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Determining the Fundamental Unit
of a Pure Cubic Field Given Any Unit

By N. S. Jeans and M. D. Hendy

Abstract. A number of algorithms which have been used to derive fundamental
units for pure cubic fields suffer from the lack of absolute certainty that the
units obtained are fundamental. We present here an algorithm which will correct
this deficiency. Briefly, if n is any nontrivial unit of a pure cubic field, then for

1/N

which of the real numbers nl/N are integers of the field and, subsequently, will

some positive integer N, n will be a fundamental unit. Our method determines

determine the coefficients of the fundamental unit. We illustrate the process with

several numerical examples.

Introduction. In her paper [2], Marta Sved employs Szekeres’ algorithm [3] to
calculate a table of units of Ff, = Q(D*/3), for 0 < D < 200, D cubefree. She as-
serts that these units are fundamental. However, she also makes the following com-
ments: “Unfortunately, there is no general criterion known at present to decide
whether a given unit of F, is fundamental or not, and all tables involve an element
of uncertainty in this respect”, and, “with one exception (D = 167) the computations
produced at least two, but usually more, units for each D. In all cases, the units ob-
tained were powers of the first one, and it can be confidently assumed that a funda-
mental unit has been found. Only in a few instances did the algorithm miss out on
an occasional power of the fundamental unit. In most cases it was amply sufficient
to compute the first 100 decimal digits of « and v (the nonrational generators for the
integral basis) to produce a reasonable number of units. In the case of D = 167, a
and vy were computed to 360 decimal places, yet even this accuracy was insufficient
to obtain a second unit. At any rate the accuracy would have been sufficient to

3/2 had the first calculated unit 1 been the square of the fundamental

produce i
unit.”

Although Sved’s optimism seems to be justified now on the basis of subsequent
computations [1], there is no mathematical certainty that Szekeres’ algorithm will
always give the fundamental unit. Indeed, in several instances units were missed. In
particular, in the case of D = 167, no subsequent unit was obtained, which would
have increased the confidence in the value of n, (.

Clearly, there is a need for a simple test to determine whether or not a unit is

fundamental. Such a test would enhance the value of Szekeres’ powerful algorithm
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926 N. S. JEANS AND M. D. HENDY

to calculate units. This need has motivated us to develop such a test, which will not
only determine whether or not a unit is fundamental, but will produce the fundamen-
tal unit when any nontrivial unit is tested.

Our approach is based on the relationship between the numerical value of a
unit €, and its minimal polynomial. We are able to determine the coefficients of
this polynomial, given e.

Any given unit 0 < e < 1, will be a power of the fundamental unit. We calcu-
late € /N (as a real number, with N € Z *) and we then determine values which will

be the coefficients of the minimal polynomial for e! /N
1/N

if it is a cubic integer. These

values are integral if and only if €
1/N

is a cubic integer and, hence, also a unit. We
is a fundamental unit for some N € Z* (possibly N = 1), and we will
show that only a small number of integers N need be considered. Hence, we are able
to determine conclusively which root of e is fundamental. We also illustrate our algo-
rithm with several numerical examples, one of which verifies Sved’s unit n, ¢, as
fundamental.

know €

Our algorithm used in conjunction with Szekeres’ algorithm would not only be
conclusive, but would also be more efficient than the direct use of Szekeres’ algo-
rithm described by Sved. In that application, Sved, having initially obtained a unit,
continues to calculate units with larger coefficients. This involves working with
numbers of increasing precision. As in many cases this involves computations using
multiprecision arithmetic, these further computations may be very expensive. Also,
she makes no use of the unit already obtained.

Having obtained a unit, our algorithm would immediately be applied to the
numerical value of this unit, and computation would involve a sequence of numbers
in which the need for precision decreased steadily. For example, for D = 167, Sved
continues her calculations with numbers of up to 360 significant digits; whereas,
with our algorithm the computations would commence with numbers of 100 signifi-
cant digits, with significance decreasing at each step. (In the final step, only 10
significant digits are necessary.) Thus, having obtained a unit, we work in the ‘op-
posite direction’ as far as precision is concerned.

