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Minimum Norm Symmetric Quasi-Newton Updates
Restricted to Subspaces

By Robert B. Schnabel*

Abstract. The Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-Shanno up-
dates have been the two most successful quasi-Newton updates for a variety of ap-
plications. One reason offered in explanation is that they constitute, in an appro-
priate norm and metric, the minimum norm change to the matrix, or its inverse,
being approximated which preserves symmetry and obeys the quasi-Newton equa-
tion. Recent methods have reason to consider updates restricted to certain sub-
spaces. In this paper we derive the general minimum norm symmetric quasi-Newton
updates restricted to such subspaces. In the same appropriate norm and metric, the
minimum norm change update to the matrix or its inverse is shown to be, respectively,
the rank-two update which is a particular projection of the DFP or BFGS onto this
subspace.

1. Introduction. Quasi-Newton updates, first proposed by Davidon (1959), are
used in iterative algorithms to approximate matrices which are either impossible or
very costly to compute. At the kth iteration, a matrix B which approximates M(k) is
calculated from a matrix B which approximates M(k — 1) by updating B to reflect
some additional information about M(k).

When the matrices M(k) are symmetric—as is the case, for example, when they
are matrices of second partial derivatives in optimization algorithms—the two most
popular updates have involved adding a symmetric matrix of rank two to B to form
B. These two updates, the Davidon-Fletcher-Powell (DFP) (Davidon (1959), Fletcher
and Powell (1963)) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Broyden
(1970), Fletcher (1970), Goldfarb (1970), Shanno (1970)), are the choices ¢ = 0, 1,
respectively, in the formula
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where B, B are matrices € L(R™), 5, y vectors € R", and (v, w) denotes the scalar
product vTw.

For any choice of the scalar ¢ in (1.1), Bs = y. This equation is called the
quasi-Newton equation, and is the way in which new information is supplied to B.
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In the most common application, minimization of a function f: R” — R, B and B
represent approximations to the Hessian V2f at points x and x; s = x — x, and y =
V) = VA).

One explanation offered for the success of the DFP and BFGS updates is that,
among all possible updates, the DFP is the minimum norm change to the matrix B,
in a very reasonable norm, consistent with preserving symmetry and obeying the
quasi-Newton equation, while the BFGS is the analogous minimum norm change from
B™! to B™! (Dennis and Moré (1977)). This is considered advantageous because,
aside from Bs = y, we have no new information about B; so that consistent with Bs
= y and B symmetric we would like to change B as little as possible, to preserve in-
formation already in it.

Recently, Davidon (1975) introduced an optimization algorithm which also re-
quires that at each iteration (B — B) be orthogonal to some m dimensional subspace
Z,0<m <n. (m and Z can change at each iteration.) By his choices of this sub-
space, Davidon’s algorithm is able to find the minimum of a quadratic function in a
finite number of steps. His updates are chosen from the class

N = Bs)eT + ey - Bs)T <y - Bs, s¥cT

(e, 5) (c, s)?

_s vy — Bs ¢ y—Bs ¢ |7
(y—Bs,s) f{c,s)| [Ky—Bs,s) {c &
where (v — Bs) and ¢ are orthogonal to Z. Equation (1.2) still preserves symmetry
and obeys the quasi-Newton equation.

Therefore, the question “which update B minimizes the norm of (B — B), subject
to B, B symmetric, Bs = y, and (B — B) orthogonal to a subspace Z?” is of interest—

B=B
(1.2)

for if past experience is a guide, it may indicate good updates to use. In this paper
we answer this question for the same general class of norms considered by Dennis and
Moré (1977). When we use the same specific norms for which they showed the DFP
and BFGS optimal, we now find that the solutions are the “restricted DFP”’ and
“restricted BFGS” updates: formula (1.1) with ¢ = 0 and 1 but where y and Bs are
replaced by the projections of these quantities onto the restricted updating subspace
in the metric B~!. Davidon’s (1975) algorithm uses a one-parameter class of updates
which contains both of these updates.

In Section 2 we introduce some background material on norms and on projec-
tion matrices. Projection matrices are used in this paper as an algebraic tool, and to
aid our geometric understanding of the results. In Section 3 we first repeat the re-
sults of Dennis and Mor€ (1977). We then show when our restricted update is
feasible; what the general minimum norm update is in this case; and that the mini-
mum norm restricted update in our two appropriate norms are the restricted DFP
and restricted BFGS. In Section 4 we summarize our results, and comment upon how
they should influence the choice of update in existing algorithms, including the use
of optimal conditioning.
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2. Mathematical Background. In this section we introduce the weighted Fro-
benius norm and the projection matrices which we use in Section 3.

