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Linear Chebyshev Approximation
of Complex-Valued Functions

By I Barrodale, L. M. Delves and J. C. Mason

Abstract. This paper is concerned with Chebyshev approximation by linear functions
to complex-valued data. The problem is nonlinear, and we present a convergent
algorithm for its solution. We also pose a related linear problem which is simple to
solve, and which produces approximations which are near-best in the Chebyshev sense

within a factor of \/5 Some numerical examples are provided.

1. Introduction. The discrete best linear Chebyshev approximation problem for
complex-valued functions can be stated as follows: Let Z = {z, z,,...,z,} bea
given discrete subset of the complex plane,* f(z) and ¢,(z), ¢,(2), . . . , 9,(z) be
given complex-valued functions defined on Z, and for any set of n (< m) complex
parameters A = {a,, a,,...,a,} let L(4, z) = E]'.’Zlajrbi(z). Then the problem is to
determine a best set of parameters, A, say, satisfying

1) lr(d..,2)ll.. <lr, 2)ll, forall 4,

where 7(4, z) = f(z) — L(A4, z), and, for any complex-valued function g(z) defined on
Z, the Chebyshev norm |Ig ., is given by

) llg@) Il = max lg(2)!.

This problem has been considered by many authors (for example, see [2], [7],
[8],and [11]): a best approximation L(4 ., z) always exists, but it may not be
unique. Most recently Ellacott and Williams [3] have applied Lawson’s algorithm
[6] to the problem; and although its ultimate convergence rate is very slow, they state
that they are unaware of an algorithm which is faster. In this paper we present a
globally convergent algorithm which (a) is easy to implement, and (b) often exhibits a
rapid rate of convergence. Moreover, we direct attention to a simpler related problem
which can be solved far more efficiently using existing numerical software, and which
provides an approximation that is near-best in norm within a factor of V2.

We note that problem (1) can be restated as the mathematical programming
problem

3) ;n;‘% w | lri, 2., <wl
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*More generally, Z is a discrete subset of any domain on which complex-valued functions
can be defined.
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Denoting the real and imaginary parts of r(4, z,) by R(4, z,) and I(4, z,), respectively,
and squaring the norm in (3), it follows that an 4, can be determined by solving the
(nonlinear) convex programming problem ([2], [8], [11])
4) gu: {w | [RA, z,,)]2 + [1(4, z,)]2 <w, fort=1,2,...,m}
Letting W_, and w,, denote the optimal values of w and w in (3) and (4), respectively,
it is clear that w,, = v/w,,.

We describe in Section 3 an algorithm with guaranteed convergence which
solves problem (4) iteratively via an obvious linearization. However, it is apparent
that the nonlinearity in (4) is due to the choice of norm (2). In the next section we
propose the use of a different norm which (a) leads to a single linear programming
problem in place of (4), and (b) yields a near-solution to (4). In addition, this alterna-
tive norm is perhaps more natural than (2), since in complex approximation the
Chebyshev norm is a combination of the real /,, and /, norms.

2. A Simpler Related Problem. Let v be any vector with complex components
v, =x, + iy, fort =1,2,...,m;then |lvll, = max,|v,| = maxt\/xt2 +yt2. If we
now define a norm || ||, as

5) Toll, = max {max(lx,l, ly;D},
then it is clear that

(6) loll, < llvll,, < V2 Jvll,.
Furthermore, if A, is a best (in the sense of (5)) set of parameters satisfying

M Ir,, 2)ll, < lr@, 2, foral 4,

we have the following result.
THEOREM 1. [Ir(4., 2)lle < Ir(d,, 2)lle <V2 Irdo, 2) ...
Proof.

Irde, 2, <Ir(4,, 2l from (1)
\/2_||7(A*, I,  from (6)
<V2lr4,, I, from (7)
<V2lrd., 2, from (6).

An A, satisfying (7) can be determined by solving the linear programming problem

<
<

®) Amig w IR, z)l <w, (4, z)l <w, fort =1,2,...,m}.