Conditions for a Real Number to be a Cubic Unit. Let p, ¢ be two distinct
relatively prime squarefree integers with p > 0, ¢ > 0 then d = pg? > 1 is cubefree.
Let o = d'/3. The integers of Q(c) are the numbers:

m B=(x+ )" + 20%9)' ?)13,
where x, y,z€Z and x =y =z =0 (mod 3) is p # £ g (mod 9), (Type I) or x =

py =qz (mod 3) if p =+ q (mod 9), (Type II). If B € Z, then it satisfies the mini-
mal polynomial:

@ B~ xB + 3 & - pay2) - N@) = 0,

where
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() N®) = > +pg*y® + p’qz® - 3xyzpg)/27,
= B((x* - payz) + (z° — x)pg*)'? + (@9” — x2)p%q)' ?)/9,
) = B((x — yPa*)' ) + 0@a*)' P - 2(p*9) *) + ()" — x)*)/18.

As the second term of (4) is positive definite, 8 has the same sign as its norm.

We now list some properties of units of Q(a).

LeEmMmA 1. Let u = (x + y(pg®)*/® + 2(p%q)*/3)/3 > 1 be a unit of Q(«).
Then:

(A) Nw) =1;

(B) x, v, z are each nonzero;

©) x y(g*)'"?, 2(p%q)"? > 1;

D) u>3.

Proof. (A) N(uw) ==1,u>0,so from (4), N(u) > 0. Thus, N(u) = 1.

(B) Trivially, if any two of x, y, z are zero, then u = 1, (pg?)'/3 or (p2q)'/3,
which cannot hold. Suppose one of x, y or z is zero, then by (1) x =y =z =0
(mod 3). Letxy =x/3,y, =/3,2y = z/3. If x = 0, N(u) = y3pq* + z3p2q, a
multiple of pg, but N(u) = 1, a contradiction. Hence x # 0. If y = 0, N(u) = xg +

zgpzq =1. As xg, zgp2q are nonzero, they must differ in sign; =>xgzgp2q <0,

(%) = x020(@*q)!/? < 0.

p>1 =3 =x3 + 23p%q + 3xyzo@*9) P lxo + 2o*0)' 2],
=1+ 3xy2o(P*q) Pu> 1.
=>xozo(p2q)l/3 > 0, contradicting (5). Thus y # 0. If z = 0, by symmetry we ob-
tain a similar contradiction.

(C) Leta > b > c be a permutation of x/3, y(pg?)'/3/3, and z(pq)*/3/3.
(Equality cannot hold as 1, (pg?)*/® and (p®¢)'/? are rationally independent.)

6) u=a+b+c>1.

D0 <™ = (6 - payz) + (2% — )pa®)'® + (¢ - x2)p2q) )9,

(®) = (@® - be) + (b2 —ca) + (c? - ab) <1, and
©) N(u) = (x(x* = pqyz) + pay(qy® — xz) + paz(pz® — xy))/27,
(10) = a(@® - bc) + b(b? — ca) + c(c? - ab) = 1.

Consider the six terms a, b, ¢, a®> — be, b2 — ca, ¢ — ab. We know from (B) that
a, b, ¢ are nonzero. If two of the other terms were zero, say a* = bc and b? = ca,
then

a4

a® =b2c? =acd

=2a=>b=c,

which cannot hold. For fields of Typel, p?> % ¢* (mod 9), then a, b, ¢, a®> — bc, b®
— ca,c* — ab are integral multiples of 1, (pg?)!/3 or (p2¢)*/3. Hence, at least one of
the summands in both (8) and (10) must be negative.
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For fields of Type II, p*> =¢* (mod 9), and from an inspection of cases |pg| > 10.
a, b, ¢, a® — be, b? — ca, ¢* — ab are integral multiples of 1/3, (pg)/3/3, (p2q)'/3/3,
so at least one summand in (8) must be negative. (If one term is zero, then from (1),
the other two are integral multiples of 1, (pg?)!/3, (p>q)'/3.) Suppose all the terms
in (9) are nonnegative, then (9) may be rewritten as