Definition 2.1. Let A be a matrix € L(R"). The Frobenius norm of 4, denoted
IAlg,, is defined as the [, norm of the elements of 4,

n n 1/2
||A||F,=(Z )3 a,?,.> .
Equivalently, |4l can be computed by
n k2
14N, =< 3 lay, ||§> = (trace A74)",
i=1

where {v;, Uy, . . ., v, } is any orthonormal set of vectors.
The weighted Frobenius norm of 4, 1415, . 1s defined by

1Al g, oy = IMAMI

where M is a symmetric nonsingular matrix € L(R").

Definition 2.2. Let Z be an m dimensional subspace of R", 1 <m <n;M a
symmetric positive definite matrix € L(R"). Let Z Lo = (wh™z =0vz € Z}.
Then a projection matrix projecting orthogonal to Z in the metric M (or equivalently,
onto Z (M) in metric M) is a matrix P € L(R") such that:

PP=p, P;=0 forallz€Z; Pv=v forallveZ'M).

LEMMA 2.3. Let Z, M, Z*(M) be defined as in Definition 2.2. Let z,, . . .,
2,, be a basis for Z such that (z;, sz) =0,1<i<j<mvy,...,V,_,, abasis
for ZX(M) such that (v, My =0,1<i<j < n —m. Then the unique projection
matrix projecting orthogonal to Z in metric M is

- f: 2z M nom M
i=1z;, Mz; > i=1 (v, Mvp)
and MP = P™M.
Proof. Well-known, and straightforward from Definition 2.2.

3. Minimum Norm Symmetric Quasi-Newton Updates. We start this section
by stating Dennis and Moré’s (1977) theorem giving the B which minimizes
IB = Blig, p subject to B, B symmetric and Bs = y; their techniques of proof are
used in the proof of Theorem 3.4. This theorem was first proven in somewhat less
generality by Greenstadt (1970) and Goldfarb (1970). The Dennis-Moré€ result shows
that I1B — Bl 5-1/2 and 1B~ =B, 51/2 are minimized by the DFP and
BFGS updates, respectlvely, where (throughout this section) B is the updated matrix
we actually choose, and we comment on why these are relevant norms. We then con-
sider updates which in addition require (B — B) orthogonal to a subspace Z. Lemma
3.3 states the condition on Z such that this restriction on B is consistent with B, B
symmetric and Bs = y; Theorem 3.4 then gives the B which minimizes B — Blly, ,,
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subject to these restrictions. Corollary 3.5 and Theorem 3.6 show that when the up-
date B is so restricted, that |B — Bl r,5-1/2 and 1B~ =Bt Fr,B1/2 2T€ mini-
mized by the restricted DFP and the restricted BFGS, respectively.

THEOREM 3.1 (DENNIS AND MoRE (1977)). Let s, y be nonzero vectors € R";
B, M symmetric matrices € L(R™), M nonsingular. Then the unique solution to

3.1 min { | B = Bl g, 1| B symmetric, Bs = y }
is

) _ T 4 oy — Bs)T _ T
G2) hep+ (y — Bs)v u(y — Bs) 3 {y — Bsh =M%
(v, &) (v, 5)?

Proof. A slightly simpler version of the proof of Theorem 3.4.

COROLLARY 3.2 (DENNIS AND MORE (1977)). Let s, ¥, B be defined as in
Theorem 3.1. If B is positive definite and s, y) > 0, then the DFP update, (3.2)
with v = Bs = y, is positive definite and is the unique solution to (3.1) with M =
B2 or with M = B:l 2 for any other matrix B, satisfying the update conditions.

If we are dealing with minimization problems where B approximates V2f(x),
then (especially as x approaches the solution x*) the natural scaling of the variables is
by V2f(x*)!/? (assuming V2f(x*) positive definite). This scaling, which makes the
contour lines at the solution circular, corresponds to using norms weighted by
V2f(*)"1/2. Therefore, we would really like to solve (3.1) with M = v2f(x*)~1/2.
Since our next Hessian approximation Bis likely to be our best approximation to
V2f(x*) thus far, we are especially interested in the solution to (3.1) with M = B2,
This is why Corollary 3.2 is important, and gives support to the use of the DFP up-
date.

