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Numerical Solution of an Exterior Neumann Problem
Using a Double Layer Potential

By J. Giroire and J. C. Nedelec

1/2

Abstract. We give here a variational formulation in H /“(I')/R of the exterior Neu-

mann problem for the Laplace operator using a double layer potential. This formu-
lation is then applied to the construction of a finite element method. Optimal er-
ror estimates are given.

Introduction. Solving boundary value problems for partial differential operators
by integral equation methods is not a new idea. However, the classical way to do it
consists in representing the unknown solution as a potential of the type that will lead
to an integral equation of the second kind. Then, Fredholm’s theorems can be used.
Thus, the Dirichlet problem is usually solved with the help of a double layer potential,
and the Neumann problem with the use of a single layer potential.

We shall have a different point of view. Our aim will be to obtain a variational
formulation of the problem in order to obtain the existence and unicity of a solution
and error estimates. This philosophy leads to opposite choices for the representation
of the solution. Thus, J. C. Nedelec and J. Planchard, for the three-dimensional case,
and M. N. Leroux for the two-dimensional case, have solved the Dirichlet problem by
using a single layer potential. We propose here the solution of a Neumann problem
by using a double layer potential.

Let Q be a bounded open set of R3. Let I' be the boundary of £ and Q° de-
note the complementary set of £.

We assume that I' is sufficiently smooth, and we put the coordinates’ origin in
Q. We shall write

r'?, for the exterior normal to I,

r, for the distance to the origin,

[v] = vlir‘?t - vl%"t, for the jump through T, of the function v defined in R3.

I. The Exterior Neumann Problem for the Laplace Operator. Let us consider
the following problem.
Find u, € WA(Q°) = {v € D'(Q)ly/r € L2(Q°), Dv € L?(92°)}, such that
P auy =0 in o,
ou,/on =g, € H7V(T).
We have the
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974 J. GIROIRE AND J. C. NEDELEC

ProrosiTiON I-1.  Problem (P,) has one and only one solution.

Proof. 1t is a straightforward consequence of the fact that llgrad vll ,, @) s
a norm on W(l)(Qc) equivalent to the definition norm [4, Theorem II-2, p. 20]. O

For g, arbitrary in H -1/ 2(T), it is impossible to find a harmonic extension of
u, in Q. Let then X and u, be defined by

A 1
A= Dy-12yxptay a0d upl) = ar Ix =x,l’

where x,, is an arbitrary point of 2. Let us take
ou,

u=u; —u, and g=g, B

Then, u is harmonic in ¢ and can be harmonically extended in . We are
thus led to problem (P).

Find u € (H'(Q)/R) x Wy(Q°) such that
(P) Au=0 in 2 and Q°,
dufon =g € HZ'V2(M) = {(h € H™Y2(T) Kk, 1) = 0}.

We have then

THEOREM I-1. Problem (P) has one and only one solution.

Proof. We have only to split up Problem (P) into an interior problem and an
exterior one. For an interior problem, the result is well known [9]. For an exterior
problem, it is the result stated in Proposition I-1. O

In order to introduce the formulation on I' which we are interested in, we shall
need a problem (P') that we are going to define now. First, let us define

H(A; Q) = {vEH(Q), Av € L2(R)},
W(A; Q°) = {v € W(QF), rAv € L2(92°)},
K ={veEH(A; Q/R) x W(A; Q°) Isupp(Av) C T, [dv/dn] = 0},
ol =(fQ lgrad vl dx + J _, lgrad vl dx)m
Problem (P") is the following:
P Find u €K, such that [u] = q € H'/?(T)/R.

