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Numerical Treatment of Eigenvalue Problems for
Differential Equations with Discontinuous Coefficients*

By I. Babuska and J. E. Osborn

Abstract. The eigenvalues of a second order differential equation are approximated by
“factoring” the second order equations into a first order system and then applying the
Ritz-Galerkin method to this system. Convergence results and error estimates are de-
rived. These error estimates are based on the application of Sobolev spaces with vari-
able order.

CHAPTER 1. INTRODUCTION

During the last several years the theory of finite element methods has been exten-
sively developed. The main thrust has been on the development of approximation
methods and associated asymptotic error estimates which are based on a variational for-
mulation of the problem to be solved. This work has mainly been based on the assump-
tion of sufficient regularity of the solution, and the application of Sobolev spaces with
constant (fractional) order. It has been shown that many methods can be obtained
through the use of different variational formulations.

In particular, it has proved useful to “factor” a second order equation into a sys-
tem of first order equations, to consider a variational formulation of this system, and
then to apply the Ritz-Galerkin method associated with this variational formulation.
The so-called mixed method is an example of such a method. Consider, for example,
the equation

—divAgraduw)+u=f

This equation can be written as a system as follows:

(1.1 A grad u = o,
1.2) —divetu=f

If we now consider a Ritz-Galerkin approximation method based on a variational formu-
lation of (1.1) and (1.2), we have the mixed method; see, e.g., Herrmann [10], Oden
and Reddy [21], Babuska, Oden and Lee [3], and Raviart and Thomas [24]. For ad-
ditional references see also [20, p. 290].

This general method (i.e., factoring a second order equation into a system of first or-
der equations and then basing a Ritz-Galerkin approximation on a variational formulation
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of the resulting first order system) can be applied to both source problems and eigen-
value problems. Nemat-Nasser [12], [13], [14] has observed that this method is effec-
tive for the approximation of eigenvalues of problems with rough coefficients (coeffi-
cients possessing only a low degree of differentiability). These papers (and other related
papers of Nemat-Nasser and co-authors [15], [16]) describe and elaborate the method
and present some very interesting computational results. In [14], in which the approxi-
mations are based on trigonometric polynomials, a posteriori error bounds are proved
(under certain assumptions on the spectrum) and the effectivity of the method is de-
monstrated by means of numerical examples. A priori convergence and rate of conver-
gence is not established in these papers. Recently Conuto [6] has studied eigenvalue
approximation in an abstract context and applied his results to problems with smooth
coefficients.

In this paper we will study the simplest model problem, namely the one dimen-
sional eigenvalue problem

(1.3) @) + Ex)u=ro(@)u, 0<x<2rm,
(1.9 u(0) = u(2m),
(1.5) @'[7)(0) = ('[7) (2m),

where 7, £ and p are real, measurable, 27-periodic functions satisfying
0<1/M<7(x), £(x), p(x) < M.

7, £ and p could be, for example, step functions. Letting o = /7, we can write (1.3)—
(1.5) as the system

(1.6) u =10,
(1.7 -0 + tu = \pu,

u(0) = u2m), o(0) = o(2m).

Taking the inner product of (1.6) with s and (1.7) with v and adding the results, we
obtain

(1.8) f02" 'S — 705 — o' + Euv)dx = A fj" puv dx.

Here we seek a nonzero eigenfunction (#, 0) such that (1.8) holds for all (v, s). We
now obtain an approximation method by considering the Ritz-Galerkin method associa-
ted with the variational formulation (1.8), i.e., we seek approximations by restricting
the variational equation (1.8) to an appropriately chosen finite dimensional space St x
S;’. We will refer to the resulting method as the mixed method for eigenvalue calcula-
tion. In this paper we prove that the mixed method leads to convergent eigenvalue ap-
proximations and establish rate of convergence estimates. We are particularly interested
in the case in which the coefficients 7, £ and p are rough.

It is well known that the rate of convergence for the standard Ritz method for
the calculation of eigenvalues depends, in general, on the regularity (degree of differen-
tiability) of the exact eigenfunction u. For the mixed method we will show that
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PEPWES Ch'a( inf, llu—xlz + inf llo- nlﬁ—c;,
XES nes,

where ||-||, denotes the fractional Sobolev norm, a is any index between 0 and 1, and 6 is
a constant depending on a and the family {S’l' X S;’ },. Thus, for the mixed method the
rate of convergence depends on the regularity of « and o, and we can take advantage of
the relation between the regularity of u and that of o, i.e., we can optimize the rate of
convergence obtained in the above estimate by adjusting the index « to fit the regularity
of u and 0. We note that the choice of a does not affect the approximation method, but
only affects the rate of convergence that can be established (by our results). This leads to
a rate of convergence for the mixed method that is higher than that for the standard Ritz
method.

The regularity of  and o depend in turn on the regularity of the coefficients 7, &
and p. It can thus easily happen that u and o have different regularity in different places
(i.e., in different parts of the interval [0, 27r]). We show that such local effects can be ac-
counted for by taking the index a to be variable (i.e., a function of x). This leads natural-
ly to the introduction of Sobolev space with variable order—in contrast to the unusual
ones with constant (fractional) order—and to the development of eigenvalue approxima-
tion results based on these spaces. Thus, for problems with variable coefficients, in par-
ticular rough coefficients, the rate of convergence can be further improved by choosing
o variable in an appropriate way. We note that this further improvement is possible
when the approximation is based on finite elements but not when it is based on trigo-
nometric polynomials. This difference is due to the local approximability properties of
finite elements, in contrast to the nonlocal approximability properties of trigonometric
polynomials.

The theory of Sobolev spaces with variable order has been developed and used in
other connections in [25], [26], [27], [28], [29], [30]. In the Appendix (which ap-
pears in the microfiche section of this issue) we give a self-contained treatment of the
part of this theory needed in our applications; the development in the Appendix is
based on [26], [27]. Chapter 2 contains a summary of this material. In Chapter 3 we
analyze the Ritz-Galerkin method for the approximation of the eigenvalues of (1.3)—
(1.5) which is based on (1.8). Asymptotic error estimates are established. In Sections
3.4 and 3.5 the results are summarized and compared with the results which could be
obtained using Sobolev spaces with constant order. Computational examples and their
analysis in terms of the theory developed here will be presented in a forthcoming paper.

The authors would like to thank their colleague Professor Raymond Johnson for
helpful discussions on several topics in this paper.

CHAPTER 2. SOBOLEV SPACES WITH VARIABLE ORDER

In this chapter we define the Sobolev spaces with variable order and state the re-
sults concerning them which we will use in the remainder of the paper. We give a self-
contained treatment of this material in the Appendix (see the microfiche section).

We denote by E the set of all infinitely differentiable, complex valued, 27-periodic
functions and by E the subset of functions in £ which are real valued. For
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a = a(x) € E; we write
o, = max ox), o = min al)
o<x<2m os<x<2mw
For any real number r we denote by H" the one dimensional, 27-periodic Sobolev space of
fractional order r; H" is the completion of E with respect to norm

+ oo %

lull, = { X lap@)P(1 + 1K)},

Kk=—co
where a; () is the kth Fourier coefficient of u. Defining A™: £ — E by
Wuw)®x) = Y a@)(1 + k) e*~,

k
we have [lull, = [[A"ull,. If —L <r, it is easily seen that ||u||, is equivalent to the norm

(A" ulld + Nl )"

This expression will now be the starting point for the definition of spaces with variable
order. For a = a(x) €Ex and u € E we define A* = A*®): E— Eby

AW x) = T g, @)1 + | k[)**)eikx,
k

For s real and —[ <a_ + s we define
ltll gy, = CIA%lZ + N> ),

and then define H**):L 10 be the completion of E with respect to ||-|| a(x)sl0 At several
points in the development of this theory, L is required to be large, with the requirement
on the size of | depending on a(x) and s. Throughout the paper we assume [ has a fixed
large positive value.

We now state four theorems which give the basic properties of the operator A%(*),

THEOREM 1. Let a(x) € E, and s be real. Then, for each € > 0 there is a con-
stant C (e, a(x), s) such that

"Aa(x)u"s < C(G, a(x), s)"u"a+ +s+e

forall u € E.

THEOREM 2. Let a(x), B(x) € Eg and s be real. Then

AXCIABG) = A +B(x) gy 4y
where
Iwlly < C(e, alx), B(x), 5) ||“||a++p++s+e—1

forany u € E.
THEOREM 3. Let a(x) € Eg with a, —a_ <1 and suppose oy < o _and s is
real. Then, for any L there is a constant C(a(x), &, S, L) such that

ledllg 4 < Clax), g, s, DYIAS®ull, + Null_, ]

forallu € E.
THEOREM 4. Let a(x) € Ei and s be real. Then

A®y = A2y +w (' =dldx)
where
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"w"s < C(e> C!(X), S) ||u||a++s+e

forany u € E.

We next present some notation which is used in the remaining theorems. These
theorems contain the basic properties of the norms || - || . and the spaces HE®SL
We now suppose @ € E, with o, —a_ <1.

Let x be an infinitely differentiable function satisfying
0<x( <1, x(x =x),
x(x) =1 for |x| <1/2,

a(x),s,

supp x C (-1, 1) and
x®) +x(x—-3/2)=1 for 12<x< 1.
For any 0 <8 < denote by x, that function in Eg defined by

Xs () = x(x/8), IxI<m.
Then x; satisfies
0<xs(x) <1, Xs(—=x) = Xa(x)’

Xs(¥) =1 for x| <§/2,

(supp x5) N [-m, 7] C(-6,8) and

Xs T xs(x—38/2)=1 for §/2<x<35.
ForM = 3,4, ... let 8 = 4n/3M and define

Xo, 00 =xXo(x = 38/2), j=1,2,...,M
It is readily seen that

>
X , = 1‘
= Xou
For any u € E we define
Upg i =Xe,j» 1=1.... M

Then we have

M

u= Z Uy -
j=1

Forj=1,..., M we consider the intervals I, ; = [376/2 ~ 40, 3j6/2 + 46] and sup-
pose we are given real numbers Po; < p(',", j»J=1,..., M, such that
+ . _
max ;— mi < 1.
1<j<M Po.j l<j2M Po.i
We let ﬁ’e,]. = (p;,i),p‘;':i) and 7, = {f)})m}?%. For a € Ex with o, —a_ <1, and
6 (= 4n/3M) and p, given, we write a(x) ~ p, if
pe_,i<a(x)<p(',"’]- for xelo,j,j= 1, ..., M
THEOREM 5. If « € E satisfies a, —a_ <1, s is real and (a(x) + 5) ~ ﬁ;,
then
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M M
(o Z ”“o,f”p— + IIuII_L < IIuIIa’S’L <C, ; Z IIu@,,-IIPJr . + IIuII_,_
j=1 0,j j=1 0,j

for all u € E. The constants C,, C, depend on [_7;, a, s, and L, but are independent
of u.
THEOREM 6. Suppose a,, a, € Eg satisfy o~ _<1l,j=1, 2,5,,5, are
real and
a,(x) +5; <ay(x) + 5,
for all x. Then
Nl 5,0 < Cltllgy s, 1

Sg,l SL . , .
forall u € E. Thus, H*"?" C H*Y’V" with a continuous imbedding.
THEOREM 7. Suppose o, o, € Ep satisfy o 4 T <l,j=1,2,and
a,(x) < ay(x) forall x.
»5, L 5L,
Then the imbedding of H'?" " in H'V™" is compact.

THEOREM 8. Suppose o € Ey, satisfies a, —a_<1. Then

[f2™uv dx|
C "u"a,s,l. <sup 20 7

< Gy llull
veEE 1l —a,—s,L

a,s,L
for all u € E, where C, and C, are positive constants.
THEOREM 9. Suppose a and B are constants satisfying |a| <8, % <. Then,
there is a constant C such that
lluvll, < Cllully llvllg

for all u, v € E (see also Strichartz [23]).

THEOREM 10. Suppose a(x), B(x), y(x) € Eg satisfy max (a(x), B(x)) > %,
—max (a(x), B(x)) < y(x) < min (a(x), B(x)),and o, —a_<1,8, —B_<1,7, —
v_ < 1. Then, there is a constant C such that

luwlly(x), 0,0 < Clltlly(xy,o,L NVlla(xy,0,L
forallu,v € E,

Our final theorem is useful in determining which of the spaces H**)-%L 3 specific
function lies in.