(The existence theorem of linear programming guarantees that an A, exists, but it

may not be unique.) Also, the optimal value of w obtained by solving (8) is equal to

[lr(4 w 2 and this quéntity could be used to bound ||Ir(4.,, z)ll. as follows.
THEOREM 2. |Ir(4,, 2)l, < lr(d., 2)l. < V2 lr(4,, 2)I,.
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Proof.
Ir4,, 2l <lrd., 2, from (7)
< 1r(d o, 2o from (6)
< Ilr(A*, 2o from (1)

<V2lr4,, 2)ll,  from (6).

Problem (8) can be solved very efficiently using any algorithm which determines
the (real) I, solution to an overdetermined system of M linear equations in N un-
knowns: in this case M = 2m and N = 2n (unless the parameters a; are required to
be real, in which case N = n). In Section 5 we explain in more detail how to solve
(8) in this manner, by means of a numerical example.

In view of Theorem 1, we feel that in most practical applications it is sufficient
to solve problem (8) rather than the nonlinear problem (4). Indeed, it seems likely
that in many applications the approximation problem will be as naturally, or more
naturally, posed in the norm (5) as in the norm (2). However, for users who insist on
solving problem (4) we present a suitable algorithm in the next section: it requires an
initial estimate 4(°) of 4., and we normally set 4(®) equal to the set 4, obtained by
solving problem (8).

3. The Chebyshev Approximation Problem. One advantage of restating problem
(1) as problem (4) is that there are several algorithms described in the literature for
solving convex programming problems ([5], [9], [10], [11]). However, we describe
in this section an alternativé method which takes advantage of the special structure of
problem (4). It is a simple algorithm with guaranteed convergence, and in practice it
often converges rapidly.

Briefly, the method consists of replacing each quadratic constraint by its linear
Taylor approximation, solving the resulting linear programming problem, and repeating
this procedure until convergence occurs. The details are as follows.

Putting
©) a; =b; +ic;,
(10) fz) = d(z,) + ie(z,) = d, + ie,,
and
(11) $/(z,) = hz,) + ikj(zt) =h;, +ik;,,

it follows that

n
(12) R4, z,) =d, - Z (bjhj,t - cjkj,t),
j=1
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and

(13) IA4, z,) = e, - ;'Zil Bk, +chy ).

Now suppose we have a current estimate A(s? = {a(ls), ags), o, aff)} of an 4, and
we wish to change this to 4" = {@{® + o, af + &y, .. ., a§) + a,}, where

(14) @ = B; + iv;.

Then expanding [R(4’, z,)]? and [I(4', z,)]? and ignoring second order terms in a;,
(of course, there are no higher powers of a;), problem (4) yields the subproblem (15):

minimize w, where foreach¢t=1,2,...,m,

s [RA®, z,)]? - 2R(AY, z,) El Bh;, e = 1k, )

n
+ [HAD, 2)]? - 24D, z,) 3~ Bk, , + Vil ) < w.
=1

If A®) is not a good estimate of an A, , the constraints in (15) may be satisfied by
some extremely large values of the variables Bj and v Hence, it is advisable to insert
a lower bound of zero on the left side of each constraint, since this is obviously valid
in problem (4), and to add the bounding constraints (for some large constant K)

IB].I < K and |7il <K, forj=1,2,...,n. With these insertions, and adopting the
more concise notation

(16) uss) =R(A4®, z,),
an v =149, z)),

and

(18) ¥ = [ul12 + ]2,

we arrive at the following LP problem. Choose w (nonnegative) and §;, 7] (unrestricted
in sign, but bounded) to

minimize w

subject to, for £ =1,2,...,m,

n n
(19) Qw +2 3 Biw®h;, +vfk; ) +2 ‘:7i(”$s)hi,t - ufk; ) >y, and

n n
"l Bny,, + vik; ) =2 2 Oy~ Pk ) > = -
I= ]=

Letting [3](.3) and 7}3) denote optimal values of the variables in problem (19), a](-s) is
formed from (14) and we set

(20) AG+1) = {a(lS) + )\(S)a(lS), ags) + )\(S)agS), L ,an) + )‘(S)O‘st)}’
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where A®) is a step length determined as follows. Setting
n 2
8O0 = max | fG) - Y @ +1f)oz,)
1<t<m j=1

and denoting 6)(0) by §), we distinguish two strategies:

(21) Choose A to minimize 8(3)()\), 0 < A< A, for some large constant A.
Choose \®) to be the largest number A, of the form A, = 1/271

(22)
for/=1,2,3,...,such that Q) < 8 and 80\ <8O\, }).