(11) 27 = x(x* - pqyz) + Ipq A4,

where A € Z. We note that x(x*> — pgyz) = 0 (mod 3). Thus, pg4 = 0 (mod 3).
But pg £ 0 (mod 3) so 4 =0 (mod 3). 4 # 0, for otherwise u = 1, and we have
assumed the terms in (9) to be nonnegative. Hence, 4 = 3 = Ipg| 4 > 30, contra-
dicting (11). Hence, at least one term in (9) is negative.

Hence, for fields of both Types I, and II, at least one term in both (8) and (10)
is negative.

By (6) a > 0. Suppose a > 0> b > ¢, then b% > ac, ¢ > ab, and as one term
in (8) must be negative a®> < bc = a®> <2bc < (b +¢)* =a <-(b+tc)y=a+d+
¢ = u <0, a contradiction.

Suppose @ > b > 0 > ¢, then a®> > bc, b> > ca, and as one term in (8) must be
negative ¢2 < ab. Now ¢? <ab = c(c? - ab) > 0 = all terms in (10) are positive, a
contradiction. Thus, a > b > ¢ > 0. Hence, x, y(pg?)*/3, z(p?q)*/® > 1.

(D) We have u = (x + y(pqg®)'/3 + z(p?q)'/3)/3, and by (C), each term is
positive.

For fields of Type I p? # g2 (mod 9), then u > 3 since x =y =z = 0 (mod 3).
For fields of Type II p?> =¢? (mod 9). If Ipgl > 16, Ipg|*/3 > 4%/3 = |pI1/3 +
|q|l/3 >241/3 =,)/(1)(12)1/3 + Z(qu)1/3 — |pq|l/3(yp1/3 + |Zq|1/3) >
4232413 =8 = u> (1 +8)/3 =3.

There are only four fields of Type II with |pg| < 16, namely those for which

d = 10,100, with pg = 10,
d=128,98, withpq =14.

In these cases, the smallest units > 1 are u = 23.3 for d = 10, 100 and u = 5.2 for
d = 28,98 [1]. Hence, u > 3 in all cases.
We now consider the relationship between the numerical value of the unit and
its minimal polynomial. For this we consider the reciprocal € = 1/u of the unit above.
LEMMA 2. Ler e = ! = (I + m(pg®>)*® + n(p?q)!/3)/3 < 1. Then e satis-
fies the minimal polynomial:

(12) e -1l +fe—1=0,
where f = (I — pgmn)/3.
For |lpgl > 8,
15
(A) r>er,

(B) If— ul <2.75€”%.
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Proof. (A) Ifmn=0,f=012[3>12/6. If mn#0, Iml, Inl > 1.

(= 3¢)° = (m(pg®)'* +n@*q)' °)?,
= m?p23¢*1? + n2p* 3213 + 2mnpg.
Now m2p?3g*3 > Ipq| 3 lmpt 3¢ 131, n2p*3¢2 13 > Ipg /3 Inp?3¢" /31, and
as |pgl > 8,
(- 3€)* > 2Ilmp*3¢* 3 + np?3¢* 31 + 2mnpq,

=211 - 3¢l + 2mnpq.
Hence,

12 > 211 - 3¢l + 2mnpq + 6le — 9€2
= 211- 3¢l + 2mnpq + 6e(l — 3€) + 9¢*
> (2 — 6¢)ll — 3el + 2mnpq-