THEOREM 11. Suppose u = 2;-:1 u; where u; € HYT with p;=>- L and supp u;
C [, 8] " with B; — oy < m/4, where [o;, B;] " denotes the union of [«;, B;] and all of
its translates by 2km. Let & > (3/2) max (8; — o) and suppose s is real, o € Eg satis-
fies o, —a_ <1, and that

“L<a@) +s<p;, for x€[e;=8,4+8],j=1,...,1L
Then u € H*)>s: L

We mention briefly an application of this result. Let u(x) be a 2n-periodic step
function defined by

ki, O0<sx<x, or x, <x<2m,
u(x) =

ky, x;, <x<ux,,
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where 0 < x; <x, <2m. Let a(x) € Eg satisfy 0 < a(x), o, —a_ <1, and a(x,),
a(x,) < %. Then, using Theorem 11 we can show that u € Ho():0.L

CHAPTER 3. THE EIGENVALUE PROBLEM

3.1. Introduction and Formulation of the Problem. We shall study the eigenvalue
problem

(1.n ~(U'lT(x) + E)u =Ap(X)u, 0<x<2m,
1.2) u(0) = u(2nm),
(1.3) @'[1)(0) = (' [7)(2m).

We assume that 7, £ and p are real, measurable, 27-periodic functions satisfying 0 <
1/M < 7(x), £(x), p(x) < M. This is a selfadjoint, positive definite eigenvalue problem

with eigenvalues A; and corresponding eigenfunctions u;:

o< <7\2<...T°°,
Uy, Uy, oens f pul; dx—8

The eigenvalue problem (1.1)—(1.3) has the following standard variational formu-
lation. A is an eigenvalue if there is a corresponding nonzero eigenfunction u € H' (H*
is the 2n-periodic Sobolev space of order 1) such that

Wa [P LuTax+ [ euTdx =) f " outdx, forall ¢ € H'.

(1.1)—(1.3) and (1.4) are equivalent in the sense that (1.4) is satisfied if and only if u
and u'/r € H' and (1.1) is satisfied almost everywhere. Thus, the eigenfunctions u; of
(1.1)—(1.3) are in H'; but it can be shown that there exist 7, £ and p such that u; QE
H'™*¢€ for any € > 0.
If £(x) = ap(x) where a is a positive constant, then we can derive from (1.1)—

(1.3) another eigenvalue problem which has the same eigenvalues but different eigen-
functions. Let 0 = u'/7. Then from (1.1) we have

—d + apu = Nou
Dividing by p and differentiating yields
(1.5) —(d'Ip) + aro = \70a.
We also see that o and o'/p are in H' and hence satisfy the periodic boundary condi-
tions. Thus, (1.1) and (1.5) have the same eigenvalues and their eigenfunctions are re-
lated by 0; = u}/r. Note that the roles of 7 and p are interchanged in passing between
(1.1) and (1.5). (1.5) has the variational formulation

(1.6) f;" L o7 ax +af:”mfdx = xfj"mfdx, for all ¢ € H'.

The eigenfunctions o; € H' but there exists p and 7 such that o; ¢ H' +€ for any € > 0.
Now we consider a variational formulation of (1.1)—(1.3) which is different than
(1.4). We introduce the new independent variable o = u'/7 and write (1.1)—(1.3) as a



998 L. BABUSKA AND J. E. OSBORN

system

(1.7) u' = 710,
(1.8) -0 + tu = Mou,
1.9) u(0) = u(2n),
(1.10) a(0) = o(2m).

Taking the HC-inner product of (1.7) with s and (1.8) with v and adding the results,
we obtain

(1.11) f:"(u's'— 705 — 0’0 + fuv)dx = A f;“puﬁdx.

Here we seek a nonzero pair u, ¢ such that (1.11) holds for all v,s. It is easily seen
that (1.11) is equivalent to (1.7)—(1.10).

We discuss next a general framework in which to study the variational formula-
tions of eigenvalue problems. Let H, and H, be two Hilbert spaces and let A (¢, ¥)
and B(¢, ¥) be two bounded sesquilinear forms on H; x H,. We suppose that A4 satis-
fies

inf su A —
(1.12) oer, e, (g, )l = C>0
holy, =1 1wl =1
and
sup |A(¢, Y)I >0, for each nonzero Y € H,.
(1.3) b=

A form on H; x H, which is bounded and satisfies (1.12) and (1.13) will be called a
proper form. In addition, we assume a compactness relation between 4 and B: T: H,
— H, is compact, where T is the operator defined by (cf. BabuSka and Aziz [2, p.
112])

(1.14) A(To, y) = B(¢, ¥), forall g€, ¥ € H,.

A complex number A is called an eigenvalue of the form A relative to the form B
if there is a nonzero eigenvector ¢ € H, such that

(1.15) A($, V) = NB(¢, ), forall y € H,.
It is easily seen that X and ¢ satisfy (1.15) if and only if AT¢ = ¢. If X is an eigen-

value of (1.15), then A is also an eigenvalue of the eigenvalue problem which is adjoint
to (1.15), i.e., there exists a nonzero adjoint eigenvector ¥ € H, such that

A9, V) =\B(g, ), forall ¢ € H,.
If welet H, = H, = H' and let

(1.16) A, 9 =]:”%u'?' dx +f02”£u?dx,
(1.17) B, §) = [ put,

we get the variational formulation (1.4). If we let
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(1.18) A(o, %) =J:“;—o'f' dx +a fon ot dx,
(1.19) B(o, ©) = fo“ 70% dx,
we get (1.6).
If we let
(1.20) A9, V) = A(u, 0, v,5) = fo”(u's-— 705 — 0'0 + tub) dx,
(1.21) B(#, ¥) = B(u, 0, v,9) = [}" pub dx,

where ¢ is the pair of functions u, ¢ and y is the pair v, s, we get the variational formu-
lation (1.11). In the next section we discuss a class of choices for the spaces H, and

Hy.

3.2. A Variational Formulation of the Eigenvalue Problem. There are many ways
to choose the spaces H, and H, so that the sesquilinear forms 4 and B defined in
(1.20) and (1.21) are bounded and that 4 is proper. In this subsection we discuss the
following class of choices:

2.1 H, = HOG)0,L o pB(x),0, L

2.2) H, = H17BC)0,L o pri—a(x),0,L

where 0 < a(x), B(x) < 1, i.e., we let ¢ = (u, 0) € H**)OL x HFE)OL ang y =
(v, 5) € H1TBG)0.L o f1=a(x),0,L  We now proceed to show that A and B (defined
in (1.20) and (1.21)) satisfy the aforementioned conditions.
THEOREM 1. The sesquilinear forms A and B defined in (1.20) and (1.21), re-
spectively, are bounded on H, x H,, with H, and H, defined in (2.1) and (2.2).
Proof. First we consider B. Using Theorem 3 in Chapter 2 we have

foh puv dx\

< Cllullglivlly < Cllullg g 10l —g,0,1

|B(u, 0, v, s)l =

% 1
<Clull? o, + o300 (w2 _g 0,1 + lIslF_q,0,0)"
= Cli(w, o)y, v, $)lly,

for all (u, 0) € H, and (v, 5) € H,, i.e., B is bounded on H, x H,.
To show that 4 is bounded we must prove similar inequalities for each of the four
terms in A. The terms f2™ 705 dx and 2" £uD dx are treated in a similar way as
J2™ puv dx. Now consider [37"u's dx.
Let u, s € E. From Theorem 4 in Chapter 2 we have
ALy = (A1) 4w
with [[w]ly < C(e)||u||a+_l+e. Thus
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"Aa(X)—l u'uo < "(AQ(X)‘lu)'uo + C(e)||u||a+_1 +e
2.3)
< ANyl ) + C@llully -1+
By Theorem 2 in Chapter 2 we have

ANy = A2(®)y 4 7
with [1zlly < C()llully , - 4. Thus

(24) IA Ayl < IAX®u]| ) + C@Muly, 1 4

Since o, <1 we have a, — 1 + ¢ <0 for € sufficiently small and hence by Theorem
3 in Chapter 2,

(2.5) el -y e < CUA*Sully + lull_).
Again by Theorem 3 in Chapter 2 we have
(2.6) llad'l o Sl 4y < C(IIA"(")ullo + llull _))
Using Theorem 8 in Chapter 2, we obtain

I [ u'sax| < Clllyy 0,015 —a0,t:
Now, combining this with (2.3)—(2.6), we obtain
@7 | [ u's-dx\ < Cllullg o, 151 —ay0,1-

From the fact that (2.7) holds for all u, s € E we see immediately by passage to
the limit that it also holds for u € H*%! and s € H1=%%L; in fact, for u € H*L
and s € H'"*%L  the expression f2™u's dx is defined by such passage to the limit. It
follows immediately from (2.7) that
f 02” u'sdx
for all (u, 0) € H, and (v, 5) € H,.

In an analogous way we show that

[ dx| < Cli, o)l 1w, )y,
0 1 2

< Cli, o)l v, 9y,

This completes the proof.

THEOREM 2. The sesquilinear form A defined in (1.20) is proper, i.e., it satisfies
inequalities (1.12) and (1.13), provided § = 1 — o

Proof. Given (u, 0) € H*%L x HP%L we seek (v, s) € H!7F0:L x g1-e.0.L ¢4
that

A, 0,v,5) = C(lullZ o | +ll0llZ o )
and
Iolly, 0,0 + lIsllg o, <C'(llullgo,, +lleligo,;)

with C and C' positive constants. These two inequalities yield inequality (1.12). Since
our form A4 is Hermitian, we also obtain (1.13). This will establish the desired result.
We divide the proof into several parts.

(1) Letu € H*%L. We will construct S € H™®%! 5o that
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2.8) 1Sl —q,0,0 <Cllully,o, 15

(2.9) [u'Sdx>Cyllull o, ~ Collully,

with C, C; > 0 and C, independent of u.

It follows from Theorem 8 in Chapter 2 that the sesquilinear form — fg"qbfz dx is
proper on H* %L x H=%%L 1t is also easily seen that [2™ A*¢A%u dx defines a
bounded linear functional on H%%%. Thus there exists (see Babuska and Aziz [2, p.
112]) y € H~*%% such that

_ (27

(2.10) o = [ AN dx

for any ¢ € H*%, and Iyll_ o, < Cllully g -
Let 5 = y — a,, where ay = (1/2m) f2" y dx. Clearly
(2.11) gl < CliYl_g,0,1 <Cllullyo, 15

and thus
151 _g0,0 < Cliullgq ;-

Since the Oth Fourier coefficient of ¥ is O we can find S € H1~®%L such that §' =%
and

(2.12) ISl —g0,0 SCUPN_g0,0 <Cllully 0,15

S is the primitive of 7 with Oth Fourier coefficient equal to 0.
We return now to (2.10) and set ¢ = u; this gives

20l AOull} = - [ "uy dx

_ 2T = - 27

= Io uy dx aofo udx
(2.13)

_ 2 = _ = 2n

= Io uSdx-a, fo u dx

_ 2T & = 2m

= .[o uSdx—a, fo u dx.
Using (2.11), we have
2.19) |7 [7" wax| <onuZo, + CONUIR

for arbitrary §. From (2.13), (2.14) with small 6, and the fact that [lull_, <llully, we

get
2n 1w
[y uSdx>Cillull o, = Cyllully.

This proves (2.9). Also, (2.12) yields (2.8).
(2) We consider now the complete form 4 defined in (1.20). Given u € H®OL,
0 € HAOL we set

(2.15) v=Du+w, s=8+z
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where S satisfies (2.8) and (2.9) and z, w and the constant D will be determined later.
Using (2.15), we have

A(u, 0,v,5)= f:"u'gdx + f:“ u'z dz —fozﬂrogdx —f:"mz_dx

2m — 2m
(2.16) D o ogudx fo owdx

+D f:ﬂélulzdx+ f:"guwx.

For D sufficiently large (depending on C, in (2.9) and on £) we have

(2.17) D [*" glul® dx > 2C, lull3.
Choosing w = z'[¢, we can write

2n — 2 _(2n = —
(2.18) fo uzdx +f0 uzwdx—fo u(-z' + tw)dx =0.

Combining (2.9), (2.16)—(2.18), we get
219)  A@w,0,0,9>Clull o + [ o(-1S~7z+ D7 + @'/5)) dx.