We have then
PROPOSITION 2. Problem (P") has one and only one solution.
Proof. For u € H'(A; Q) we have the following Green’s formula [9].

ou
Yv e H (Q), fn grad u grad vdx = _fn Auvdx +<£, ‘>H"1/2(r)xH1/2(I‘)'

In the same way, one can prove for u € W!(A; Q) the following Green’s for-
mula [4].
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ou
Yv € Wi(Q°), J‘ grad u grad vdx = — Auvdx —(—, v .
0 ae Q¢ on’ /a1 (yxH 2 ()
Let us now consider # € K. We have

Vv € (H'(Q)/R) x Wy(Q),
f ou
qugqe 8rad u grad vdx = o’ [v]

If v belongs to K too, we have

o
fnunc grad u grad vdx = <§’;, [u]>H;1/2(F)X(H1/2(F)/R),

which gives a variational formulation of Problem (P’) and ends the proof. [J

Thus, Problem (P) defines an isomorphism J,, of Hy'/?(T) onto K, and Problem
(P") defines an isomorphism J, of H'/>(T)/R onto K. Therefore,J =J;! o J, is an
isomorphism of Hy 172(I") onto H'/2(I")/R. We shall see in a moment that a coercive
bilinear form corresponds to this isomorphism.

Let g and q' belong to H'/2(T")/R and define a(g, q") = (g, J~'(¢")). Then, we
have

THEOREM 1-2. The bilinear form a is symmetrical and positive definite on
H'Y?(D)/R.

Proof. Define

HY 2 (ryx @ 2 ryRy

u=J7@q), v=Jy(J'@q").
Then,

ov du ,
ag, ¢) = ([u). 5~ ) = fﬂmcgrad u grad vdx = \ ], = ) = a(@’ @),

and
= lgrad u1? dx > Cllull? ,
a(@. @) IQUQC gadul &=L @ryxwh@®)
hence,
> Cligl? )
9@ D= e

which ends the proof. [
Thus, the jump through I of the solution u of Problem (P) is the solution of
the coercive variational problem.

Find ¢ € H'/*(I")/R such that
)

Q@ :
g, 4Y=(& 4 _ip a, s Y €HVADR.
; Hg P @yxq A ry/R)

In order to use these results, we have to find an explicit expression of 4. This
is what we shall do now.
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PROPOSITION 1-3.  Let q belong to T(T'). The solution u of Problem (P') can

be expressed by

1 b 1
= - — —_ dy..
u0) 4n fr ) an,, <|x -yl > x
Proof. 1t is an immediate consequence of well-known facts about double layer
potentials [13]. O
THEOREM 3. Let q and q' belong to D(T'). Then, the bilinear form a has the

following expression
2

1 , i 1
a(q, q') = - fr fr @) -q0) @'®) -4'0)) o om <|x _y|> dy,dy,,.
X7y

Proof.
, f 3 1 L 9 1
a@, q) = I‘q(y)a —‘Tﬂfrq(x)g’;— T dy,rdy, = 24.

Since a is symmetric, we have

a1
aq, q) =4 +fr Q'O’)Jg_g fr ﬁx)%
y x

On the other hand,

(2 (" Vay-a
Tan, \ Ix-yl T

where Qy is the solid angle sustained by the surface I" at the point y. Therefore,

3 3 3 ( 1 >d g o
— — Tt =0,
ony, (“Ton, \Ix-yl/) ™%

and

e won 13 L S VY S
g o1 (y)any Ton, \ Ix -yl e 1y =0.

ow
Yw €K, <——, 1> =0,
on

p=L( 2 f()q'()a L Vay, Lay, =0
8 T on, r 4% xanx Ix -yl Yo Ty T

Moreover, since

we have

Finally, we arrive at
a(q,qy=A+B+C+D.
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Then, we can write

af ')=L 2 f (q(y)—q(x))(q'(y)—q'(x))—é— 1 dy,t dvy,
4= e Ton, (7T an,, \ Ix =yl Y

provided that we do not forget that the differentiation with respect to n,, does not
concern g(¥) and q'(y). This can be seen in the expressions of 4, B and C.
It becomes possible then to interchange the order of integration and differentia-
tion. This leads us to
2

< ! >d’)‘ d’)’ 0
x“ly:*
xany |x - V|

Remark. The same arguments can be used for the exterior Neumann problem
in R?. This time, the space Wg(§2°) becomes

o ¢y =5 J; I @) - ae0a0) - &

v

Wy (92°) =3 v € D'(Q°) e L*(Q°),Dv e L2(Q°)§.

rlogr
Problem (P,) becomes

Find u € W)(2°)/R such that
P, Au=0 inQ°,

dufon = g € Hy '1*(I);

for now, llgrad ull , , ©°) is a norm only on Wg(2°)/R equivalent to the quotient
norm [4].