By solving (19) for s = 0, 1, 2, . . . , either A®) = 0 because 4¢) = A _, or we obtain
from (20) a sequence 8(®), (1) §(2) . We show in the next section that with
strategy (21) this sequence converges monotonically to the optimal value w., of problem
(4). In practice, we have instead used strategy (22) without (so far) encountering a
single example of nonconvergence.

Finally, we note that problem (19) can be solved more efficiently in its dual
linear programming form, which is exhibited in the Appendix.

4. Convergence Theory. It is convenient in this section to adopt vector notation.
Let us therefore define

A=1[b;, by, ..., by cp, 05, ,cn]T,
and
a = [B]a 52’ L ’ﬁn’yl’ 72’ AR 7n]Ta
where the elements of these vectors are the real quantities defined in (9) and (14). In
addition, for each t = 1, 2, . . ., m, we define
n 2
FW= 6~ 3 ape)

n 2 n 2
[dt - Z (bihj’t - Cjkj,t)] + [e, - Zl(bjkj,t + cjh,-’t):' ,
j=1 j=

in view of (10)—(13). Note that each F,(A) is a convex function bounded below by
zero, and that all the partial derivatives 0F ,(A)/ab]. and 8Ft(A)/ac]. exist. Thus, putting

VF(A) = [0F(A)/3b,, . . ., BF(A)/db,, OFAA)ac,, . . . , F (A)/ac,],

our algorithm can be stated in vector notation as follows.
Algorithm. Given A®) and §©) = max, <tngt(A(s)), solve the LP problem

(23) min W10 S F(A®) + VF(A®) - a <w, 1 <t<m,and |le|l_ <K}
o, w

Then, letting & and w') denote optimal values of the variables in (23), set
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(24) AGHD) = A 4 )\$)g ()

where A\ is chosen to

minimize max F(A® + aa®).
(25) 0<SASA 1<t<m i )

THEOREM 3. Solving (23)—(25) fors =0, 1,2, ... produces a sequence 5°),
8, 8 which converges monotonically to the optimal value w,, of problem
4).

Proof. LetJ = {t| Ft(A(s)) = 6}, Firstly, we note that for any given value
of w, the constraints in (23) and (25) impose bounds on ||a|l,, and on |A|. Then,
following Zangwill [10, p. 105], since the maps

D:A® — (A®,a®) and M:(A®),a®) —\®

involve minimizing a continuous function over a compact set, this implies that both
M and D are closed. Also, since @ = 0 and w = 6 satisfy the constraints in (23),
it follows that w(®) < §().

Case (i). Assume w(®) = §). Then (23) implies that no « exists for which

VF]'-(A(’)) ca <0 foreveryj€J

Hence, for any « there exists p € J such that the directional derivative

)y .
(26) VE,(A®) - a >0,

and from (26), and the definition of a directional derivative, it follows that
27 F (A9 +a) > F,(A®) = 8 for all A, 0 <A<, (say).
Finally, (27) implies that A is a local minimum of the convex function
(28) F(A)= max F(A),

1<t<m

and so A® is a global minimum of F(A) and §® = w_,.
Case (ii). Assume w(® < §©). Then (23) implies that for every j € J

(29) VF(A9) - a® < 0;
and so, for every j €J
(30) F{AD® + 2@ < F(A®) = 6©) forall \,0 <A < N (say).

Now, if we define a positive number € as
€= ntg,l(,s(b') - F,(A(S))),

since each F,(A) is continuous, it follows that for every ¢ & J

B F(AD +2a®) <FA®) + e <8®  forall A, 0 <\ <2, (say).
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From (30) and (31) we see that

(32) max F(A® +aa®)<s®),
1<t<m

for all A satisfying 0 < A < min(rninje 7N min,g , A,). In particular, we can select

a A®) as prescribed in (25), and from (32) we see that §¢+1) < §). Finally, since
the convex function F(A) defined in (28) is nonnegative and ) = F(A®), it follows
that the sequence 80 s(1) 52 converges monotonically to & (say). But since
the map MD is closed, Zangwill’s Theorem A [10, p. 91] tells us that § = w_ =

min F(A).