(3) Using Theorem 8 in Chapter 2, we see that we can find ¥V € H%%L 5o that

(2.20) fo” oVdx > Clloll? o
and
(2.21) WVl _g,0, =llollgo, -

Next, we show that we can find z so that
222) JoT 68— a4 DT + e yax = [77 gV ax

for all ¢ € HP*)-%:L "and thus in particular for ¢ = ¢. Consider the following linear
functional on ¢ € H!:

(2.23) f:” oVdx+ [T 16S-D [ gir ax.
Clearly

(2.24) | oV dx| < Cllgl, VIl < Clol, IVl _g,0,15
(225) | [27 63 ax| < Cligl, 1Sy,

(2.26) | [ 27 o ax| < Cligl llully < Cllgl Nulg .-

Thus, (2.23) defines a bounded linear functional on H'. Now consider the following
sesquilinear form on H! x H!:

2.27) = [ 7" rezax + [} o@'l8) ax.

Since
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| [ rozax| < Cliglolizlly < Clgl,
| JoT 6@ ax|= | [T 507 ax| < il
and

|- [27 el ax + [7 6(@'[2) dx|

0
_ (2m 2 2m 112 > Clloli?
= [ rielax + [T g 161 ax > CloI,

we see that (2.27) is a proper form on H! x H!. Hence (see Babuska and Aziz [2, p.
112]) there exists z € H! such that (2.22) holds for all ¢ € H! and (cf. (2.24), (2.25)
and (2.26))

lzll, < CAVI_g,0,0 + ISy + llully o,()-

Using (2.8) and (2.21), we thus have
(2.28) lzll, < Cllully,g, + llollg g,0)-
Since (2.22) is valid for all ¢ € H!, we see that
(2.29) w=0C1%)=V+1rS+1z-Du.
Write w = ao(w) + (W — ay(w)), where a,, is the Oth Fourier coefficient of w. From

(2.28) and the definition of w we have

1 2n 1

230)  lag0) < | o [27 7/ dx| < Clill, < Cllull 0, + lollo,,).

Also, using Theorem 3 of Chapter 2, we see that

Iw = agWllg o, SNV + 78+ 72 =Dulllyy 0,1

(2.31) ,
SCWVllgq 0,0 F1Sllg + lizllg + NAY ' llg + Nl — 1)

Using Theorems 2, 3 and 4 of Chapter 2, we get

(2.32) 1Al + llull - 4y < Clladlly o, 1-

From (2.8), (2.21), (2.28), (2.30)—(2.32), and the fact that § = 1 — « we have

(2.33) Wlly,o, < Cllully,g,. + llallg o, ()

We have shown that (2.22) holds for all ¢ € H'. (2.33) shows that w' = (z'/§)' €
HP&)0.L and thus —78 — 7z + Du’ + (2'/£)’ and V are in H )L It thus fol-
lows by taking limits that (2.22) holds for all ¢ € HF(X):0:L,

(4) We have now chosen each of the functions introduced in (2.15). With these
choices for v and s we see from (2.19), (2.22) and (2.20) that

2:34) A, 0,0, > Cllull} o, + [ oF dx > Cllulo,0 + lol o,
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From (2.15) and (2.33) we have

(2.35) Nolly—g 0,0 < Cllully,q, + llallg o ),
and from (2.15), (2.8) and (2.28) we have

(2.36) lislly —a,0,0 < Cllully,o, + llolig o, ,)-

The inequalities (2.34)—(2.36) yield the proof of (1.12).

Finally, we note that under our present hypotheses we have H , = H, and
AQ, s, u, 0) = A(u, 0, v, 5), i.e., 4 is Hermitian. Thus, (1.13) follows from (1.12).
This completes the proof of Theorem 2.

We end this section by observing that the operator T: H , — H, defined by
A(T¢, ) = B(¢, ¥) for ¢ € H,, ¥ € H, is compact (cf.(1.14)). To see this, we first
note that T is a bounded operator from H, to H' x H!, and then apply Theorem 7
in Chapter 2. (Cf. Theorem 10 in Section 3.4.)

3.3. The Approximate Eigenvalue Problem. In this section we associate an ap-
proximate eigenvalue problem with (1.15). Let M{‘ C H, and M¥ C H,, where either
O0<h<1lorh=hy,hyO0,be given families of finite dimensional subspaces. We
assume conditions analogous to (1.12) and (1.13):

inf sup A, )l =Cn®, C>0ands>=>0 independent of A,

G gemt  yem”
el =1 19y, =1

and

(3.2) sup |A(¢, ¥)I >0, for each nonzero EMg;
pem”

(3.1) and (3.2) are assumed to hold for & sufficiently small. In addition, we make the
convergence assumption

(.3) Ty = TU = 0,

where T),: H;, — H, is the operator defined by
{ T, €M,

A(T, 6, ¥) = B¢, ¥), forallg € H,, y € ME,

T is defined by (1.14), and ||-|| denotes the operator norm on H 1- We now seek num-
bers A" for which there exists nonzero " € M{' such that

(3.4 A", ¥) =N"B(¢", ¥), forall y € ME.

The eigenvalues \” of (3.4) are then used as approximations to the eigenvalues A of
(1.15). The eigenvalue problem (3.4) is obviously equivalent to a matrix eigenvalue
problem.

The approximations \* defined by (3.4) will be called the Ritz-Galerkin approxi-
mations based on the sesquilinear forms 4 and B and this approximation method will
be referred to as the Ritz-Galerkin method based on the forms A4 and B.
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The formulations (1.15) and (3.4) cover a wide variety of eigenvalue problems
and approximation methods. A full discussion of the associated convergence results in-
volves several notions from the theory of nonselfadjoint operators such as ascent, alge-
braic multiplicity, and generalized eigenvectors. In all of our applications H, = H,, 4
is Hermitian, and M’ {' = M;’. Furthermore, using the fact that A(u, o, 4, o) > 0 for
(4, 0) an eigenvector, we can easily show that our problem has no generalized eigenvec-
tors. We shall thus be able to use a restricted form of the general convergence theorem.

For the remainder of the paper we suppose « + =1, 0 < a(x) < 1, and Mi’ =
M} = M". Then H, = H, = H and 4 is a Hermitian form on H. Let A, be an eigen-
value of (1.15) with algebraic and geometric multiplicity m. Then m eigenvalues of
(3.4) converge to Ao as b —> 0; let Xg be any one of these eigenvalues. Let NV, be the
m dimensional space of eigenvectors of (1.15) corresponding to A,. We introduce the
notation

"= sup inf N6 = xly.-

(3.5) 20ENo xeM
lpglly=1
The rate of convergence of )\g to A, (as well as the rate of convergence of the corre-
sponding eigenvector approximation) is estimated in the following
THEOREM 3. There is a constant C, independent of h, such that

(3.6) Mo — NI < Ch 8 (eM)?

with &8 as in (3.1). If ¢g is an eigenvector of (3.4) corresponding to ?xg with |lghlly = 1,
then for each h there is an eigenvector $g of (1.15) corresponding to \, such that

(3.7) 6% — ol < Ch 0 en.
H

For a proof of the general rate of convergence theorem for the case in which the as-
cent is one (which includes the above theorem) we refer to Babuska and Aziz [2] and Fix
[9]. For a proof in the case where the ascent is greater than one we refer to Kolata [11]
These references treat the case § = 0. An obvious modification of the proof yields the
case & > 0. See also Bramble and Osborn [5] and Osborn [22].

We now suppose that we have two families of spaces {S’l'} and {S;’} satisfying the
following properties:

(3.8) S]'.’ C ka, j=1,2, with kj constant, k]- =1,
2
(3.9) 1est, j=1,2, and (S%) = {UGSQ: foﬂudx=0},
where (S{')’ denotes the set of derivatives of all functions in S{';
10 L X0, S CEORT Nl o 7=12,

j
where0<'y(x)<kj,'y+ - <LO0<u, v, +u<t]-witht]-> 1,e>0;if y(x) =
is constant then we can let € = 0;

(.11) IPntlly (xy,0,1 < CH 2 Nutlly 20,15

where p, is the H®-orthogonal projection of u onto S¥, 0 < y(x) < Ky vy —v_<1
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and § = §(v) is a nonnegative constant depending on v; for the case y(x) = constant,
one may choose §(y) = 0.
Then we define

(3.12) M' =S x Sh

We will discuss assumption (3.3) in Section 3.4. We now show that (3.1) and (3.2) are
satisfied.

THEOREM 4. Suppose S{' and S;’ satisfy assumptions (3.8)—(3.11). Then, with
M" defined in (3.12), assumptions (3.1) and (3.2) hold with & = §(B) as in assumption
(3.11).

Proof. The proof of this theorem parallels that of Theorem 2. Given (u, 0) €
Sy x S} we seek (v, 5) € S¥ x SI 50 that

A(u, 0, v,5) > C(lluui,o,L + llollg,o,L)
and

1—b
Nollg,o,0 % lsll g 0,0 SCH (llully o, + llellg ;)

with C and C’ positive constants that do not depend on h, with § = 8(B) as in assump-
tion (3.11). These inequalities yield (3.1). (3.2) follows from the fact that 4 is Hermi-
tian. We divide the proof into several parts.

(1) Letu €S}, 0 €S In the proof of Theorem 2 we constructed S satisfying
(2.8) and (2.9). Let S be the HO-orthogonal projection of S onto S¥. From (3.11)
and (2.8) we have

(3.13) llglll_a,o,L <cn?® IS —g,0,0 < ch® Nully o105

where § = §(B). Since from (3.9) we have u' € S”, we see that
f:" “S-3)dx = 0.

Thus, from (2.9) we have

(3.14) [ W' Sdx > Cllull? o | — Cyllull3.

(2) With S replaced by S we next construct z, w and D exactly as in the proof
of Theorem 2. We have w = z'/¢ and (cf. (2.22))

= _ 2| QR
(3.15) [iT o183~z Du + @l ax = [ oV ax,
where V satisfies (2.20) and (2.21). We also note that
(3.16) llzlly < Cllullyo,, +ollgo,.)s

(3.17) IWlla, 0,0 < Cllully,o,0 + Nollg o, 1)-

These results are seen to hold by observing that replacing S by S does not alter in-
equalities (2.28) and (2.33).

(3) Consider now the sesquilinear form f %" ¢y dx. If follows from Theorem 8
in Chapter 2 that this form is proper on H!~*:0:L x fo=1.0.l " Tet y €S2 Then,
using Theorem 9 in Chapter 2, we can find ¢ € H!1~*9:L sych that
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(3.18) ooV dx > CIIL 0,1
with C > 0 and independent of 4, and
(319) "¢"l—-a,0,l. = "‘p"a—lyo’]_-

Let ¢ = ppo, where p, ¢ is the H%-orthogonal projection of ¢ onto S,f,‘. Then, from
(3.18) we have

(3.20) [ dpax= i o1

and using (3.19) and (3.11), we obtain

3.21) 181y 0,0 < CH 2Nl g 0,1 = CH P W llgy 0,15
where 8 = §(8). Combining (3.20) and (3.21) we find

inf sup lf:" ¢$dxl > Chd.

(3.22) yesh pesh

"wlla_l’o’[_:l "¢“1—a,0,L=l
We also see that

(3.23) sup ' f:" oy dx, > 0, for any nonzero ¢ € S’;.
’ h

Since w' € H*1:0:L it is easily seen that [ 2™ ¢w ' dx is a bounded linear functional on
Hl—oz,O y L‘

It thus follows (see Babuska-Aziz [2, pp. 112, 186, 187]) from (3.22) and (3.23)
that there exists a unique w, € S¥ such that

(3.24) o de = (27 sw! h

fo ¢wl dx fo ¢)W dx, for all ¢ €S2
and
(3.25) Wi lle—g 0,0 S CH MW 4y 0 < Ch 0wl o1

Letting ¢ = 1 in (3.24) shows that | (2)" w; dx = 0. Using (3.9), we see that we can
find W € ST such that (W) = w, and [3"% dx = 0. Now set w = W + J3" wdx.
Then, (W)' = wy, [3" Wdx = [2™ w dx and, from (3.25),

~ ~ 2
10,0 = [ + [7 wax

(3.26) 0.1

A —_—
S<UWllyeg 0,0 + Cliwlly < Ch Wiy o ;-
1,0, 0 ,0,L

Let -1 <v <a_ —1. We easily see that the form f%” ¢y dx is proper on H” x
H™. We can further prove that
(3.27) inf  sup If’" ¢>t—l7dx’ >c
h n 170
VES, PES,
Iyil,=1 ol _, =1
and

(3.28) suph ’f021r ¢$dx, >0, for any nonzero ¢ € S¥
yesh



1008 I. BABUSKA AND J. E. OSBORN
(cf. (3.22) and (3.23)). Since w' € H", we see (Babuska-Aziz [2, pp. 112, 186, 1871)
from (3.27) and (3.28) that there is a unique w, € S;' such that

(3.29) foz" oW, dx = 02" ¢w'dx, forall ¢ €S”
and

lw' = w,ll, <C inf llw' = xl,.