Then, we can immediately find a harmonic extension of u inside 2. Thus, Prob-
lem (P) can be written

Find u € (H'(2)/R) x (W3(R°)/R) such that
(P) Au =0 in £ and Q°,
du/dn = g € Hy*12(I).
Concerning Problem (P’), the only change will be the definition of
WL(A; Q°) = {vlv € WA(Q°), 7 Log rAv € L*(Q°)}.
Finally, for regular ¢ and q’, the solution of Problem (P') can be written as
u(y)—qu(x) % Logl ldy, +C
2 r anx glx —y 7x s

where C is an arbitrary constant; the bilinear form a becomes
2

1
a@ )= J J @)= a0 ~ ') 5 Lol ~ ylav, an,,
x=y
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II. Approximation. The problem is to approximate the solution g of

@ Find ¢ € H'/2(I"/R such that
a4, 4)=(g 4q'), V4’ €eH'* (T)R.

1. Construction of an Approximate Surface ', [14]. Let { 0;} be a family of
p bounded open sets of R3, covering I' and such that, for each i, there exists a C™
mapping

6 .
0; > 0={yly={y} ¥I<1,-1<y; <1}
-1
Q.

Let us further assume that 6; has a C” inverse mapping Q — 0; and that 6,

is a mapping of 0; N Q, 0; N Q°, 0; N T, onto, respectively,

0_={reQly; <0}, @0, ={y€Qly; >0}, Q,={y€Qly; =0}

We shall assume that the usual compatibility relations [10] hold between the 6,.
In what follows, we shall write ¢; for 0;‘1 considered as a mapping of Q,, onto
0;NT.
To define I, let us assume that we know a partition of I into p closed parts
T'; such that
P
r;c0;, UT;=T, I;NT;isacurve of I' (or empty), when i # .

! i=1

Let us denote by D; the image of I'; by 0;.

Let X, be a set of nodes on I', and let 0, be the image of Z, N I; by 6,. Now,
we build on oy, a triangulation T;;, of D;. Then, to each element T of each triangula-
tion T, , we append a C 0 Lagrange finite element with an interpolation space G such
that P, C G, where P, is the space of polynomials of degree k or less.

Let y;;, be the mapping the restriction of which, on each element T of Ty, is
the G interpolate Fi, of ;. Then, I';, is the surface defined by the mappings ¢y, .

2. Approximation n,, of the Normal n to I'. We will use, as an approximation
to n, the G interpolate n, of n. As we shall see later, this is consistent with the ap-
proximation chosen for I.

3. Construction of an Approximation V, of HY*(I"). To each element T of
the triangulation

4
Th = U .riha
i=1

we associate a functional vector space P, such that P,, C P.
Then, we define ¥V, as the space of the images of the elements of P on every
curved element of I';, by the mapping F, i.e.,

Vy ={4ay €C'Tylgq,lp=p o F7!,.VT€T,,¥p EP}.

We want the elements of V}, to be continuous on I';, in order to have the in-
clusion of V}, in H 1 2Ty



NUMERICAL SOLUTION OF AN EXTERIOR NEUMANN PROBLEM 979
4. The Approximate Problem. The kernel of Problem (Q) is

22 1\ (en) &=y n)x-yn)
lx - ylI3 lx = ylI® '

dn,dn, \Ix -yl

Let us approximate this kernel by

Bpxs Mpy) =0, i )x —y, )

lx —yI3 lx — yl®

s

where x, y belong to I'y, and n,, ., ny,, are the approximations of n, and n,,, defined

in II-2.
92 1 )
ony,  dny, \lx =yl

We shall write
for this kernel. Then, we approximate Problem (Q) by

Find g, € V,,/R such that

1 | f , , o2 1
(Qh) _g Ty ITh (qh(x)_qh(}’))(qh(x)_qh(}’))a lx -yl d7hxd7hy

nhxanhy

= [;, 80ML)dvy. Va, €V, /R,

where g, is an approximation of g defined on I'; and satisfying (g, 1>)=0.
We shall write Problem (Q,) more concisely as

Find q,, € V,,/R such that

@ B) = €n 95 H 2y x@ 2Ry Van € ValR

According to Theorem I-2, that we apply now to Problem (Q,), this problem
would have one and only one solution if n, was normal to T',,.