5. Numerical Examples. Although (8) is a linear programming problem, a
solution 4, can also be obtained from any algorithm which solves an overdetermined
system of M (real) linear equations in N (real) unknowns, say
(33) Bx =g,

in the I sense. Thus, defining two m x n matrices

(34) H=[1;,]T and K= [k;,]7,
where the elements in (34) are given by (11), and putting

(35) d=1[d,dy, .., d,]7T and e =[e, ey --.,enl7,

where the elements in (35) are given by (10), problem (8) can be solved in the form
(33) by setting

H | K
(36) B=|— ,
K H

and

@37 ]
e

Here, M = 2m and N = 2n, and an [, solution x* to (33) has the form
(38) x* = [b¥, b%,...,b% c} ¢k, ..., c;,"]T.

A solution 4, to (8) is formed from the elements in (38) by using (9). Finally, we
note that if the parameters a; are required to be real, then N = n and B is set equal
to the left half of the partitioned matrix in (36).

In the numerical examples which follow we exhibit various polynomial approxi-
mations to

(39) f2) =1/ - ),

where £ is a complex constant with |£] > 1. For this function it is known [7, p. 33]
that on the disc |z| < 1, the polynomial of degree n — 1 of best approximation in the
Chebyshev sense satisfies

(40) Ir(4,,, 2l = 1§ "/ = DI.
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The approximations below were all computed on 100 points evenly distributed around
the boundary of the disc |z| < 1, and the approximating functions are polynomials of
degree n — 1; thus

41) Z={z,1z, = m=DI50 fort=1,2,...,100},
and
n .
(42) L4, 2) = Zl a1
]=

Problem (33) was solved using the Fortran subroutine in Barrodale and Phillips [1] ;
this algorithm does not require B to satisfy any special hypotheses, such as the Haar
condition. All the calculations were performed in double precision (16 decimal digits)
on an IBM 370 computer.

Example 1. Solve problem (8) for § =2 + i, n = 3, and complex-valued aj’s.
We obtained the following results:

a% = (- 4000623603 (+0), .1999973128(+0)),

a% = (~.1200095730 (+0), 1600037836 (+0)),

a% = (~.2001397696(~ 1), .1099618568 (+0)),
InA,, 2)ll, = 4995538598(~1), and
Ir,, 2)Il_ = .5009811947(-1).

In Examples 2 and 3 we illustrate the algorithm (23)—(25) for solving problem
(4). In each case the initial estimate A©) of 4, is in fact the set A, which results
from solving the corresponding problem (8), and then each iteration produces a new
estimate 4% via the dual of problem (23). See the Appendix for further details. In
practice we have used strategy (22) to determine A®); and we have omitted the
constraint |lall, <K in (23), since for large K its purpose is subsumed by the zero
lower bound on the constraints.

Example 2. Solve problem (4) for £ =2 + i, n = 3,5, and 7, and complex-
valued a].’s and terminate the iterations when

(43) max (61, |7;1) < 1071°.
]

We obtained the following values for [|F(4®, 2)]l..:

iteration # (=5)

n=3

n=>,5

n=717

0 5009811947(—=1)  .1007252663(-=1)  .2021313394(-2)
1 5000006319(—=1)  .1000040228(—-1)  .2000092876(-2)
2 .5000000000(~1)  .1000000001(~1) .2000000001(~2)
3 .5000000000(—=1)  .1000000000(—=1)  .2000000000(-2)
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For each iteration A) = 1, and criterion (43) is satisfied when s = 3.
Example 3. Solve problem (4) for § = 2, n = 3, 5, and 7, and real-valued a].’s,
and terminate the iteration when

(44)

max |6;| < 1071,

]

We obtained the following values for llr(A("), 2l

iteration # (=5)

n=3

n=>5

n=717

0 8360106268(—1)  .2112277615(-1)  .5234157415(-2)
1 8333343077(~=1)  .2083614349(-1)  .5208367354(-2)
2 8333333333(~1)  .2083333344(-1)  .5208333333(-2)
3 8333333333(~1)  .2083333333(-=1)  .5208333333(-2)

For each iteration A®) = 1, and criterion (44) is satisfied when s = 3.