As 0 < € < 1/3 (Lemma 1(D)), (2 — 6¢€)I1— €l >0, s0 2> 2mnpq = f =
(® — mnpg)/3 > I2/6.
(B) From (12) we have €2 —le + f— u =0, so
u—€e =f—le> % 12 —le = (I - 3¢)?/6 — 3€2/2,
= (1-3e)? <6(u—€*) +9e* = 6(u + €2/2) = 6u(1 + €3/2),

= [1-3el <621 2(1 + 3/2) /2

= 11— el <6 20121 + 3/2)/2 + 2¢

= lf—ul=lle— 1 <626 2(1 + €3/2)!/2 + 262,
Now as 0 < e < 1/3, 6'/2(1 + €3/2)!/? + 2€3/2 < 2.75,50 we have
(13) If— ul < (621 + €3/2)1/% +263/2)e! 12 < 2.75¢' 2.

We make use of result (B) for our theorem. What we wish to determine is
whether or not the real number €, = €'V is a unit of Q(a). This is equivalent to
determining whether or not it satisfies a monic integral cubic polynomial with con-
stant term — 1.

THEOREM. d = pq* > 1 is cubefree, with p, q squarefree integers and |pq| >
8. For 0 irrational let {0} represent the closest integer to 0.

Given € a unit of Q(@'/3),0<e<1,setey = el N | for some positive integer V.

(A) For ey < 1/25, ey is a unit of Q(d@'/3)

(14) ey - lek + fey — 1 =0,

where f = {3} },1 = {fey! — 5 }-
(B) €y is a unit of 0@'/?) =

(15) If = ' | < 2.75€M/2.
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Notes. For €y > 1/25 each of the several (up to 4) values of f satisfying (15)
can be tested in Eq. (14). Then €, is a unit < one of these values satisfies (14).

In practice, for €, small, condition (B) screens out most €, tested as not being
units. The probability that this test is “accidentally” satisfied is low.

Proof. For ey <1/25, If— et | < 6M2e)/2(1 + €3/2)!/? + 2€} < 0.5, from
(13) so a unique value of fis determined.

If €y is a unit of Q(d 1/3). then by Lemma 2(B) it satisfies a minimal polyno-
mial of the form

—ley + fey =1 =0,

where [ — feN + eN =€y <1/25,501 = {fej\,l - 6;2 }. If €y satisfies an equation
of the form

—le} + fey—1=0

with f = {(:‘;[1 } > 0, then €, is a nonrational unit of some cubic field K. Hence € =
(ex)V €K N Q@E'3), =K C Qd /) = ey is a unit of Q(d@*/3).

Fundamental Unit Algorithm. Given u > 1 a unit of the pure cubic field
0(d"'/3) where d = pg® > 1 is cubefree, with p, g squarefree integers and Ipg| > 8:
1. Set

L=1+@g)'? + @' for fields of Type I,
=(1 + (pg®)'3 + p2q)'/3)/3 for fields of Type II.

(L is a lower bound on the size of any unit n > 1 of Q(d'/3), (Lemma 1(C)).)
2. Setr=2.
Set N = [log pflog L + 1] (i.e. N least integer such that u!/V < L).
If r 2N go to 10.
Set u(r) = u'/".
If Af € Z such that | f— u(r)! < 2.75(u(r))"*/?, go to 8.
If3f € Z such that If — u(r)! < 2.75u(r))"*/? and I = fu(r) — u(r)* +
ur)"t €2, goto9.
8. Increment r to the next largest prime and return to 4.
9. Reset u = u(r) and return to 3.
10. The current value of u is fundamental. Stop.
Notes. (a) At step 7, for u(r) > 25 only one such value of f can exist. For
smaller u, up to 4 values of f could satisfy the condition of step 6. In practice, for

Cae s w

u(r) > 1000, it is rare for u(r) to satisfy step 6 and yet not be a unit. This becomes
the more practical test for large u(r).