Unfortunately, this is not the case because, in order to get an optimal order of
convergence, we have chosen another n,. Thus, the existence of a unique solution to
Problem (Q,,) will be a consequence of the uniform coercivity of the bilinear forms
ay,. This uniform coercivity will appear during the error study of the following section.

5. Error Estimates. To compare q and q,, we have to define a mapping of T,
onto I'. For the same reasons as those of [14], we have to use Y defined by

—for x belonging to ', Y(x) is the orthogonal projection of x onto T}, i.e.,

Y(x) is the foot of the normal to I" passing through x.

For I';, sufficiently close to I, i.e., for & sufficiently small, ¥ is regular and bi-
jective [14].

Then, we have the following estimates,

THEOREM II1. Let q and q,, be the solutions, respectively, of Problems (Q)
and (Q,,). Then, if q belongs to H™*'(T"), we have
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g —q, ° vt .

=2 ()R
<C{lg-g,l + M2 ) + Rkt
Hg 2 (r) BTy R q"Hl/2(F)/R
and
lg —gq, o ¢~ < vhlg-g,l + g —g,l
h L2ryR tWhle g, Hg' 2y £ Ho' (1)
+nm gl + h¥* gl L
T pm+1 0w H'2 ()R
where

£n() = (& ° VT I (X))

Proof. Let Vh be the subspace of H!/ 2(I"), the image of V, by the mapping
d/’l ie.,

V,y = {0p10p =0, ° V1, Vo, €V, }.

Let us consider Problem (Q,) on I'. Defining J as Jacobian mapping, we obtain:
find ?{h € V, /R such that

1 ~ ~ ~) ~I 3_2 1
5k AR A AR 3n, oy, <lw“‘(x) - w"lcy)l>

I DI () d, d,
- | &0 oV, VT, €T, R
Define &, = g,J(V"'), then, (€, 1> = 0; and we have the following estimate

CRrAT.

|
<SC{lg =gl
h H;l/z(r)

~ Ia(?i, , W —a ! , W l
+ inf flg-gyl .+ sup w W) = @@ W)l f [
a,€V,/R HY(T)/R" w,eV,/R I'w,, IIH1/2(P)/R

Let us choose 27,', = Il,q, where II, is the ’17,, interpolation operator. We know
then [1] that

lg — M, qll <Cchm gl ,
7% L2ry i o™t 1)
and

m+1 ;

lg —1,ql < Ch™ gl
" HY(1) h 1 H )

hence, by interpolating between L%(T') and H(I"),
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lg — 10,4l S CHmHLI2 g
q nd Hl/z([‘)\ q

H™ L (pys
and since
@+0O-1,@+C)=q-1, VCER,
we have
lg - n"q"H1/2(P)/R < Cpmtl/? "q"H"‘“(r)/R'

It remains to estimate the error due to the change of bilinear form. For this,
we shall need
Lemma II-1.  The quantity

2 1/2
. (")_3 f f (q(x) Q(y)) @@ -a0), dyy%

is @ norm on H'/2(I")/R equivalent to the usual norm.
Proof of Lemma 11-1. According to Theorems I-2 and I-3, a(q) defined by

32 1 1/2
a(q) = 3 fr fp (@) - q0))? o, omy < ™ _y|> dy, d7y$

is a norm on H'/2(I"/R equivalent to the usual one. But

32 < 1 >=(nx,ny)_3(x-y,nx)(x—y,ny)

3 T
dn,on, Ix -yl Ix =yl

)