The condition in Corollary 3.2 that B be positive definite and (s, y) be > 0 is
realistic, as most algorithms require this. The use of the Frobenius norm is natural
because it is the obvious measure of the size of the change in a matrix, the I, norm of
the changes in its elements.

The analogous theorem to Theorem 3.1 can be proven about updates to B~1.

In particular, Dennis and Moré show that the unique solution to

(33) min{lIB™! - B! Fr.51/2 1B, B symmetric and positive definite, Bs = y }

is the BFGS update. Since the “natural” scaling for inverse Hessian approximations
is by v2f(x*)'/2 on each side, we similarly feel that the above norm is a very desirable
one. Because our algorithms actually only use B! and B, the solution to (3.3)
may be of primary interest to us, and specially support use of the BFGS.

Now we wish to consider updates which also require (B — B) orthogonal to some
m dimensional subspace Z. We first show for which subspaces Z this restriction is con-
sistent with B, B symmetric and Bs = y. We are only interested in cases where Bs #
y, for if Bs = y we will set B = B.

LEMMA 3.3. Let B be a symmetric matrix € L(R™); s, y nonzero vectors € R",
y # Bs; Z an m dimensional subspace of R", m < n. Define Z* = {v|(v, z) = 0Vz
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€ Z}. Then the set S = {B|B symmetric, Bs = y, (B — B)z = 0 Vz € Z} is nonempty
if and only if s € Z and (y — Bs) € Z*.

Proof. First assume S is nonempty. Then for any BE Sand z € Z, (B — B)z =
0. Since (B—B)s =y — Bs # 0, s ¢ Z. Furthermore, since s7(B — B)z = 0 for all
z € Z and (B — B) is symmetric, (y — Bs)Tz = 0 for all z € Z. Thus, (v — Bs) € Z*.

Now assume s & Z and (y — Bs) € Z'. If (y — Bs, s) # 0, then the symmetric
rank-one update B =B + (v — Bs)(y¥ — Bs)T/(y — Bs, s)isin S. If ¢y — Bs, s) = 0,
then since s ¢ Z, there exists v € Z' such that (v, s) # 0. Then B = B +
(7 — BswT + vy — Bs)T)/v, s) is in S.

By expanding the techniques used by Dennis and Moré (1977) to prove Theorem
3.1 we now find the minimum norm restricted quasi-Newton update in a general
weighted Frobenius norm.

THEOREM 34. Let B, M be symmetric matrices € L(R™), M nonsingular; s, y
nonzero vectors €R", y # Bs. Let Z be an m dimensional subspace of R", m < n,
such that s €Z and (y — Bs) € Z* (Z* defined as in Lemma 3.3). Then the unique
solution to

3.4 min{ 1B - Bl |B symmetric, Bs =y, (B—B)z =0 Vz € Z}
Fr,.M
is

(3.52) Gopy OB - BT <y B T
(v, 5) (v, s7?

b

where v is the projection of M™2s orthogonal to M™2Z in M? metric,

m (M2 z.)
v=M32s-3 (—;[—_2—-'—> 2z,
(3.5b) =
{zy,...,2,} abasis for Z such that (z;, M_zz]-) =0,1<i<j<s<m

Proof. Let S = {BIB symmetric, Bs = y, (B~ B)z = 0 Vz € Z}. From (3.5a),
B is symmetric and Bs = y. From (3.5b), v, z) = 0 for any z € Z. Since also (y —
Bs, z) =0 forallz € Z,(B — B)z = 0 for all z € Z. Therefore, B is in S.

Now consider any B in S. Define £ = M(B — B\M, E = M(B — B)M. Since y —
Bs = (B — B)s and (B — B) is symmetric, subtracting B from both sides of (3.5a) and
pre- and post-multiplying by M gives

G6) fe EM L s)(Mo)T + Moy s)TE M ~ls, EM™s)(Mv)(Mv)T
(Mv, M 1s) (Mv, M~ 1s)? '
Define § = v —M 25,8 = — zr, M2, zi>/(M"2z,~, z,.>)M"22i. Since § €
M™2Z, (B - B)M*§ = 0. Therefore, E - Mu = M(B — B)M?v = M(B — B)s =
M(y — Bs). Similarly, E - Mv = M(y — Bs). Thus E - Mv = E - M.
Now consider any w € R” such that (w, Mv) = 0. Then (3.6) gives