(3.30) xesé‘

It is immediate from (3.24) and (3.29) that W' = w,. We can thus use (3.30) to
estimate ||lw = wll,. From (3.30), (3.10) and Theorem 3 in Chapter 2 we have

w=wll, <llw-w| <Clw' =W, <C inf | - x|
V] v+1 v v
h
XESz

(3.31) <C inf W -xl,=C inf |w -,
xe(shy wesh

n a(x),0,L>
wESl

where 0 <tandv+14+7<a_.
(4) Next set 2 = p,z, where p,z is the H®-orthogonal projection of z onto S%.
With W, Z and D so chosen we set

(332) v=Du+w, s=8+%
Then v € S and s € S¥. Using (3.32), we have
_ (27 1§ 27z _ [(2nm 3
A(u,o,v,s)—f0 ude+f0 uzdx fo 70S dx

2w = _ 2 — _ 2 =<
(3.33) —fo rofdx Dfo o't dx fo o'W dx

2w 2 2m =
+D fo Elul? dx + fo Euw dx.
From (3.14) and (2.17) we get
(3.34) Jo wSax+D (77 dul? dx > Clul2 o ).
Using (3.24), (3.15) and (2.20) we have

- fo” 708 dx — fo” ro5dx — D fo" o' dx — fO’" o'W dx
= {— f:" 108 dx — f:" rozdx — D f:" o'udx - foz" o'fv'dx}
(3.35)

+ f:" T0(Z— 2)dx

2 = 2m =_ & 2 =_ 5
= [T oVax+ | r0(z=2)dx > Clollf o, + 2" r0(z- 7 ax.
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Since u' € S¥ we see that
(3.36) f:" u'zZdx = f:" u'zdx.
Now, combining (3.33)—(3.36), we have
A(u, 0,v,5) = Cllull} o | + Clloll?,

(3.37)

- lf:" ro(z'—?)dxl - f:" ué(@—fg— dx|.

From (3.31) and (3.17),

. | [ ug(w—mdxl < Cllully i = wil,
338

< Cllullgh™wlly, 0,1 < ChT(IIuII:‘;,O,L + Ilollg,o,L)-
Similarly, from (3.10) and (3.16) we have

(3.39) | [T 02— 2) dxl < Cllollglizll,h" < Cul o | + llol2 o I,

where 0 < 7n. Combining (3.37)—(3.39), we have
(3.40) A 0,0,9)> Sz, + Tl o)

for h sufficiently small with C > 0 and independent of A.
(5) It remains to estimate lvllg,o,. and lIsllg o,,- From (3.32),(3.26) and (3.17)
we have

I0llg,0,0 < Clllullg g, + 1Wllg o)
(341)
<C(llully,g, +h ™8 IWllg 0,1) < C 8 (lully o, + llolly o ;)

and, using (3.32), (3.13), (3.11) and (3.16), we have

(3.42) Isllg,o,0 <USlg,0,0 +1Zllg0,10 <Ch(lullyq,, +llollgq ()
where § = §(f). Finally, combining (3.40)—(3.42),we find
inf sup |A(u, 0, v, s)l = Ch®,
(u,0)eEM (v,s)EM

II(“’U)“H =1 II(U,S)“H =1

with C > 0, C independent of 4 and § = §(f) in assumption (3.11). This is assumption
(3.1). (3.2) follows from this since 4 is Hermitian. This completes the proof of Theo-
rem 4.

We now consider two specific choices for the spaces S{‘ and S;’.

(a) Trigonometric polynomials. Let h = hp, = 1/N and define

S{V = Sév = SV = span {**}¥__,.

(Here we write S% and A instead of S}/V and AN, etc.) We now show that assump-
tions (3.8)—(3.11) are satisfied for this choice of spaces. (3.8), with any k;i=>1, and
(3.9) are immediate.
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The basic approximation property of SV with respect to constant order norms is
given by

(3.43) inf lu = xll, < CN"Hlull
)(ESN

Y+u

for any real v and u with u > 0, where pu is the H®-orthogonal projection of u onto
SN, For variable order norms we have the following

THEOREM 5. Suppose vy € Eg and u is a constant which satisfy 0 <vy(x), v, —
v_<1land 0 <u<1. Then for each € > 0 there is a constant C(€) such that

ian"u - X"‘Y,O,L < _C_Kg_)_ "“"7 L, L
XES NH—€ e
forall u € HY*L gnd all N.

We omit the proof of this theorem (which can be based on (3.43) and an applica-
tion of Fejer sums) because it will not play an essential role in the applications treated
in Section 3.4. In this regard see Theorem 12.

Theorem 5 shows that assumption (3.10) is satisfied with ¢, =7, =1+ v,. We
note that if y is constant, then we can take ¢, = ¢, = oo,

Next we verify (3.11) with § =y, —y_ + €, where € is any positive number.

THEOREM 6. Suppose v € Eg with 0 <vy(x)and vy, —v_<1. Forany ¢ >0

there is a constant C(€) such that

Y4+—v_te

(3.44) o ully(x),0,L < C(e)N "U",y(x),o’L

for all u € HY®):0:L where p wu is the H O_orthogonal projection of u onto SV.
Proof. We first note that

lpll, < CN*lipll, -,
for any p € SV, and
lpyoll, <lloll,,

where k and v > 0 are constants. Using these inequalities and Theorems 1 and 3 in
Chapter 2, we have

IPnUlyxy,0,0 < CUlyUlly , 1opp + PRI

Y4V

+
<cw “Uowuly _ejp + oyl )

-y_+ —y_+te
<V Nully, _epp F lhall_) < CNTFTTT ul

v,0,L
for any € > 0; here C depends on e.

Remark. Estimate (3.44) cannot be essentially improved. This can be shown
using results of Nitsche [17].

(b) Finite elements. For each 0 <h < 1 let A" be a partition of [0, 27] into
subintervals of length less than or equal to A. By such a partition we mean a sequence
{x;})_o satisfying



EIGENVALUE PROBLEMS FOR DIFFERENTIAL EQUATIONS 1011
0<xy<x; < <xpy_, <27 <xy,
Xy —Xo=2m and
max (X, —Xx;)<h.

j=0, .. N1 111 2
We can consider our partition to be extended to all of (oo, +o0) by “periodicity”, i.e.,
we can let x;, v =x; forj=...,-1,0,1,.... We assume the family {A"}o<n<y i8
quasi-uniform, i.e., there is a constant C such that & < Cminj— ... N—1(x;4; = X))
forall 0 <A < 1.

For r and g integers satisfying 0 < g, 2q + 1 <r we let

S" =S"r,e) ={f: fECIR), f is 2nx-periodic,
f is a polynomial of degree r on each subinterval of A"},

The family {S,}y<p<; is @ (¢, k)-regular system with k =q + 1 and t =7 + 1 (cf.
Babuska-Aziz [2, pp. 83, 84]), i.e., it satisfies the following approximability properties:
(1) S" CH¥forall 0<h <1,
(2) for 0<1,0<s<min(, k), [ and s constant, there is a constant C = C(l, 5)
such that for each u € H' there is a ¢ = ¢(u, h) € S such that

(345) llu = ¢ll, < Ch*llull;,, 0 <s<min(, k),

where 4 = min(t — s, [ — 5).

In fact, we may take ¢ to be p,u where p,u is the HP%-orthogonal projection of u
onto S”. In addition, the following inverse property holds: for0<a<f<g+1,a
and f constant, there is a constant C = C(a, 8) such that

(3.46) lixlly < Ch*Plixll,

forall x €ES" and all 0 < h < 1.

We next present a result which establishes the approximability property of
{S"}O <k< With respect to variable order norms. In the proof of this result we need
a lemma first proved by Douglas, Dupont and Wahlbin [8]. (More specifically, this
lemma is a consequence of inequality (4.7) in [8].) Compare also de Boor [4] and
Nitsche and Schatz [18], [19]. For the sake of completeness we present a proof of
this lemma that is naturally related to the ideas of our paper.

LEMMA. Let 0<§ <t<mand 0 <e<1,andset I, = {x: §<x<2m—§}
Then, there are constants C and n > 0 such that

(I,

for all w € H® with (supp w) N [, 7] C (=8, 8) and all h, where w,, = p,w is the
HP°-orthogonal projection of w on S®. C and n depend on 8, & and & but not on w
and h.
Proof. We divide the proof into several parts.
(1) Let ¢,(x) be a family of functions with the properties:
(1) ¥y € Eg,

i
d'wy, |2

dx!

Y — . .
dx < Ce_"h h_]"W"O, ] = Oa la e q + 1’
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2 0< Y, (x), Y,((6 +8)/2) =1, Y, (x) is decreasing for 0 < x < 7,
3) ¥up(=x) = ¥, (),
(4) ¥p(x) = cosh " ¢(mr — x)[cosh i ¢(m — (6 + £)/2), (6 + )2 <x<m,
%) 1P ) < Cp(h )P Yp(x) for all p, x and h, where C, is independent
of x and A.
Such a family can be constructed as follows. Let

Ju(x) = cosh h™¢(m — x) / cosh h™€ <7r - 2%)

and let u € C”(—oo, o) satisfy u(x) = 0 for x <—(5 + £)/2 and u(x) = 1 for x > 0.
Now let ¥, (x) be the C*, even, 2n-periodic function defined by

Y(x) = Lxu<h"e< - 5—;“—E>>f;,(t) dt + f(m), 0<x<m.

It is easily seen that this family has the above properties.
As a consequence of property (5) we have

647 P! < G0 Pz )
and
(3.48) e, Vax) / fg?, <€

forj=1,..., N and all 4, where I = [x:_;, xj],j =1,..., N, are the subintervals
of the partition A"
(2) Let th and H£_1 denote the space S” equipped with the norms
h

2
laly, = [ 1ul?yy dx

and ) o
= 2,1
Il = JoT Pyt ax,

respectively. Consider the sesquilinear form G(u, v) = f2™ uv dx on §”* x §". Clearly

<
(3.49) Gl <l _, ol

for u,v € S*.

Let u €8” and set v = utﬁ;l. Now let v, be an S".interpolant of v (defined on
I; by setting vﬁ’)(x) =v0(x),1=0,1,...,q,x = X;_1> X;, and vy (x) = v(x) for any
r = (2q + 1) uniformly spaced values of x in (x;_,, x;)). Then we have the standard
estimate

llv—vy

+1),.(r+1 .
hllo’1j<chr [ )IO”i’ j=1,...,N.

(3.50)

Now, recalling that u is a polynomial of degree r on I;, we have

' fr+1 N B
(3.51) pr D — Z ( . >u(l)(¢,hl)(r+1 U}

i=0 !

Combining (3.50), (3.51) and (3.47) and using the inverse estimate |u(®) or S
)
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Ch7uly, 1; We have, after a simple computation,

,
W=yl < CHH S WO,
] i=0 )
<Chl e max w;llulo I
R o4

Thus !

N
llv=w,ll5, <C 3 max ¥, max V2h2 9y 2
h j:] I] Ij )
N max; ¥, max; w;z
<Ch2(l—e) Z ] 7
=1

fz,. lul?y;" dx.
mjnlj ‘//;1
Now, from (3.48) we have

-2 2

max;, /% max;, /) max;, 1/
: = > <C

IIlij Vi mmI]. Vi

for all j and A. Thus we have

N
lo=v,l2, <Cr2=D S [ ju2yst ax = CRRO-u2_.
h = Yh

Using this and recalling that v = u\l/;l , we get

1G(u, v,)| = G, v)| = 1G(u, v —v,) > Ilullz_l (1-Chn'™®)
h
and

"vh"lllh < ”U"lph + v - vh"‘l’h < C"u"w_1
h

from which we obtain

sup |Gy, v)l = Cyllull _,
Y

h
veES
(3.52) e =y
h

for all # and all u € S", where C, > 0 is independent of u and A.
(3) Let w € H® with (supp w) N [~m, 1] C (=8, 8). w,, = p,w satisfies

w, € Sh,
Gwy, ) = Gw, ¢), ¢ ES™
Thus, using (3.49) and (3.52) and recalling that ,(x) = 1 for |x| < §, we have

¢, llwhllw_l < sup IGwy: O = sup  1Gw, )l <Iwll__, <liwll,
h PES pesh Yn
oty =1 Ioly, =1

(cf. Babuska and Aziz [2, p. 112]). Hence
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¥a(®)
¢t

(3.53) f’z Iwyl2 dx < W, (8) fI E w295 dx < lIwii2.