Ix =yl

so that

2
9 < ! >|< 4 ; and a(q) < 4b(q).
lx =yl

dn, dn,, Ix =yl

2 L \__ 1L fey
an,on, \lx -yl x -y -yl

where f(x, y) is bounded in a neighborhood of x = y, so that

On the other hand,

v <e@+ [ e - a0)? ] . yy)ld dv,,
and since
lf(x, »)
JI' Ix - yld

is a bounded function of y, by developing (g(x) — q(»))?, we obtain
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b*(q) <a*(g) + Clql?,
L)

Moreover, b(q) equals O when g is a constant, so that Lemma II-1 is proved. O
We shall use three other lemmas proved in [5]. Let us give them.
LEmMA II-2. Let h be the greatest diameter of the elements T of T, then

max sup |®,(x) — @;,(x)| < CH**! max sup ID¥*1@,x)l,
i=1,P xES; i=1,P xE8;

max sup |D'®,(x) - D'®;,(x)| < CH**17! max sup ID*+19,(x)l,
i=1,P xESi i=1,P xESi

with 1 < Il <k + 1.
Lemma 3. For each triangle T of T,, the mapping o F is bounded as also
its derivatives up to the order k + 1. D(Y o Fyp) is a linear mapping of rank 2, hav-

ing a bounded inverse when considered as a mapping of R? onto the tangent plane to
I'. Moreover,

sup 1 o Fr(x) = Fr(x)| < Ch**! sup ID¥*1o(x)l,
x€T xeT

sup |D(Y o Fp)(x) — DF(x)| < Ch¥ sup ID¥*1@(x)l.
x€T x€T

Lemma I1-4. Let T and T' be two triangles of T,. Then,

sup J(Fp)(x) = J(Y o Fr)x)l < Ch¥*1 sup IDFH1a,(x)l,
xET xET

CIFp(x) = Fp ) < 1Y o Fp(x) — Y o Fro(»)| < CIFp(x) - Fre()],
HFp(x) = Fr@)? = 1Y o Fp(x) = ¥ o Fp()?| < Ch¥ Y HIF(x) = Fp(y)12.

The first inequality of this last lemma shows why we are interested in the map-
ping Y. It enables us to obtain an error on the Jacobian mapping of order k + 1, in-
stead of k.

We are now in a position to resume the proof of Theorem II-1.

The error due to the change of bilinear form can be split up into three parts

—the error due to the change of Jacobian mapping;

—the error due to the change of normal;

—the error due to the substitution of Y¥~!(x) to x.

Using Lemmas II-1 and II4, we can see immediately that the first error is
bounded by

Ch*t1ql .
U120y m

As for the second and third errors, we have to estimate
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9?2 1 32 1
on,.on,, <|x -yl > dny,, Ony, , <|¢'1(x) - \p—l(y)|>
i (. n,) _ (s M) x -y, n)x-y n,)

Sy T - )P Ix = y1f

4 W@ 00 m )T ) TN )
o) - v o) 1° '

The error on the normal gives two kinds of terms

(n, —ny,, ny) n (= n,—n,)x -y n,)
lx - yI3 lx —yI5 '

We shall examine the first one. Let us recall that n,, is the G-interpolate of n, so that
In, —n,, | < CH**1, both terms are bounded by Ch**!/Ix — y I3, and the error due
to the change of normal can eventually be estimated by Ch**liqll ;5 (Ty/R"

Let us now examine the error due to the substitution of Yy ~!(x) to x. There ap-
pear three kinds of terms.

1 1 1 1

k—-yP W) - )P x—pS i) - v o)l

(x - nx) - (llf—l(x) - ll/—l()’), nx)'
For the first term, we put
A=lx-yl; B=ly ' @)-y 'O
Then,

1 1 B-4> (B-A)B*+AB+4%)
43 B 4B A3B?

(B* — A%)(B* + AB + 4?)
A3B3(4 + B) '

According to Lemma II-4, this last term is bounded above by Ch**!/lx — yI3. An
analogous argument gives the same bound for the second term.

The third term can be bounded in two ways.