(.7 By = MO Ew
( My, M~ 1s)
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Again (M~ '5)TE = (Mv)”E; and (Mv, M~ 15) = (Mv, Mv + M8) = (M, Mv) as v € Z*,
M?§ € Z. Therefore, from (3. 7,

B = (Mv)(Mv)TEr W

{(Mv, Mv)
" Mo)Mv)T _ —
1wl < |[S20) 4y e = 1 Ew,.
(MU, Mv) 2
Thus, since ||]2"bi I, < I Eb;ll, for any orthonormal set of vectors {b;} =
(||Mv/Mv|l2, Wiseo., Wy_q), by the definition of Frobenius norm IEl;, < IEN,.

B is the unique solutlon to (3.4) because f: L(R") — R, f(B) = IB—-B Wge s is
strictly convex over all Bin S.
COROLLARY 3.5. Let s, y, B, Z be defined as in Theorem 3.4; in addition let
B be positive definite. Let P be the projection matrix projecting orthogonal to BZ in
the B™' metric. Then if (s, Py) > 0, the restricted DPF update,
(.8) 5opy O BYT + G -B)T (5 - B, 3))7)?T’
(7, § (3, %

y= Py s = PTs, is positive definite and is the unique solution to problem (3.4) with
M=pB1? , or with M = B 172 for any other matrix B, satisfying the update con-
ditions.

Proof. If Bis positive definite, Theorem 3.4 shows that the unique solution to
problem (3.4) with M = B~1/2 js

o — BspT + vy — Bs)T {y — Bs, siwT

3.9 B*=B + _

(3.92) (v, §) (v, s)*
m (Bs, z; )Bz

3.9b

(3.9%) i; (Bz;, z;)’

where {z;} is a basis for Z such that zTBz =0,1<i<j<m. Since Bs = ¥y, and
Bzi Bz; for all z; € Z, (3.9b) is equlvalent to

m (y, z;)

v=y-— Bz.
121(BZI,Z,> !

= the projection of y orthogonal to BZ in the B~! metric.

Therefore, v = Py = j.

By Lemma 2.3, PB = BPT’; and since y — Bs is orthogonal to BZ in the B™1
metric, y = Bs = P(y = Bs), = Py — BPTs = j — Bs. Also, (v, 5) = (§, 5) = (Py, 5) =
(P%y, s) = (Py, PTs) = (¥, §); similarly, (y — Bs, s) = (y — Bs, 5). Therefore, (3.9a, b)
is equivalent to (3.8).

Finally, from (Fletcher (1970)), B is positive definite if and only if (§, ) =
(s, Py)> 0. If (s, Py) < 0, then there are no positive definite B feasible to (34)
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with B positive definite (Schnabel (1977)). The proof with M2 equal to any other
B, satisfying the update conditions is identical.

So we see that in the same norm for which the DFP is the minimum norm sym-
metric update obeying the quasi-Newton equation, the restricted DFP—the projection
of the DFP update onto the restricted feasible set of updates—is the minimum norm
restricted update. This gives us confidence in the use of the restricted DFP.

Again, a theorem analogous to Theorem 3.4 can be derived, giving the minimum
norm restricted update of B~! to B~!. For many algorithms this is really the relevant
problem, as we are only concerned with approximating the inverse of the Hessian
matrix. The theorem shows that the restricted BFGS update is the optimal restricted
change to the inverse in the same norm for which the regular BFGS is the optimal
unrestricted update.

THEOREM 3.6. Let B, M be symmetric nonsingular matrices € L(R™); s, y non-
zero vectors R", y # Bs. Let Z be an m dimensional subspace of R", m < n, such
that s € Z and (y — Bs) € Z . Then the unique solution to

min {IB™" = B~' ¢, /| B symmetric, Bs = y, (B— B)z = 0 Vz € Z}
is
g4 6 =B ywT + w(s - B'ly)T_ (s =B 1y, ywwT
{w, y) (w, y)?

where w is the projection of M~ 2y orthogonal to M~2(BZ) in the M? metric.
If, in addition, B is positive definite, and P is the projection matrix projecting
orthogonal to BZ in the B~! metric, then if (s, Py) > 0, the restricted BEGS update,

E—-B~YYRT +56- B~ )T -B7p, pusT

B l'=p"1+ — —
(s, ) (5, p»?