Now, using property (4), it is easily seen that
(3.54) Up(®) < 2eH “E-0)/2,
Combining (3.53) and (3.54), we have

1, €
<fI w2 dx>’<Ce " wlly,
£

where C and n > 0 depend on 8, £ and € but are independent of w and 2. Now the
desired result follows from the inverse property of the family {S”}.

THEOREM 7. Suppose y(x) € Eg and i is a constant which satisfy 0 <vy(x) <
gtl, v, -7 <1,0<u,v, +u<r+1. Then for each € > O there is a constant
C(€) such that

inf |lu-— )(II,y o.L SCER*Elull
h I I
XES

v, u,L

foralu€ H"*" and all 0<h < 1.
Proof. Given v and € we can choose 6 and 3 ¢ such that

-
(3.55) Y~ Py
and
Po,i-1 ~Pa,i <& Py =Py ;<€ P —Py;<e pi;<q+l,

(3.56)
Py itu-e<r+1, j=1,....M

Let E},(u) = u — pju, where p,u is the H O_orthogonal projection on §”. Using Theo-
rem 5 in Chapter 2, we see that

M

IE, @l 0,0 < ng ||En(u)Xg,1||p+ + ||Eh(u)||_L$
=1 0,1

(3.57)

< c;}: Z 1B, xo, DXoll 4 + ||E,,(u)||_L$.
PR 9,1

Consider Ej, (ux,, i)xe , and suppose first that I #j — 1,7+ 1. (If j = 1, we sup-
pose [ # M, 1, 2; and if j = M, we suppose I # m — 1, M, 1; for simplicity of notation
we will in any case indicate this condition by writing |/ —j| > 2.) Using the lemma,

2 Y
dx)

we have

di
;;En(ux,,,i)

q+1
Ey(ux, . f
£y, Xo,J)Xe,l"p;l< (igo 1x—301/21<6

(3.58)
< C'h"llux(,,]-ll0 < Ch*llully.
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Now suppose |/ —j| < 1. Using the approximability property (3.45) we have

3.59) E,(ux, )X, ,l < ClE,(ux, < Ch*Cluy, I )
( ) 0,j70,1 ;l\ n( 0,1) +l = Xo,j p;",+(u—€)

provided 0 < e < u since po ; ¥ (u—¢€) <r+ 1. Using the inverse property (3.46) to-
gether with (3.45) we have

NE, (ux, N . <Ch ¢|lE,(ux, )l < Ch~¢lux, I
h\*Ag,j Pe+,l h\ER,j P;,l‘e 0,j P;,z—e

Thus (3.59) holds for . = 0 and € > 0. From (3.56) and (3.59) we have

(3.60) IIEh(uxo’j)xo,lllp;l < CH*llux, | by hu

for|[I—j|I<1
Combining (3.58) and (3.60), we get
Z Z "Eh(uXQ’]‘)Xeyl” +
j o1 Pg,1

M
(3.61) = 3 Bl y ¥ 1B, g, Do e

i=1 ll=jI<1 Po,1  j=1 lI—jI>1

M—€
< Ch 121 llux, ]II oy b + Chtllull,.

Since (3.55) implies (y(x) + u) ~ (pe + u), we see from Theorem 5 in Chapter 2 that
u . <
; Il Xe”"l’e_,j+u <Cllul,,, -

From (3.45) and Theorem 3 in Chapter 2 we have
(3.62) IE,@l_; <IE, @y < Ch"”u““ < Ch""u”%,‘,[_-
Finally, combining (3.57), (3.61) and (3.62) and a further application of Theorem

3 in Chapter 2, we obtain
lu = pully 0,0 < CEOR*Cllull, .

We note that for 0 < u this result holds for 0 < € < y, and for u = 0 it holds for
€ > 0. This completes the proof of Theorem 7.
The next theorem is used to verify assumption (3.11) for finite element spaces.
THEOREM 8. Suppose v € Eg with 0 <y(x)<q + land vy, —v_<1. Then
for any € > 0 there is a constant Ce) such that

|Iphu||7(X),0,L < C(e)h_euuuv(x),O,L
forall u € HY*)0.L ywhere pju is the H 0 orthogonal projection of u onto S".
Proof. Let € > 0. Using Theorem 7 with u = 0 we have

Ipptelly 0.1 < Upytt = tlly g 1 + llully o,

< Ch™fNully o + llully o0 < Chllully o (-

If v is constant we note that a direct application of (3.45) yields this result with e = 0.
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For r and g integers satisfying 1 < q and 2q + 1 <r we now define S{' =
S"(r,q) and S2 =S"(r—1,q—-1). Withk, =q+ 1, k,=q,t, =r+1landt, =r,
assumptions (3.8) and (3.9) are immediate, (3.10) follows from Theorem 7, and (3.11)
with 8 = € for any positive € follows from Theorem 8. Finally, we observe that if v is
constant, then (3.10) and (3.11) with € = 0 are consequences of the standard approxi-
mability property (3.45).

3.4. Error Estimates for the Eigenvalue Problem. In this section we apply the
previously developed theory to estimate the errors which arise when the eigenvalues of
the problem (1.7)—(1.10) (which is equivalent to (1.1)—(1.3) and to (1.15)) are approxi-
mated by the Ritz-Galerkin method based on the sesquilinear forms (1.20) and (1.21)
(cf. (1.15) and (3.4)). We assume throughout this section that 7 € H®%! and ¢, p €
HY %l where ¢, ¥ € Eg,0 < ¢(x), y(x) and ¢, —¢_ <1, ¥, —y_<1. Asa pre-
liminary step, we study the regularity of the eigenfunctions of (1.15).

THEOREM 9. Suppose N, is an eigenvalue of (1.15) with A and B given by (£1.20)
and (1.21), and let (u,, 0,) be a corresponding eigenfunction. Then uy, € H “10 and
0o EH 200 where w, and w, are any functions in Ep satisfying w; , — w; _ <
1,i=1, 2, and

0 < w,(x) < min(¢(x) + 1, Y(x) + 2), 0 < w,(x) < min(¢(x) + 2, Y(x) +1).

Proof. 1t is immediate that
U, —105 =0, 05— §uyt+Agpuy =0

70”' .
and uy, 0y € H'. Using Theorem 10 of Chapter 2, we get u;) el where 7, is

any function in Ep satisfying n, , —n, _ <1 and 0 <n,(x) <min(1, ¢(x)). Now,
using Theorems 2, 3 and 4 in Chapter 2 we see that u, € an,o, for any n, € E,
such that n, , —n, _ <1 and 0 < 7n,(x) <min(2, ¢(x) + 1). Analogously we find
that g, eH""" for any n3 € Eg withny 4 —n3 _ <1and 0 <ny(x) <
min (3, ¢(x) + 2, Y(x) + 1). Proceeding in this way we obtain the desired result.
Now we analyze separately the two special choices introduced in Chapter 3, name-
ly trigonometric polynomials and finite elements.
(a) Trigonometric polynomials. First we prove assumption (3.3) for this particu-
lar choice.

THEOREM 10. Assumption (3.3) is satisfied for trigonometric polynomials pro-
vided that

@.1) B, <28,
“4.2) 28, —B_<1 (ora, < 2a_).
Proof. We must show that
1Ty =TIl el 0
where T and T, are defined in Sections 3.1 and 3.3, respectively. Let (u,0) € H =
H®OL x HBOL and set T(u, 0) = (&, ¥). Then &, G satisfy
(4.3) a' -7 =0 /
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and
(4.4) ?7” - 2’17 + pu = O‘
Multiplying (4.4) by %, integrating by parts, and using (4.3) we obtain
27 L~ 2 ~12 - 2m ~
fo (@')?r + Eld]*) dx fo puT dx
from which we get

(4.5) 1712 < Cllullyll#@l,
and
(4.6) 1@l < Cllully.

Now from (4.3)—(4.6) we see that

4.7 151, < Cllully < Cli(u, o)l
and
(4.8) 171, <Cllully <Cliu, o).

Using (4.1) and the fact that 3, —B_ <1, we can choose &, > 0 such that

38, <B_—(By —B), (By—B)+35, <1
Then from Theorem 5, Theorem 7 in Chapter 2, and (4.8) we have

C ~
inf W& = Xlla,0,0 <~ — Wlllg 6,5 y435,,1
’Y, _ s — 1°

cesN BB+,
4.9
4.9) c N c

< —— Ul < ————— I, Iy
N(ﬁ+_5_)+281 N(5+—5_)+251

Using (4.2), we can choose §, > 0 so that
352<(1 —6+)—(6+—ﬁ_), (B+—6_)+362<1‘

From Theorem 5, Theorem 7 in Chapter 2, and (4.7) we get
inf 17~ xllg.q < ————— I3
I 10 = Xlg,0,L = _ B.(B4—B ) +38,,
esN N E+BO+28, + 2

L

(4.10) c
< —— l(w, Ol
NE+PI+202

Now it follows (see Babuska-Aziz [2, pp. 112, 187]) from Theorem 4, Theorem 6,
(4.9) and (4.10) that

-5
(T~ T,)(u, )lly <CN 3li, o,

where 65 = min (8,, 8,) > 0. This completes the proof.

All of the assumptions (3.1)—(3.3) have now been verified for approximation by
trigonometric polynomials. Let A, be an eigenvalue of (1.15) with the sesquilinear
forms (1.20) and (1.21) and let )\ﬁ’ be its approximation based on trigonometric poly-
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nomials of degree N. We may now apply Theorem 3 to estimate A, — )\f)v .

THEOREM 11. Suppose 7 € H®%! and &, p € HY>%L where ¢, y € Eg, 0<
¢(x), ¥(x)and ¢, —¢_<1,y, —Y_<1. Suppose § € E satisfies 0 < f(x) <1,
(4.1) and (4.2). Then for every € > 0 there is a constant C(€) such that

(4.11) o =AY < C(e)N2*e,

where

(4.12) m = Juin min(6(x) +B(), y(x) + 1+ B(x)),
(4.13) n, = min  min($(x) + 1 + a(x), Y(x) + a(x)),

o<x<2m

(4.14) n = min(ny, n,) — (B —B_)/2.

Proof. This result follows immediately from Theorems 3 (estimate (3.6) together
with equation (3.5)), 5, 6, and 9.

The estimate (4.11) depends on B(x). For ¢(x) and Y(x) given we now consider
the problem of the optimal choice for B(x). We remark that the approximations )\f)v
do not depend on B(x); the choice of B(x) determines only the error estimate that we
can establish with Theorem 3. The next theorem shows that the optimal choice for
B(x) is a constant function.

THEOREM 12. Suppose B(x) € Ex, 0 <B(x) < 1. Let §, be the constant func-
tion defined by

kK fOsk=@W_—-¢_+1)2<1,
Bo =<0 ifk<0,

1 ifk>1,

and let n° be determined from B, according to (4.12)—(4.14), i.e., let
v_+1 ifk <0,
YO={ (W _+¢ +12 ifo<k<l,
¢_+1 ifk > 1.

Then n° = n, where n is determined from B(x) according to (4.12)—(4.14).
Proof. From (4.12) and (4.13) we have
n, <¢_+p, and n,S<y_+1-6.

From these inequalities it is immediate that

. B+—B_ B+_6_
n<mm<¢>_+ﬁ+— 2 ,w_+1—ﬁ+——2—>

By —B- 6+—B_>

=min<¢_+ S Y-t —

If Kk <O, then ¢y_ + 1< ¢ and hence
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n<y_+1-B, -BI2<y_+1=1°
and if k > 1,then ¢+ 1 < ¢ _and hence,

- By T B +1_6++6_
n<min|¢_+ ———,¥_ s

By +8_ a, +o
=min<¢_+l— +2 SY_+ —+—2——><¢_+1=n0

In the case 0 < k < 1 we have

. By —B_ 6+—B_>
n<m1n<¢_+—2———,l[/_+1——-2—

o +y_+1
<max min(p_+v, Y +1-p)= —— =p0,
v=>0 2
Thus we see that for the case of approximation by trigonometric polynomials
the use of variable order spaces does not lead to improved error estimates. Using Theo-

rem 12, we readily see that the optimal estimate obtainable from Theorem 11 is given
by

v +1 if k <0,
n=< (_+v_+ D2 fo<k<1,
¢_+1 fo<k<I.