On the one hand, we have

Ix =y -yl + ¥l < Ix =y @)+ 1y — ¢~ ()l < CrFtE,
and, on the other hand, we also have
Ix =y =¥~ + ¥ = 1@ - v™)ex) - T - v )| < ChFIx -yl

Thus, terms like
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G-y =y + VI, n )x —, ny,)

Ix —yl®
-y ® T 0) n ) -y, 1)
B lx —ylI5
ey V@) + VT ), n ) -y, g, —ny)
lx = yl®

can be bounded above by

ChF*lx —yl? +Chk|x—y|Chk“|x—y|< R+l '
lx —yI5 lx =yl Ix—yl3’
and the error due to the substitution of y~!(x) to x is bounded by
chk* gl H1/2(ry/r> Which completes the estimation of the error 'in HY*(M/R. O
The error in L2(I")/R will be given by the following theorem.
THEOREM II-2. Let s < m. We have the following error estimate

lg —q, | <c{nt1?g-g, | +lg-g,l
e ETE gy T8
+ Mgl + ¥t gl .
1 H™ ()R 1 H1/2(I‘)/R}

Proof. We shall need
LemMA II-5. Let g be the solution of

Find q € H'/?(I")/R such that

" _ / - 1/2
) =g q) , € H'*(D)/R,
a(q q) <g q Hallz(r) X(H1/2(I‘)/R) Yq ( )
then,
Vs>0, geHM)=>qEH T (DR and gl <Clgl
g 0( ) q ( )/ q H“'+1(P)/R\ H%(P)
Proof of Lemma 11-5. Let u be the solution of
Find u € (H' (Q)/R) x WL(£2°) such that
Au=0 in Q and Q°,
dufon = g € Hy'/2(I).
Then, the classical regularity theorems tell us that
g € Ho(D) = uly, € H*F3I2(Q)R and ul,,, € HEE3/2(Q0),

hence ¢ = [u] € HS*1(T)/R. The closed graph theorem applied to the mapping g
— q ends the proof of this lemma. O
Proof of Theorem 11-2. We shall use a classical duality argument. We have

~ g, ¢ —qy)!
Ll = sup ———
HP(M/R  genda lgl

’

H3(T)
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but

(g’ q - Elh) = a(q - Eh: Jg)9

where J is the mapping du/dn —> [u], defined according to Proposition I-2.

Then, Lemma 1I-5 tells us that IlJgll < Clgl so that

HS*1(T)/R Ho(T)

Ia(q - ah: Jg)|

lg—qg. | <C su
179" s pyr Y gl

H “(I)/R gEHS(D) s+1

HSTH()/R

Now, we have

aq — @y, J§) = a@ — @y J& — WyJg) + (@ =G> Ty Je).
where II, is the 17,, interpolation operator. Therefore,

’

— s+1/2
\Jg Hth||H1/2 < Ch IIJgIIH

(r)/R $*1(ry/R

so that
la(g — gy, Jg — T, Jg)!
gl

sup < Chst%lg - g,

1/2 .
gEHS(T) H ()[R

H.\‘+ 1 (T)/R

It remains to estimate the second term

alg - ?1',,, Hth) =(g thg) - 0(67;,, Hth) =8 Hth) - @h’ Hth)

1 ~ ~
el N N AR A USRI )

i (75) s, (7
anxany lx =y anhxanhy |w—l(x)_‘//—1(y)|

: J(w-l(x))f(w"l(y))fdvx dr,,.

The last term can be studied in the same way as for the proof of Theorem II-1. This
study leads to the estimate Ch** 'l y1/2 py/r 1981 g1 12(ry/r- As for the differ-
ence (g, 1,Jg) — (&,» I1,Jg), it can be bounded above by lg — &, HZ ()

IJgW grs+1(ry/r > Which gives

la(g - q~h’ Hth)I

sup

< chktligl +lg-g,l ,
1/2 h"  —s—1
s<HS(T) IIJgIIHs+l H4((M)/R H

o @M
(T)/R
and ends the proof of Theorem II-2. O
The L? estimate announced in Theorem II-1 can be obtained by choosing s = 0.
Finally, we must not forget that our first problem was to find the solution of
Problem (P). In that respect, the following theorem is the more interesting.
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THEOREM II-3.  Let u be the solution of Problem (P) satisfying [ q(x)dy, = 0,
and let u, be defined by