(b) Obviously, only prime values r need be considered.

(c) If u(r) is fundamental, the coefficients of u(r)”! can be determined as fol-
lows from fand L u()™' = ( + m(pg*)'/3® + n(p?q)'/3)/3, where mn =
@ = 3f)lpq.
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Practical Use of the Algorithm. In practice, we need to be able to calculate
real numbers to approximately [log, ou + 7] decimal digits. (In the case u(2) satis-
fies the test at step 6.) So, for large u, multiprecision arithmetic computer programs
are necessary (e.g. for the field Q(167*/3), u = 10°%). The calculation of u(r) is per-
formed using Newton-Raphson iteration for rth roots. u(r) need only be calculated
to approximately [(3 log, o u(r))/2 + 2] digits in order to satisfactorily perform the
test at step 6.

Since the calculation at step 7 involves irrational numbers, a conclusive result
cannot be obtained no matter how many decimal digits are calculated. We can over-
come this small problem by calculating /, at step 7, to (say) 5 decimal place accuracy.
This requires calculating u(r) to [2 log, o u(r) + 7] decimal digits. If / differs from
an integer by no more than 10™*, we would have reasonable confidence that u(r) is
indeed a cubic integer, and final verification would depend on the existence of in-
tegers, m and n, determined by the simultaneous equations given in Note (c) above,
and satisfying 1> + pg?m3 + p2qn® — 3pglmn = 27. Almost all tests derive a nonin-
tegral value of /, so this final verification is rarely needed. Indeed, no example of
u(r) > 1000 has been found to satisfy this condition other than when u(r) was a unit.

Although multiprecision arithmetic is needed for large u, it is only necessary
for small primes r. For example, with d = 167, all primes from 2 to 61 must be
considered, but for r = 13 onwards double precision arithmetic was sufficient. The
majority of the computing time is involved in the computations with r = 2, 3, 5,7
and 11. For u(r) < 25, several values of f must be considered, but with single preci-
sion accuracy this involves little time.

Examples. We give three examples showing how we determined whether or not
three given units are fundamental. The calculations were done on a Burroughs B6700
computer. We take the smallest unit u > 1 to be the fundamental unit.

Example 1: u=x + y(231/3) + 2z(23%/3) is a unit of Q(231/3), where

x = 251401129 6271379187 9829592761

7258440514 3510195116 6439999601

y = 88401156 3861048459 5086024628

7875956789 8501378224 5618425660

z = 31084842 2280000275 0405930152

0668641067 2496635313 4343732220

M= 754203388 8814137563 9488778285

1775321543 0530585349 9319998803

- 0000000000 0000000000 0000000004

(This u is obtained by taking the reciprocal of the sixth power of the unit given by

Sved [2].)

17542 x 1058,

Applying the algorithm, we obtain:
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L =1193, N =55.
u(2) 2746276367 8869134462 7557332202

- 9999999999 9999815705
2.75(u(2))" /% 5247 x 10715,

and
Thus, the test at step 6 is positive, so we take
f=12746276367 8869134462 7557332203,

and calculate
1 =50612 3590417203-00000 (to 5 decimal places).

Solving the equations in Note (c) gives us m, n such that > + 23m> + 52913 —
69lmn = 27. Thus I, m, n are the coefficients of the unit (u(2))™!, i.e. u(2) is a unit.

We start again, replacing u with u(2). We recalculate Nie. N = 28

(16) u(2) = 52404 9269428640:024917,

clearly not a unit, since the test at step 6 is negative.
u(3) = 6500020803-0000191071

and 2.75(u(3))"!/? = 0.00003411.
The test at step 6 is positive, so we take
f = 6500020803,

and calculate
1 =—124197.00000 (to 5 decimal places).