(b) Finite elements. Here we let
St =S"(r, q) and S§ =S8"(r-1,9-1),
where r and g are integers satisfying 1 < ¢ and 2g + 1 <r. Our next theorem estab-
lishes assumption (3.3) for finite elements.
THEOREM 13. Assumption (3.3) is satisfied for finite elements.
Proof. The proof is similar to that of Theorem 10. We easily see that it is suffi-
cient to show that

inf 1% = xllg0., <Rl o),

(4.15) ces'

inf 11T = xllg.0,1 < Ch I, Ol

(4.16) XESZ

with § > 0 independent of 4. (4.15) and (4.16) follow immediately from Theorem 7,
(4.7) and (4.8).

All of the assumptions (3.1)—(3.3) have been verified for approximation by finite
elements. We may now apply Theorem 3 to estimate A, — )\g, where A, is an eigen-
value of (1.15) with sesquilinear forms (1.20) and (1.21) and )\g is its approximation
based on M" = S" x Sk

THEOREM 14. Suppose 1 € H®%! and &, p € HY'%!, where ¢, ¥ € E, 0 <
o(x), Y(x)and ¢, —¢_<1,¢, —¥_<1. Suppose § € Ey, satisfies 0 < f(x) <1.
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Then for every € > 0 there is a constant C(€) such that

(4.17) Mo = AAI < C(e)n?7e,

where
n; = min  min(¢(x) + B(x), Y(x) + 1 + B(x), r + B(x)),

o<x<2m

Ny = min min(g(x) + 1 + a(x), Y(x) + ax), r — 1 + a(x)),
0<x<2m
n = min(n,, n,).

Proof. This theorem follows directly from Theorems 3 (estimate (3.6) together
with Eq. (3.5)), 7, 8 and 9.

With regard to Theorems 11 and 14 we remark that we may take e = 0 if we are
using only constant order spaces.

For ¢ and ¢ given we now analyze the optimal choice for (x). We again remark
that 8 influences the error estimate (4.17) but does not influence the approximation 7\8.
First assume that r is sufficiently large. Define

Iy = {x: 9@ + 1 < ¢@)},
I, ={x: Y(x) -1 < ¢(x) < Y(x) + 1} and
Iy = {x: ¢(x) < Y(x) — 1}.

We note that since ¢, —¢_ <1 and ¢ + —¥_ <1 at most two of these sets is non-
empty. Let

71(%) = min (p(x) + B(x), Y(x) + 1 + B(x), r + B(x))
and
12(¥) = min ($(x) + 1 + a(x), Y(x) + alx), 7 — 1 + a(x)).
Then we see that for x €1,
71 = ¥(x) + 1 +6(x) and 7,(x) = Y(x) + 1 - B(x),
while for x € I,
71(%) = 6(x) + B(x) and 7v,(x) = ¢(x) + 2 - B(x).
Finally, for x € 1, we have
7100) = 6(x) + B(x) and y,(x) = Y(x) + 1 — B(x).

Since n = min(n,, n,), we try to choose 8(x) so that n, = n,. This suggests the
choice

0, x€l,,
Bx)={ (W™ - o) + 12, x€I,,
1, x €1,

Note that this defines 3(x) as a continuous, but not infinitely differentiable, function.
With this choice for B(x) we see that
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Y(x) + 1, x€l,,
11(x) = 7,00 = | (Yx) + ¢(x) + 1)/2, x €1,
o(x) + 1, x €I,
= Kk (x).
Now it is clear that there exists 8(x) € Ex such that (4.17) holds with
n= min K(x).
o<x<2m

It suffices to choose § € Eg very close to B.
We note finally that if 7 is not sufficiently large then the rate of convergence giv-
en by (4.17) will have an upper threshold determined by r.

3.5. Comparison of Methods. The eigenvalues of (1.1)—(1.3) can be approxi-
mated by the Ritz-Galerkin method based on (1.15) with the choice of sesquilinear
forms 4 and B given by (1.16) and (1.17), (1.18) and (1.19), or (1.20) and (1.21). If
the forms are given by (1.16) and (1.17), we have the standard Ritz method. We will
refer to the method associated with the choice (1.18) and (1.19) as the inverted Ritz
method. In this section we make a comparison of these methods.

Suppose 7(x) € H", 0 <n<1,and §(x), p(x) € H'. Then u, € H'*" and the
standard Ritz method leads to the rate of convergence N 2" for approximation by trig-
onometric polynomials and #27 when finite elements are used. These estimates cannot,
in general, be improved. This follows from a result giving a lower bound for the eigen-
value error in Ritz approximation (see Kolata [11] and Chatelin [7]). Next we apply
the Ritz-Galerkin method based on the forms (1.20) and (1.21). It follows from Theo-
rems 11 and 12 and the discussion following Theorem 12 that the rate of convergence
is at least N~(2*™ for trigonometric polynomials and #2* " for finite elements. Final-
ly we observe that the inverted Ritz method leads to rates of convergence of N =2 and
h? for trigonometric polynomials and finite elements, respectively.

Suppose next that 7 € H' and &, p € H", 0 < n < 1. Here we get rates of con-
vergence N2 and h? for the Ritz method, and N =27 and 42" for the inverted Ritz
method. For the Ritz-Galerkin method based on the forms (1.20) and (1.21) we get
N=(2+n) and p2+n,

These examples show that if 7 is rough and & and p are smooth, then the inverted
Ritz method leads to a higher rate of convergence than does the Ritz method. Similar-
ly, if 7 is rough and £ and p are smooth, then the Ritz method leads to a higher rate of
convergence than does the inverted Ritz method. Further we note that for both of
these examples the method based on the forms (1.20) and (1.21) leads to a higher rate
than does either the Ritz or inverted Ritz method.

We now analyze thoroughly one very special class of examples. Let 7(x), &(x)
and p,(x) be defined by

1, x| < /2,

7(x) =

12, -a<x<ml2orm2<x<m,
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Ex) =1,

1, Ix — ¢l < /2,
pi) = 12, -—a<x—-t<-m2orm2<x-t<m,
where ¢ is a parameter with |[¢#| < 1/2. By applying Theorem 11 in Chapter 2 we see
that 7 € H®%L for any ¢ € Eg with ¢, —¢_ <1 and ¢(x7/2) < 1/2. Likewise p, €
HY 0L yhere Y (x) = o(x — 1)

Consider the case of trigonometric approximation. Using Theorem 9 we see that
the standard Ritz method yields the rate N~!* €. From Theorem 12 we see that the
rate for the Ritz-Galerkin method based on the forms (1.20) and (1.21) is N™2%€, We
note that both of these estimates are independent of the parameter ¢

Now suppose we are using finite elements and suppose 7 is sufficiently large. For
the standard Ritz method we get [\ — )\gl < Ch!™€¢, This estimate does not depend
on t. Finally we consider the Ritz-Galerkin method based on the forms (1.20) and
(1.21). Referring to Theorem 14 and the subsequent discussion we see that I, = R
and, thus, k(x) = (¥,(x) + ¢(x) + 1)/2. Clearly ¢ can be chosen so that

; 1+ ¢(1/2), t#0,
K(x) =

min =
o<x<2m 172 + ¢(1/2), t=0.
Thus we have
6712_6, t= O’
_\h <
|7\‘0 Aol -, P20,

We see that the rate of convergence for ¢t = 0 differs from that for t # 0. We
refer to the case t = 0 as a case of coinciding singularities. This difference in rates of
convergence would not be seen if we were analyzing this method with constant order
spaces. Then we would obtain #27¢ in both cases.

Finally we remark that problems with rough coefficients arise in many applica-
tions. As an example we mention composite material problems (see e.g., [1], [12],

[13], [16]).
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Appendix. Sobolev spaces with variable order .
A.l. Iotroduction and basic notioms.

In this appendix ve give a self-contained treatment of periodic
Sobolev spaces of variable order in one dimension.

We dencte by E the set of all infinitely differentiable, complex
valued, 2v-perfodic functions and by E, the subset of fmctions in E

vhich are real valued. Por o(x) € E; we write

o, = max a(x),
ozx<2w

a_= min a(x) .
0<x<2w

In addition to functions in E we will consider periodic distridu~
tions over E , i.e., linear functionals T on E with the property
that 1'(04) + T(4) vhenever 4o v E end %01 converges
uniformly to % 4 on [o,2x] for 1t = 0,1,2,...; we denote this set
of atstributions by E . If T €E and ¢ € E , then the couvolution
Te¢ 1s defined and is & function in E , and the product ¢T is defined
and 1s & Aistribution in E . Any T € E can be expanded in a
Fourier series:

T= [:__m.(‘l‘)om .

vhere &, (1) = 1o 7(e7%) 15 the 12 Pourter coctfictent of T and the
convergence is in the sense of distridutions.

For any real number r we denote by H the 2v=periodic Sobolev
space of fracticoal order r; H' is the completion of E with respect



to t_he norm
Hatl, = 2 la ) 2s)e] M2

whore & (u) = 1 /2" u(x)e™¥ax is the KR Fourter coefficient of u .
If we define A : E+ E vy

(F)(x) = 2, & (u)(asx])Tet™=
then we have |[uf]_ = [|ATu]| . We also write
(1.1) Vy(rx) = (A%uhx) 5

note that V (r,x) is defined for all real r and x .

Formally ve have
(1.2) Vo(rax) = 5, & (2e(k])Te™*
= 5 & Prutn)e a0 x])Fe 5
= [Fxlr.xthu(e)ae
= K(r,x) » u(x)
vhere

1 T ikx
E(r,x) = 5 tl(hlkl) e

Now, ve may consider K(r,x) to be a periodic distribution in x

(K(r,x) acts on u € E according to Kir,x){u(x)) = % Lk(l‘hl)' [:'u(x)elndx)
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which depends on the parameter r , and then the result in (1.2) is

easily seen to be valid. We recall that for u € € ,
(K(r,+)ou)(x) = K(r,y)(u(x-y))

where the distribution K(r,y) acts on u(x-y) as a function of y .
Let a=a(x) € ER As a first step in defining Sopolev spaces with

varisble order ve derine A% = A%X) £ L E by

(1.3) (A%)(x) = ¥ (alx),x) = 1, a (w) (1 x]*)etRE

(ef. (1.1)). It is easy to see that A® maps E into itself.
For r = constent Ve have llullr = [IA'uHo . It is easy to see

that for any - L<r, ||u|lr is equivalent to the norm
Ha%all g+ Tlull_, -

This expression will now be the starting point for the definition of
spaces with variable order. For a(x) € En , 8 real, L sufficiently

large and u € E ve define

1/2
Hullu(,,,,,L-(lln""’uuf'||u||fL) .

and then ve define )la(‘)"'l'

to be the completion of & with respect
to ”““u(x),.,L . At several points in the development of the theory
of these spaces L is required to be large, vith the requirement on the
size of L depending on a(x) and s . See the proof of lemma 9 ,

for example.



A.2. The operator Au(‘) and its properties.

Let a=a(x) (ER and vrite
(1ofx[®) & I, a‘l‘(k)e"" .

It is easy to see that for ¢ >0 , L > 0 there is a constant
C(e,L,0(x)) depending on ¢, L and a(x) but mot on i and k such

that

a aote -L
(2.1) 18300 < cle,Lalxae]x]) * Qefe))E .

In (1.3) we defined the operator 220w for any integer £

and u €E we define Agu = A:(x)u by
(2.2) () (x) = 5, (w) aS0x) 5

using (2.1) we see that the associated series of absolute values is.
uniformly convergent. Clearly A‘:(‘) maps E into itself. Using

(2.2) we can show that

itx A:(‘) ulx) .

(2.3) 2y - LA

Ve note that the series of abdsolute values converges uniformly, and that
the sane is true for the series obtained by differentiating (2.3) any
number of times, Hence the series converges in the #  norm for any
real r .