1 0 1
u,(v) = - . fr‘h q,(x) P <—_I>d7hx,

e \Ux =y

where q,, is the solution of Problem (Q,) satisfying Jr, an(*)dyy,, = 0. Let us as-
sume that 36 > 0: d(y, ') > 8, then, for sufficiently small h, e.g. for h such that

dy, T
sup d(z, 1) < l—),
zeI‘h 2

we have the following error estimate

C R ~
— < pti2)g—g, | +lg—g,l _ _
lu(y) uh(y)I\e(y’ { g8 w3 ) h g1

()

2

+ B2t gl + Bt gl
T am+1aym T2y

where

1 m 1 31 when y € Q,
+

e(y, I nz=:o @*", 1) (0 wheny € Q°.

Proof. We have

1 ~ -1 9 !
u@) —u,(v) = - an fr [96) = 4, ) IY @) on. <|x -yl e

X

- JL i o] () - : >d
e th(x)( (x anx |x—y| anhx<|l//—1(x)_y| T

Now, since

Iy 1960 - Gy a0 e av, = [ qar - Jy, anam, =o,

we have

- ) 1
fp [ax) — g, x)I(W™ (x))] 5;; <|x -~ > d,

= [ o -7, e | (— >+ 4
r [4%) ~ 4, * on, \Ix—yl/ mes(I") Ya:

On the other hand, we have

S 1 J ; —4m wheny € Q,
— 'y =
Fon, \Ix -yl x 0 when y € Q°,

so that
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aevwrion 2 (— Y |
fp[q(x) 4, x)JW (x))] on. <|x_y|>d7x|

0 1 4
—_— + m when y € Q,
N on, \Ix -yl mes(I') ||&#g (D)
< llg - g, Jw™Hi —m X
H " (T)/R 0 1 N c g
- > when .
an, \lx -yl /Il HG @ d
Now,
lg — g, J(y~ I <lg-gq,l + g, —J~pl _ ,
U H™(T)/R 47 n H™(T)/R n H ™ (T)/R
and
9 1 (ny, x — ) m 1
o (e |2 < £ s
on, \lx —yl/|{#™ (1) x —y13 W™ o 2, )

so that we can proceed to the second term

3 1 d !
N _ 9 _ d
,[P q,G)J(Y 1)) ; on,, <|x -yl > ony,, (Id/"l(x)—y|>§ T

2 [ >_ ) 1 >
on,, (lx—yl ony,, <I\p’1(x)—yl

<lg g ™Hl ,

L*(T) L2(I‘)’
but since
Joawwar=, a,av, =0,
we have
17,700l =g, < Clgql .
h L) "L ,)R L3()/R
On the other hand,
0 1 0 1
on, \Ix -yl any,, \1v~1¢x) -y /Il L%(r)
_ (nx’x -y _ (nhxa l1’—1()‘7) —y)
Ix —ylI3 W=1(x)-yI13 |lL%m)
@ x =)~ s, v i) - )
lx - yl3 L¥(r)
e v )3 1 1 <o
n,._, x) -y - < —
h ek —y13 1y i) -y 3Y||L2@ &3, D)

and this ends the proof of Theorem II-3. O
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The same type of estimate can be obtained for the derivatives. More specifically,
we have

THeEOREM lI4.  Under the hypotheses of Theorem 11-3, we have the Jollowing
estimate

[0%u(y) — 3%u, ()| < {(hm*12)g - g, 1p, Flg=g,l
Hy (D)

e, 1)

H;m—-l @)

+ R g

+ rE gl
H

H1/2 }’

"+ 1ry/R (T)/R

where

1 m 1 1, when y € Q,
- = _— o+
e, (0, I ,,Z=:0 a?*'eltng, 1y 0, wheny € Q.
Proof. The proof is the same as that of Theorem II-3. O
Remark. For the two-dimensional case, the same techniques give the same
results. [OJ

III. A Few Numerical Remarks.
1. Condition Number for the Matrix a,. For h small enough, we have

2 <,y q,) <Blq "2
HY2(ryr AR a2, R

allg,

If we choose g, such that fph q,dv, = 0, we get, according to Lemma II-1,
allg, 1% <aq s < glig, I?

