteration, at a fixpoint
z; of multiplicity a,

'(z)=1-1/a

This typical reduction of the order of convergence at multiple fixpoints is a problem
not only for iterations of the form treated in this paper—that is, z0*1) = ¢(z(j))—
but also for more general forms of iteration: an analysis of the local convergence
properties of one such iterative form, using some techniques similar to those em-
ployed here and including the case of multiple roots, is presented in [15].

REMARK. The method described here provides a means of constructing and
classifying rational iterating functions of specified order of convergence. It would be
valuable to extend these results so as to be able to construct efficiently an iterating
function for a given problem which in addition possesses desirable convergence char-
acteristics.

Acknowledgement. I should like to thank James L. Howland, University of
Ottawa, for introducing me to this topic and assisting me in the early stages of this

research.
Appendix
Given integers n > 1, j, and k, and distinct (real or complex) values z;, i = 1,
., n, we define quantities SL* = S2%(z,, ..., z,) as follows:

ShE = (~1)"7DE¥/D, for 1 <j<nand k > 0;
=0 otherwise,

where D, =D, (z,, ..., z,) is the Vandermonde determinant of order n,
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A
1z, zy
N
1 z, zy
b
ce.gn—l
1 z, z,

and D} is the determinant obtained by replacing the jth column of D,,, which we
denote (z{:'l), by the new column (z;‘). Then, in particular, D, =1 and S} * =
D}** =z¥. For n > 2, recall that

(21) Dn = 1-[nDn—l’
where I, = I, _;,,_,(z,, — z;), from which it follows that
(22) D,= I ,-z).
1<i<i'<n
Note also that when k <n — 1,
jk _ — .
(23) D;* =D, forj=k+l;

=0 otherwise.

THEOREM 4. Fork>=n = 2,

ik — k=i, J' j=1,k=j'-1j’
Sn , Z Sn—l Zn + , Z Sn-l Zn‘
1<j'<k-n+1 0<j'<k-n+1

Proof. The result is trivially true for j < 1 and forj > n. Forj = n,

B T 4
1 z zy zy
ko
Dp* =
<. =2 K
1 z, z, z,

Subtracting the nth row of this determinant from each of the others, and then
extracting the common factor II,, we find that DK is equal to (—1)"1(- n*in,
times an n — 1 by n — 1 determinant whose Ath column, 1 < h < n — 2, may be rep-

h=j' =1
1<j'<h

resented

and whose (# — 1)th column is

k—j'j'—1
> k)
1<j'<k

Then, subtracting zf,’”“ times the (n — 2)th column from the (n — 1)th column, and
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afterwards successively subtracting z,, times the (2 — 1)th column from the Ath col-
umnh=n-2,...,2,we find

R i k—j'—1
1z, b4 Z z}) 277
0<j'<k-n+1
n,k _
Dp* =11,
e n=2 i k=j'—1
1 Zn-1 Zp—1 , Z ZnZn-1
0<j'<k-n+1
=N, ¥ Dk
, - n>
0<j'<k-n+1

from which, in view of (21) and the definition of S{;'k, the result follows immediately.
Similar manipulations establish the theorem in the case 1 <j <n.
We note some special cases of Theorem 4. Forj =1,

4) sik= X sk
1<j<k-n+1

and for j = n,

K g
(25) sph= > snoLk =150
0<j'<k-n+1
For k = n,
(26) Sin = gincly 4 gimln—t
whence
1L,n _ ¢l,n—1
(27) Sn "= Sn—nl Zns
28) spr =gnzinl 4 g |
and the following theorem may easily be proved by induction.
THEOREM 5. For 1 <j < n the quantities S"”(zl, ..., Zz,) are the Newton
sums for a polynomial of degree n with distinct zeros z;,i = 1, . . . , n; that is, S{;”

is the sum of all distinct products of the z; taken n —j + 1 at a time.*

Theorem 5 establishes then the important fact that given any polynomial f, (z)
of degree n, we may determine corresponding quantities Sf;'" computed only from the
coefficients of f,. We go on now to show that in fact every S{;k may be computed
from the S{;", hence also from the coefficients of f,,.

THEOREM 6. Fork>=2n=>=>1land 1 <j<n,

j, k j—1,k=1 _ on,k—1gj,n
Shk 4 gi-Uk=1 = gnk=1gin
*Using Theorem 4, it may also be shown more generally that for 1 <j<nand k >

is the sum of all distinct products z ll; .., where max(a’, b’, )=k-n+1 and a +
+...=k-j+1.
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Proof. Using the definition of S{;" , we may easily verify this result for n = 1.
Suppose we know that

i1,k —2 k-1 _ -1 k-1 gj—1,n—
(29) Shve + 8] SpF syt
foral k2n—-12>21and 1 <j<n. Then
i,k j—1,k—1 _ jk=i' j -1 k— '—1
Sn + Sn - ,Z Sn-l 2 + Z SI ! ]
1<j'<k-n+1 0<j'<k-n+1

j=1,k='=1,j' j~2 k—~j'=2,,j’
+ ,Z Sn-l Zn + ,Z Sn-l Zn
1<j <k-n 0<j <k-n

= Z {Sl,k-l +S’— Jg—j'—1 }z’
1<j'<k-n+1

=1 k='=1 4 gi=2.k=j'~21,]'
+ ,Z {Sn—l + Sn—l }Zn
0<j <k-n
_ Q/~1,n=2 _k-n+1 j—1,n—=2 _k-n+1
Sil-l Zn + Sn-l’ Zn

= ¥ s
1<j<k-n+1

n—1,k—j'-2 gj—1,n—1_j'
+ Z S TSI
0<j'<k—-n

by the inductive hypothesis, if j # n; then by (25) and (26),

S{;,k + S:;—-l,k—-l - Z Sn—l k= —221 {Z S],n—l + S]— ,n—l}
0<j'<k—-n
_ of.ngn,k=1
= shngmkt,
Ifj=n,

Sn,k +Sn—1,k—1 — Z Sn l,k-] '—1 ] Z Sn— Jk—j'=2 ]

n n
1<j'<k-n+1 0<j'<k—n

T s, 4 sty = sy,
0<j'<k-n
by application of (25) and (28). This completes the proof.
An immediate consequence of Theorem 6 is
THEOREM 7. Fork>2n=2land 1 <j<n

(30) Sk = 3 (1) spRa g
0<j'<j-1
Theorem 7 shows that the determination of the S{;k may be reduced to the
determination of the Newton sums S,ll’”, e, S{;" together with the quantities
Sﬁ’k—l e Sﬁ'”"'l. But these latter quantities also may be calculated from the
Newton sums, since by rewriting (30) for the special case j = n,
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Spk= ¥ cspktisple,
0<j'<n-1

we see that we may successively set k =n + 1, n + 2, . . ., and recursively deter-
mine all the S%¥ in terms of the Newton sums and S:,""‘l = 1. This is done by the
following

Algorithm. Given Newton sums Si", . .., S" stored in SN(1), . . . , SN(n),
respectively, to calculate the values S:’,'"—l = 1.0, Sp'" = SN(n), Sﬁ'”“, ..
S§™"+K and store them in SK(1), . . ., SK(K + 2).
. SK(1) < 1.0, SK(2) < SN(n), k «— n + 1.
. j'«<—0,SIGN «— 1.0,a <k —n + 2, SK(a) < 0.0.
. SK(a) <— SK(a) + SIGN*SN(n — j')*SK(a —j' — 1).
Ifk—j #nandj #n—1,SIGN <— —SIGN, j' <—j' + 1, go to 3.
Ifk#K k<—k+1,goto2.
Exit.
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