We nov prove several results vhich give the basic properties of
the operator Aﬂ(x) .
Lemma 1. Let a(x) €Ep, u,v €E . Ir

v n®(®), _getx) o



then for o <€ <1 and s real there is a constant C = C(¢,a(x),s)

such that

ol e 1l e

vhere

&y

max .
osx<an!ax

where 2la | +4+|s| <m = integer. The constant C(g,a(x),s) depends on

€,a(x) and s dut is independent of u and v .

o(x)

Proof: Ve study first the expression A kx

For \I'[::_..lcl

-
wma vernZ p ™ venave wep b e vien v o=z e b -
Thus
(2.%) By e r b, o
s
o 1kx
"L I, ‘:(k) Pin % ¢
a 1kx
AL
a 1k
+ 5 5 oa (6 -dim))e"
- 'A:(x)“ ‘v,
vhere
vy =5 I e p (63 (0-a2(a))e!**
t tk n % Px-n'% 2 N
Now

2
(2.5) &) - d3(n) = ;—,L (el (aefn] )2 D)% 4
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For eny two real numbers s, and s, define

1

8. 8,
s (1) = (1+1) Len 2(141). t20
2

and
D'l‘sz(k'n) - q.1'52(|k|) - in'.z(lnl) .
Then ve have
. ' al-l 8, l2-1
D,l_,z(x.ni = (Ixl-{al)(a+n) = [o)2n (1+1) + s,tn © (2en)] ,

vhere n= 0 |x| + 02|n| 28 +0,21,0<8 <1. Tt s casily seen that

14n-l¢91|k| 4ez|n|

1+ Jal + 0, Clkl-Inl>
1+ |n| + |k-n)
Q+[a]) #|k-n]) ©

<
<

Interchanging n and k vields
140 < A4k Q+|k=a]) .

Thus, letting v = min(|k|,[n]) , ve get’
14v <140 @)O+Hka]) -

Hence for each € there is a constant c("']."2) such that
8 -1+ ';."
(2.6) !nsl'se(k.n)li Cle,8,,8,)(2+]v]) (14|k-n|) R
where s] = max(s;.1) . Integrating (2.5) by parts [L] + 1 tioes and using

(2.6) we get
2.7 |, 14§ - ]

a -1+ agse "
< cle,Lyalx))(2+]v]) (1+|x-a) * (+[2)7".



{” '™ ve see from (2.7) that

If ve vrite v, = I, q

@8 1o{™] = Iz, & b, (300 - @]

a -1+¢ are "
sclelal(x) £ la | Ip_| (1+]9]) ele=n) T (24]2)7 .

RN

< = C M (14]k-n])®,
P (14[x=n])® " "

vhere C does not depend om v, m, X or n . Thus from (2.8) ve have

a, -ltcts a te-m
la | (2+]v]) (1+4|x-n|)

aent aelo®

@.9) 1M < cleLalx) uy 1,

It is easy to check that

11kl

1+ |k-n| 23]

and therefore for s > O ve have

s
(B )" < aotean®

For s <o we have

8
(i:::: < (18[kn])™®

and so in general wve get

.
(2.10) (i:::: ) < el

Combining (2.9) and (2.10) ve have



(2.11)
ot (aslx])®

Zlo’|¢2+c--0|l|

a, -l+cts -1
< clelyalx) M, £ [a |(1¢fn]) (1¢|x-a|) Qa+Heh™

Kow define functions
a,-l*cts
e

¥(x) = M Cle,L,alx) I la,[(2+]n]) M

and

2|a, |+2+e-mt|s|
o () = r (el S

Let l:!lw.l"*|l| . Then 6 1is a bounded function and

. It

l8 (x)] <Cla(x),8) . Mso [l¥]], <M C(t.L.u(xl)IluII%_l.(..

o="m

we write
€= 0 (x) #(x) = 1, ¢, o,
then, comparing (2.11), we see that
G 2 Il el sl et
Thus
Ml < HelltasleD™
(2.12) ;C(u(x).l)llollo(lflll)"'

<M C(G,L.u(l).l)(l‘l‘l)-l”"l|°‘_1¢m .



Now, using (2.4) we have
(2.13) PR ™

itx v A:(x) itx

=I, € u+l, e v

£ £3

x

alx) |, 5, Jtx

=v A .

a(x) u-

=v A v

and
Hvil, < 5 e 11, < T 0e1eD)® Lv,ll,

<M c(e,Lalx),e) [[u] Iﬂ‘_m., £, (ee])

Letting L > s 42 be fixed we get

(2.14) ||v||. < Cle,alx),s) M |]u|]¢ _1eets

(2.13) and (2.1L) yield the desired result.
Theorem 1. Let a(x) € €, and s be real. Then for each © > o there

is a constent C(€,0(x),s) -such that

1420, < cle,atx) o) [lul]

S84
(RS

for all u €E .
Proof: Since A® 1s a bounded operator from H to H° and the

sines in (2.3) converges in H® we have

(2.15) TN TSN TR

1L
<z, 1A% :A:(x)uuo .



From Lerma 1 ve have
(2.16) 2 it A:(x) u = olt* e A:(‘) utv, o,

vhere

Hvgll, < 0lessd Clefsa™® (13202

8-14c °

Using (2.1) ve see that
@an N8P < elaliatn el ol g »
for amy r , and therefore
@18)  |lvll, < clatiata el P Il L,
From (2.17) and

» A:(") e arelx)
ve have
(2.19) |]lx'/\:(")\ul|° < cleLalx) 0|2t Ilull,,"",t .

Nov, from (2.15), (2.16), and (2.18) and (2.19) with L > max (2,26+7) ,
a(x)
ve bave |[Fgf] < c(c.a(x).-)llullu’,.“ .

Theorem 2. Let alx), 8(x) € En and s be any real numder. Then

ao(x) (8lx) | a(x)+8(x) utw

[ivll, < cleatx),8(x)o0)lul |, PpRy—
S
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for any u € E .
Proof. For u € £ we have

(2.20) polx) 48ix) | jalx)es(x)

itx a(x) _1jx ,8(x)
- :l._j e Ay e AJ u

- I‘ 3 Q"’x e‘Jx A:(x) A:(x) u .

Using (2.1) and (2.12) wve get

o(x) 43x B(x) _ 1% ,a(x) B(x)
(2.21) A € A use A‘x ATy

where
20a, 455l

aslen” ]
1% e -14ets *

Hy glly < cletata),e)aelg])
Prom (2.17) ve have
14860y | < cle Ly aslsh ™ 1ul]
) Wlla,ceaee T CC6L, 00 3 Wla ep,-1en0e
and hence, choosing "1 sufficiently large, we see that
(2.22)
1%y, 411, = Clesatx,nta), o) xela D) 2(ae [y lol

1454
8, ~1+s+e

Thus, using (2.20), (2.21) and (2.22) we have



itx

Hvlly = Hegy &%, 1,

1, yaetD®llvy I,

<c( t.a(x).e(x).c)llulla o8 -1eare
'3 *By

forall u €€ .
Theorem 3. Let afx) €E; with a, -a_<1 and suppose a, <a_
and £ 48 real. Then for eny L there is & constant C(u(x).uo.s.l.)

such that

223 llull, ,, = clato,e,s DU o1l
o

for all u €€,
Proof. Theorem 2 yields

peolx) Au(x)

u=u+vw
vhere
(2.28)  iv] '“e" < c(c.u(x),ao.-)llull,,’_a__mo.,,: .
Hence
@25l 4y < p|n~°‘*>n°f*)u||%,, Al -

Using Theorem 1 and observing that -a_+a, 48 <u vehave
(2.26) ||r°‘xu°"’..||u°" = clalxdag,e| 15Xy,

Using the vell-known inequality



Jab| < -

and observing that o.-u_-l*u°*5<a°0|.itiseusytosee

tbat, for any -L<u‘-¢_-1‘u°0. and any 6 > o0 ,

1811, g _wzeq vmve = 811811, 4, + C(0.000) cagmt ]
Thus, using (2.24), we have

(2.21)

H"Iluo,. = oc(alx),a .8} Juf| * clo,a(x) sog,ant)lull_, -

ﬂo’.
Wow, (2.23) for - L <a, -a_-1+ a, + s follows immediately from
(2.25), (2.26) and (2.27). Finally ve note that if (2.23) holds for
~L small it cbviously holds for -l large.

Theorem ¥. Let a(x) €y and s de real. Then

e S IR RO &
where
v, :C(:,u(x).-)”ul[o”":
for any u € F .
Proof. Let u=1z o ¢ . men
aolz) 1(k#2)x

a
- :t,k“'i 4, (k) e

W=y, . I,y (a0 (0T



and therefore
vt 0@y’ LR O x|
Letting t+ k=n we have
a inx
vai En,k(n'l) L W O .
From (2.1) ve see that
a e
18200 < cle,Lalx)efx]) ¥ (1efak])7L .
Thus

(2.28) (1+]a])® 1, [(nk) &, (0)a,

a te
Jag |l * Qsfn])®
(+nx))t

u’nn .
|a [(2¢]x]) (1+[n])
< ¢leL,alx)) tk A——-——————[

(1+]x])® (1+]ak])

sclelatn) 1,

80,

a tcts
celabiale) gy Il Qe Gelax) oot

wve have used (2.10) in the last step here. If we write

(2.29) Pue g, o)) 5 (nek) &, (0
= tﬂ bn eiu .

then from (2.28) ve bave

a ety
(2.30) Iy} <clelalx) t,lnkltxolk[) (1+{n-x|)

lsl-L
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Nov define

a,+s%c
¥(x) = c(e,L,a(x)) L, Ia lGex]) e

ikx
and

o = g (] 31t o1kx |

with . L2 |s| + 2. Then

(2.31) le(x)| < clalx),s)

and

(2.32) II'II° :C(t.ﬂ(!))ll'l”, este *
.+

If wve write

”-tnenamx.

then, comparing (2.30), we see that lbnl ¢, . Thus, using (2.29),
(2.31) and (2.32) ve have

Ivll, = 1Al = 2yl 1222
< (g le, [H/2
= llesll,
< Clalx),8) [ vl

< Cle,alx)s8)||u]]

+
a,tste

This completes the proof.



A.z. Some properties of K(r,x) .
In Section A.1 we defined the distribution

1 r ikx
Klryx) = 501, (k)T 75

K(r,x)(u) = 1, (1+}x])" e (w) , u€E

vhere '1(“) are the Fourier coefficients ¢f u . We now prove
several lemmas, the first of which gives a local representation for
K(r,x) .

Lerma 2. There is a function K(r,x), -= <x <@, 0<x <21 , such

that K(r,x) € C((~m,+=) x (0,20)) ana
2%
K(r,x)(u) -I K(r,x)u(x)dx
o

for all u € E with (supp u)N[0,2r] c (0,2v) .

Proof: Let Q; , denote the distribution
.

L
Lo 25 elxD” () X,
ar

For any u € E with (supp u)N[o,2rn)c (n,2%=n) , where O<ne<x , let

m (1_e X).

We easily see that U, €E . Letting

Yn ™ K b:‘) o
and

u':ks‘ow
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ve have
(o)
TR
(£+41) (2)
b R e A
Therefore

(w) e DT ) aeon?
QJ,!“ -rk ar"lk "k

K
= (0% a® (:_,7 (1¢|x|)")<x(-x))1 o

where A% is the mi forvard difference operatgr. Nov, since the
= difference is equal to the il derivative at some point, for n

sufficiently large wve have

ld‘(-—a (1+]x]) ) el < c(e,3,r ) Q+k])
[} o
ar’

for |r| gr, (valid for m>m where m depends on t, § and r ). Hence
IQJ_‘(HN < ldor )yl
< cle, )l ull,

for all u € [ with (supp u)[o0,2x] = (n,27-n) and all r<r, . This shows

that for each fixed r there is a function KJ L(r.x) vhich i{s in
B

L,(n,27-n) as a function of x and is such that

Q"'k(u) = I:' ij"(r.x)u(z)dx



for u € E with (supp u) N [0,2r] ¢ (n,27-n) .
By choosing n arbitrarily small we extend the definition of
ij_k(r,x) to all x¢€ (0,2n) . 'l'hen.Jror each r, i‘,‘k(r,x) €L, 40,21) .
- W - 4
It is immediate that K',"(r,x) = ;‘—JKO"(r.x) and thus that Ko.l(r.x)
£s € as a function of x . It can also be shown that K.
L

J'!(r.x) is

3
ot Ko.o(r,x) .

continuous in r -and x and that ;(J L(r,x) =
B

Now, if we set lE(r.x) - ‘Eo o(r,x) we see that
»

K(r,x) € c™((—=,=)x(0,2%)) and that
2n_
K = [k ue
o

for all u € E with (supp u) N [0,27) ¢ {0,2r) . This completes the
proof.
Let x be an infinitely differentiadle function satisfying

0<x(x) 1, x(-x)=x(x),
x(x) =1 for [x] <1/2,
supp x < (-1,1)
x(x) ¢ x(x-3/2) =1 for 1/2 <x<1.