' 12 (Ph)\ n@n> 4n) < Blq, W2,

Now, since gq,, belongs to ¥, we have [15]

g, ,
"H 2 \/h 2

so that

II2

8
allg <a,(q, <= lg,I? ,
h < a,(qy qh)\h qp L%

ry)
which shows that the eigenvalues X of the matrix a,, are bounded above and below by
a <\ < f/h, so that the condition number of a, is of O(h~') order.

2. Computation of the Elements of a, Near the Diagonal. To compute these
elements, we have to integrate a function with a singularity of order 1/lx — y|. When
k and m are not too high, we can use primitives. In that case, the following theorem
is of some interest.

THeEOREM II-1. Let us assume that, when |x — y| < Ch we define in the kernel
of ay, ie. in

(pxs Mpy) 5 &=y, ny )x =y, m, )

lx — I3 lx - yl®




NUMERICAL SOLUTION OF AN EXTERIOR NEUMANN PROBLEM 989

Ny and ny, as the normals to 'y in x and y, respectively (instead of using interpo-
lates of order k of n, and ny).

Then, the estimate of Theorem 11-1 remains valid.

Proof. We only have to estimate

(nx T By ny) (x ), Ny — nhx)(x =Y nj)

an
lx —ylI3 lx - yl5

>

when |x — y| < Ch. Let us examine the first term. We have n, =n, + 0 -y),
so that
(n, —ny,, ny) = (n, — n,,, n,) + @, —n,,, Ok - 7).

But
l(n, = 1y O =y < CHE. Ch = Cr¥+1,

so that it remains to estimate (n, — n,,, n,).
Let (x,, x,) be the two components of x. We get

_ 3 o gy A O o wim)foxs 1 <a(woso,-h) Aa(‘/”‘»"th))
13 © @y)/0x; AW o gyp)lax, | J(W o @)\ 3xy ax ’

x
2

and

", = 1 <a‘»"ih A Qi >
o Jey) \ox,  ox,
According to Lemma II-4, the error on J is of order £ + 1. We have now to
estimate terms like

R = <a(‘1’ ° -‘pih) A <a(ll/ ° Yin) _ a‘Pih>’ O ° #in) 5 3V ° ¥in) )

ox, 0x, ox, 0x,

ox,

Such terms have been shown to be of order ¥ + 1 in [14, p. 67] by using the fact
that  is the orthogonal projection onto I', so that we obtain

_ k+1
(ny —npy, n,) <ChETL.
For the second term, it is much easier. We have

e =y, ny =y ) =y, n)l <Chklx -yllx —yl? < Chkt1

lx — y1 h x—pI5  Ix-ypl¥
since (x =y, n,) = o(lx —y1?).

However, the involved primitives are difficult to compute, so that we are led to
the use of numerical integration. The kernel being singular near the diagonal, we use
extrapolation to the limit techniques [12] which give excellent results.

Finally, for more details on the numerical aspects and results of the method
described in this paper, we refer to [5].

Conclusion. We have shown how to use a double layer potential to solve the
Neumann problem without introducing Cauchy type integrals.
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Thanks to the variational formulation thus obtained, we have been able to
prove error estimates. We have seen that the error on the jump of the solution through
I is optimal when k = m, whereas the error on the solution, far enough from T, is
optimal when k = 2m. As for the condition number of the matrix, it is of order
o).

These results can be compared with those obtained by J. C. Nedelec [14] for
the Dirichlet problem, by the use of a single layer potential. There, the error on the
jump of du/dn through I" was optimal for Kk = m + 1, and the condition number of
the matrix was of the same order O(h~!). However, the smallest eigenvalue of the
matrix was only of order O(h), so that the coercivity of a;, was very sensitive to numer-
ical errors. This last fact appeared in the numerical experiments of M. Djaoua [3].
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