» =Py, § = PTs, is positive definite and is the unique solution to (3.10) with M =
B2 or with M = B}r/ 2 for any other matrix B 4+ satisfying the update conditions.

The proof of Theorem 3.6 is analogous to that of Theorem 3.4 and Corollary
3.5, given the observation that the condition “(B — B)z = 0 for all z € Z” is equiva-
lent to “(B~! — B™)u = 0 for all u € BZ”.

The restrictions on the update in Corollary 3.5 and its analog in Theorem 3.6—
that B be symmetric and positive definite, obey Bs = y, and have (B — B)z = 0 for all
z in some subspace Z—correspond to Davidon’s conditions upon his algorithm when it
is applied to a quadratic function. In this case, Z contains past values of s, and grows
by one dimension at each iteration. Davidon selects his update from that family of
updates with one free parameter which includes the restricted DFP and BFGS—so he
has selected the one-parameter family containing our two “least change” updates.

For nonquadratic problems, Davidon’s algorithm restricts B — B at each iteration
to a two dimensional subspace spanned by y — Bs and some other vector ¢ (which
changes at each iteration). This is equivalent to defining Z in the above theorems as
the (n—2) dimensional subspace orthogonal to y — Bs and ¢. Theorems 3.4—3.6 apply
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perfectly well to this case. However, this value of Z, in the nonquadratic case, is not
necessarily the one which Davidon’s own motivation would seem to recommend. We
comment upon this briefly in Section 4.

4. Summary and Conclusions. We have considered quasi-Newton algorithms
which at each iteration update a symmetric matrix approximation B to a new sym-
metric approximation B, subject also to the quasi-Newton equation Bs = y, and the
restriction that B — B be orthogonal to some m dimensional subspace Z. Dennis and
Moré (1977) have shown which B minimizes |B — Bl Fru Subject only to B sym-
metric and Bs = y. The additional restriction involving Z comes originally from
Davidon’s (1975) algorithm, which showed how the choice of Z could produce algo-
rithms with attractive additional properties. So in this paper we have shown which
B minimizes 1B — Bllg, 5, (or 1B™" = Bl /) subject also to this restriction—
after first showing for which Z the restriction is consistent with the other conditions
upon B. We find that in the same norms for which the popular DFP and BFGS up-
dates minimize IB — Bll and IB~1 — B! Il, respectively, subject to symmetry and the
quasi-Newton equation, that the restricted DFP and restricted BFGS updates—the
projections of the DFP and BFGS onto the restricted updating space—minimize the
same norms among all updates obeying in addition the condition involving Z.

Our results, and our way of viewing Davidon’s work, generally support his choice
of update, but they do suggest two possible changes to his algorithm; one in the selec-
tion of Z, the second in the selection of the restricted update. In the quadratic case,
Davidon shows that he in effect selects Z to contain all past values of s. This is desir-
able, as it means that past quasi-Newton equations remain valid; and it leads to n + 1
step termination. In the nonquadratic case values of s from previous iterations (call
them z) may not be orthogonal to y — Bs (as Z must be by Lemma 3.3), but Davidon’s
reasoning suggests letting Z contain the components z of several past z’s, which are
orthogonal to y — Bs. Davidon, partly for algebraic convenience, instead implicitly
chooses an (n — 2) dimensional Z which is only guaranteed to contain the last Z. Since
this paper shows how to choose minimum norm updates for more general Z without
too much algebraic trouble, we therefore plan to modify Davidon’s algorithm to use
what seems to us a more natural restricting space Z.

Secondly, once Davidon has chosen his restricting space Z, he does not neces-
sarily use the restricted DFP or BFGS updates (call them B, and B,), but rather a
positive definite combination ¢B, + (1 — ¢)B, chosen to minimize a bound on the
growth in the condition number of B. Mei (1977) however suggested that the restrict-
ed BFGS may be a better choice, and tests of Mei (1977) and Schnabel (1977) have
borne this out. Theoretical work of Schnabel (1976) also supports choosing the
restricted BFGS mostly, and otherwise a convex combination of the restricted DFP
and BFGS, ¢ € [0, 1]. The results of this paper, which show the restricted BFGS
and DFP to have attractive minimum norm change properties, support the suggestions
of Mei and Schnabel.
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