Solving the equations in Note (c) gives us
m =-9480, n = 18690,

and since I3 + 23m3 + 5291 — 69Imn = 27, we conclude that [u(3)]~! =
( + m(231/3) + n(23%/3))/3, and hence u(3), are units of Q(23!/3).
Replacing u, with u(3), we start again. N now takes the value 10.

u(3) = 1866257 and 2.75(u(3))"!/2 £ 0.0637 *
so u(3) is not a unit.

u(5) = 91.745 and 2.75(u(5))"1/? = 0.287.

Therefore, taking f = 92, we calculate
1+ 23.39536 and so u(5) is not a unit.

w(7) =25.225, 2.75u(7))"1? = 548.

Take f = 25, and calculate
=-5.650 ie.not a unit.

Since the next prime is greater than 10, we stop.
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r u(r) 2.75(u(x~))'1/2 f
17 431409-595 0.004 -
19 110088. 893 0.008 -
23 14619.029 0.022 -
29 2010-070 0.061 -
31 1230-554 0.078 -
37 388-153 0-139 -
u1 216-979 0-186 217 4-559
43 168-945 0-211 169 9.180
47 109.182 0-263 109 -19.878
53 6l4-182 0-343 64 -11.705
59 42.035 0-424 42 - 1452
61 37.185 0-451 37 - 6-888

(Calculations have been chopped to three decimal places.)

We conclude that

i = 6500020803.0000191071 is the fundamental unit.

(*u(2) need not be tested, since the test at (16) is negative.)
Example 2. From Sved [2], a unit in 0(167/3) is

us 621050

0640303132

8827556350
4816722532
1528000987
0000000000
1896095838

u=621 x 10°5.

7362478867
9679837287

-+ 0000000000

0000000000

(This is the reciprocal of the unit given by Sved.)

L =3684
u2) =

and so N = 62
78806729 6637992244

3056469673 0335831406

6161103562
5341597327
8103562731
0000000000
0000000200

0050104080

- 2371560251.

Clearly, the test at step 6 is negative, i.e. u(2) is not a unit.

933
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u3) = 85 3183020141
5443829075 - 5805448903,
clearly not a unit.
u(5) = 1440871735 3864111266 - 2999492424
not a unit
u(7) = 4838 7409603319 - 6430345357,
not a unit.
u(11) = 511053133 - 5546616359,
not a unit.
(13) = 23372332 - 0124097584,

not a unit.

7547364081

’

The remaining calculations are given in the table above with / being calculated only
for the cases in which the test at step 6 is positive.

Therefore, we can conclude that u is fundamental.

Example 3. From Sved [2], a unit in Q(177/3) is

uE

458999
5596864397
5531283145

- 9999999999

9999999999

9459610388
0592498560
7224626001
9999999999
9970485063

1491148208
1356525509
8132349978
9999999999

+4.59 x 1085,

Using the algorithm, we obtain

L +3814, N=55

u(2) = 677 4953475567 4803446400
1796101881 6158301743 - 1601593529
2.75(u(2))" 1% £ 1.056 x 10721
u(3) = 358044943 5270911886 5923233881
-7178201368
2.75(u(3))"1/% £ 1453 x 10714
u(5) = 13563211 2763154707 - 1271775370
2.75u(5))"1? £ 7467 x 107°
u(7) = 172 7435358829 - 8828254344

2.75(u(7))" % £ 2.092 x 107S.

The remaining calculations shown below have been chopped to the number of digits
shown.
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r eS) 2.75(u(x)) /2 £ L

11 612967589923 3.512 x 10" -

13 3884813 7538 0.00133 -

17 109378.0445 0-00831 -

19 32249.0150 0-0153 32249 -484. 146
23 5301. 840 0.0377 -

29 899.198 0.0917 -

31 579.808 0.114 _

37 206.625 0.191 -

u1 122.832 0-2u8 123 20609
43 98.205 0.277 98 -20-156
47 66.46Y 0.337 -

53 41.329 0-427 41 -13.595

Thus, we conclude that u is fundamental.
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