In Examples 2 and 3 the values of [|r(4¢®), 7)., which of course relate to
approximations of the form (42) computed on the discrete set (41), agree with expres-
sion (40) to within the ten digits shown.

6. Discussion. In the above examples the values of [r(4,, z2)||../Ir(4.., 2)ll..
are well within the bound dictated by Theorem 1, although we have produced other
numerical examples where this ratio is equal to /2. However, in spite of the efficacy
and simplicity of the algorithm of this paper for solving the Chebyshev problem (4),
we are convinced that for all practical purposes there is little to be lost (and much to
be gained in efficiency) by solving instead the linear problem (8). Interestingly, the
resulting approximation L(4 ,, z) is not only near-best in the (complex) Chebyshev
sense (2), but also the following extremal property is satisfied: it is analogous to an
extremal property which pertains to best approximation in the (real) ., sense.

THEOREM 4. Let the rank of the matrix B defined in (36) be p (and note that,
normally, p = 2n for complex-valued a].’s, and p = n for real-valued aj’s). Then for
some approximation L(A ,, z) obtained by solving problem (8), the 2m inequalities

IRA, z)I<W and |I4,, z) I <w

become strict equalities at least p + 1 times when w assumes its minimum value
lr(4,., 2)il,.

(The complementary slackness theorem of linear programming can be used to
prove Theorem 4, but we omit the details here.)

Finally, we note that Geddes and Mason [4] show how near-best approximations
in the Chebyshev sense to within a factor of O(log n) can be easily obtained via
projection techniques, for simple regions and polynomial approximating functions of
degree n.
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Appendix. Problem (19), omitting the upper bound K on the variables B; and
7;> can be solved more efficiently as the following dual linear programming problem
in nonnegative variables p, and q,:

m
maximize )" (p, —qt)yg") subject to, forj=1,2,...,n,

i=1

m
2 Y 0, a)@®n; , + vk, ) =0,

t=1
(45) .
2 tz;l @~ a) W, ~ ugs)k].’,) =0,
m
and )" p,<1.
=1

The variables B]., Y and w of problem (19) correspond to the artificial variables and
slack variable which must be inserted in problem (45) prior to its solution by the
simplex method. The known quantities in (45) are, of course, all real, and they are
defined by Egs. (10)—(13) and (16)—(18).

Now the Fortran subroutine [1] calculates an [ solution to an m x N over-
determined system of linear equations

(46) Bx =g,

by applying a modification of the simplex method to the corresponding dual linear
programming problem. The latter problem differs from the dual linear programming
problem (45) only in that the constraint J2 ,p, <1 in (45) is replaced by the con-
straint 272, (p, + q,) < 1. Thus, by modifying the Fortran subroutine [1] so as to
allow for this constraint replacement, we can solve via (45) the primal problem (19).

In turn, this requires that we express (19) in the form (46), which can be done
formally as follows.

Defining two m x n matrices

47) B, = [2u§~‘>h].,, + 2v$s)k]-’,] and B, = [2u§3>h].,, - 2u§")kj,,]

where the elements in (47) are as in (19), we set

(48) B = [B, |B,],
and
(49) g =D, y®, . . y97,

where the elements in (49) are given by (18). Here N = 2n, and for (48) and (49)
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a solution x(*) produced by the modified Fortran subroutine has the form
X(S) = [ﬁgS)9 B%”) L BS,S)’ 'Y(fv), 7gs)> L] ')’f,s)] T‘

Also, we note that if the parameters a; are required to be real, then N = n and B is

set equal to the left half of the partitioned matrix in (48).

Finally, and perhaps somewhat surprisingly, the modified Fortran subroutine for
solving problem (19) via its dual form (45) is obtained merely by changing the constant
2. to 1. in lines CHE 1720, 1820, 2020, and 2230 in [1, p. 269]. More generally,
this modified subroutine can be used to minimize the I norm of any (real) over-
determined system of linear equations subject to the constraint that the residual vector
be nonnegative.
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