For any 0 < & < n denote by Xg that function in ER defined by

xg(x) = x(x/8) , |x| <« .
‘Then Xg satisfies
(3.1) 0 < xg(x) <1, xgl-x) = xg(x) ,

(3.2) xg(x) =1 for |x| <&/2,
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(3.3) (supp xg) N [-x,%] < (-5,8) ,
(3.8 xs ¢ xglx -2 =1 ror $excs,

Define two nev distributions by

Kl'ls(r.x) = K(r,x)xs(x)
and

Kz'é(r,x) = K(r.x)(l-xs(x)) .
Ve recall that Vu(r.x) = K(r,x)® u(x) . How we define
V‘(:z(r.x) = Kl's(r,x)' u(x)
and

V‘(X?g(r,x) = Kz's(r.x)' u(x)

for u €E: V‘(l")(r.x) €E for §=1,2 foreach r.

6
Using Lemma 2 ve see that

(3.5) V‘(I]"g(r.x) = l&'g(r.x)' u(x)
- Ll-d(r.y)(u(x-y))
= K(r,y) (xg(y)ulx-y))
- j? K(r,y) xs(r) u(x-y)ay

for u € € provided (l\.w'py u(x-y)) 0 [0,2¢] c (0,21) , and that



(3.6) V@ = [T ke ) Aoy () uzn)
3. .6 r,Xx . ry) (-xg(y u(x-y)dy

for any u €E .
Legma 3. Suppose u € E with (supp u) N [-m,x) c (~v,y) , Y>O,

Y+ &< . Then
@) -
vu.s(r.x) [
forall Y+ 8§<x<2n-y-6 and forall r.
Proof: From (3.5) we have

o
Ve - L £(r,0) 2,9 u(xpay

for Y+ & <x<2x -y -§ . The result thus follovs immediately from
the fact that (supp xg(y) N [-w,x] c [-6,8] and

(ﬂlm?y u(x=y)) N [0,2%) € (x-v,x+v) .

Lemma b, For any L > 0 there is a constant C(L,t,3,r ,8) such that

249
2 (2)

arlaxd Wsd

(ryx)| < o(L,2,3,m,8) |y

for all. u € E , all x , and any Ir};ro.

Proof. From (3.6) ve have

on
'IE;(!.X) = L K(r,y) (1-x4(y)) u(x-y)ay .
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Thus

i) v(z)
Gr"ax‘, u,s

2x b K]
{ = R(ry)(1-x4(y)) -7u(x-:')d¥|
o ar S

(r,x)l =

2 b 38
[ e a ! 5 e
o o o

2% al#j -
S| {2 fenaagon b uene|
o 3r arr’
N
<o Hu"ar’ Rry) (oo ||y Huten)] | g

&) 1xg )| |y Mol g -

2%
-= ||
artayd
Recalling that (supp (1"‘6” n [0,21]) © [%.2-- %l and letting

L< LJ. = {nteger, ve therefore have

| 243 Ve < |°‘L:L &) aexgo)| |, ol

artaxd U

< Cllt,d £, 8| |ull

for all x and |r

Lemma 5. Suppose al(x).cz(x) €E and al(x) = ay(x) for x| <25,
vhere 25 < v , and let s be real and L > 0. Then

a, (x) a,(x)
||A 1 uII. < ClL,n,0,(x),0,(x),8) {IIA 2 ull.‘”“ll-,_}

for all u € £ with (supp u) N [-w,x) c (8/2,8/2) .



Froof., Let u € E with (supp u) N [-v,2] c (-8/2,8/2) . First note

that

v (r,x) = v‘(l}:

(rux) + V& (r,2) .
Hence

uJ(x)
(3.7) A u(x) = Vu(aJ(x).x)

(2)

= V‘(::(ad(x).x) v

(eJ(x).x) s Jd=1,2.
let s < 3 = nonnegative integer. Applying Lemma L we obtain

3.8 W& (a0, < Ve )01

2% = 1. 2 1/2
s ]a @
<c (L rawl; "u.&‘“J(")")l ax)
LC(L.'-GJ(X)J)”“”_L , J=1,2.
Next, since (supp u)N (-x,n]c(-8/2,6/2) , Lezma 3 implies that
V\(l]":(r.x) =0

for giix <2 - gi and all r . From this we get V‘E:(al(x).x) -

V‘(::(cz(x).x) » and thus from (3.7) ve bave

@

(3.9 V(e (x)ix) =V layladyx) + 1720, (x), 0V e, (x) )]

From (3.9) and (3.8) we then have



a, (x)

N 2

a,(x)
P AR | NSRRI

al, < 11
a,(x)
< ClLusay(x),a,(2),8) {m 2, |..||-L} .

This completes the pmot.)

Por a € &, and 267< n let

e = max a(x)
4]

= min alx) .

a
-.26 7 | 1e2s

Lesma 6. Suppose u(x)eE..26<-, s is real, € >0 and
L>0. Then

A“(’)u <c{ | +| vl
1l zofilell, ety

for al) u € E with (supp u) N (-v,x) € (-6/2,8/2) . C is independent
of u.

Proof. Let €>0 . Then choose & € E, such that
a(x) = a(x) for x| <28
and
a, <o, 0t e/2 .
A direct application of Lemma 5 gives
(.10 A < ot 1Bl sl1ul ]

for a1l u € £ with (supp u) N [-v,x) ¢ (-6/2,8/2) , vhere C depends

on L, s, a(x), ¢ and 6 . From (3.10) and Theorem 1 ve have



Ay :C{I Iull;’.,.t,gllull_L}
=e{in Al }
°0,26”“ L

90.

where C depends on L, s, a(x) and ¢, but is independent of u .

Lemma 7. Suppose a(x) € Ep with a, -a_<1, 26<v, s is real,

€>0 and L >0 . Then

[lall, z,n—::C(IIA"(")\-II;II\-II_LI

for all u € E with (supp u) N [-n,x]) c (-6/2,6/2) .
of u.
Proof. Choose & € Ey such that

a(x) = a(x) for |x| <28
and

a_ 29 g5 - e/2 .
Prom Lemma 5 ve get

(3.11) HASN) < e 1) el 1l

for all u € E wvith (supp u) N [-v,v) c (-4/2,8/2) .
ve obtein

<ot || ol 1l 1y

(3.12) lall <
LEPRL

>

C 1is independent

Using Theorem 3

The desired result now follows directly from (3.11) amd (3.12).
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A.h. Sobolev spaces with variable order,

For any a € El satisfying

(%.2) @, -a_ <1,

any real s, and L sufficiently large, ve derine K2 (X)s3:l o

be the completion of E with respect to the norm

1/2
Mollggey 0,0 =(1° 012 « 18012, )7

B0l (o ¢ Bilbert space. We nov stuly the structure o H(X)s8:l
1n detail.

Tor M=3, 4, ... let e-%"- and define
(%.2) x._j(x) =xglx-330/2) , 3=1,2, ..., N,

vith ¥, defined in Section A.3. From (3.1)~(3.%),(L.2), and the fact
that x, € ER it is readily seen that

(%.3) o

1 %071

For any u € £ we define

(h.4) u

0,4 - x.“’n s =1, L, M.

From (4.3) and (k.3) we have

(h.5) um T vy

Por §=1, ..., M we consider the intervals Iy 3" [336/2-%8,
-
3J8/2+40] and suppose we are given real numbers Py < p;”. Iml, M,

such that <1. Welet By = (5 by )
. .3°Po,

-xp;J--in p;J
1A Y 1 e
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ane Fy = Gy ) For o € By eattstying (1), ma o= 4D)

end B, given we vrite
a(x)~§'
it
_ +
(k.6) p"J<a(x)<p°'J . for "‘Ia,J s J®Y, L M.

Theorem 5. If a €Ey satisfies a,~a_<1, s is real and (a(x)*s) 3y, then

“llall_} < Hal)

8,

h.7) clug'_lllu,",ll a,8,L

Sootrlug 11, +llull_p
P,y
for all u € E . The constants C), C, depend on Py,0,8 and L, but
are independent of u .
Proof. We divide the proof into several steps.

1) First ve shov that there is a constant C such that

R | N N T IR [

for all u € E . Because of (4.5), the right side of (4.8) follows
from the triangle inequality.
By Lemma 1 we have

-L
g g1y = 11878 gy il

-L

2lixgy Kl s e il

zcllalt_ .
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The left side of (L.8) follows irmediately from this.

2) Mext we prove the right side of (4.7). We start with

.9 [T TR e T

PN

Nov, using Lezma 6 with ¢ sufficiently small, and the fact that
(a(x)+s) ~ 5y (cf. (4.6)), ve got

(o) (12 1, N [ L
0,9

Adding (4.10) for 3§ =1, ..., M and using (4.9) and the left side of

(L.8) we get

a(x)
B uu,:c«r;'.lllu,dnpz J»uun_u .
R

3) Finally ve prove the left side of (4.7). From Lemma 7 with ¢
sufficiently small we have

N il 2oty il (1) -
8,3

Using Lemma 1 we see that
a(x) a(x)
da2) 1y ol <1 2l + cllall, e,

Using Lexmm 1 again and Theorem 1 we have



9.

@) g 22l [ = (1ay, 1)

< leo“”‘s"«(x)u”° .e ”Aa(x)u”'_l"

< et ol ).

,~1+2e+s
Now, combining (b.11)-(4.13) and (4.8) ve obtain

(.20) rf.‘.luu._an_ 21Nl o Tl gyt 1sl1g) -
L]

»d

Since a, -1+ 2¢ < a_ for ¢ sufficiently small we can apply

Theoren 3 to get

a(x)
.15) 19llg —sazees < Nl ol 1ull ) -
Finally, from (4.14) and (4.15) we have

| A | S [ M RPN TN T
Po.3

This completes the proof.

For a(x) € E, choose © < x/4 ( we 42} e

functions a"’ € ER s J = 1,2,...,M , so that
a®I(x) = atn)

for x€ 1

0.3 °
LEMMA 8. Suppose a € El satisfies (4.1). Then
L
"125-1"“04”“9.5'."' < Hellg o1

N
2l gl ,
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for all u € E .

Proof. Using Lemma 5 and the fact that o®*3(x) = a(x) for

x € (e,j ve have

" ,
Mally o0 = ey ve,5ila,et

e

u
Z;-x g, sl 0,0

I

M
lyer Mooyl oy )

This proves the right side of the desired inequality. Using

Leamas 1 and 5 and recalling that ay = a_ <1 we gee that
D P IR TR
e el = eg=1 11,3 oy, L
= cLyay g qully 5,0

<ol y -

This completes the proof.

Theorem 6. Suppose @), ay € By satisty (L.1), 5, 5, are
real and
a,(x) + 5) < ay(x) + s,

for all x . Then

[l <cllu
N ll‘,z

a8, = 850l

for all u €E .

vith & continuous imbedding.
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Proof. Since al(x) +8) < az(x) + 8, Ve see that we can choose

- - .

9, By By such that (o (x)es ) v By , (ay(x)*s)) ~ §, , ant

Py y <Py ,» J=1,...,M. Thus from Theorem 5 ve have
8,0 —76,)

nuu,l_,.L:cu’;.lnumu L+ Ll
Py

s

sl il +Ihllp
6,3

zellolly g0 -

The compact imbedding theorem for the Sobolev spaces H® with s
constant, together with Theorem 5 leads to
Theorem 7. Suppose a),a, ({R satisfy (L.1), s and 8, are real and
a,(x)%s, <ay(x)+s, for all x. Then the imbedding of 10200l 4n 110l 1y compact.

We now study the space which is adjoint to go(x)eml

LEMMA 9. Suppose a € ER satisfles a, - a_<1/2 . Then

2l

uv dxl
.16 2
waereyllall, g < o T < %l a0

for all u € E , vhere C‘ and C2 are positive constants.
Proof. We divide the proof into several parts.

1) It is easily seen that
2w 2%
L (A:(x)u); a = L u A:(") Jax .

Therefore ,using (2.4) we have
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2 2n
I v {Aa(x)“); ax-1, f eltx (A:(x)u); ax
Yo °

27 N
-z, ! u A:(") (e**%7)ax
o
2x
itx a(x)s
=z, (f u e 05 o
o
2x
.
o
2x 2x
-f uA“"’?orl! uv, &,
o o

and, using (2.12), ve see that

L
I‘||v2||q <oz, llvl |n‘_lﬂ__.q(1o|1|)

where -1z|a*| +4+q. BHence
Ty llvll, < -
1f L 1s sufficiently large. This shows that L, ¥, = v converges with

Tespect to II-II‘1 for any q . Thus we can write

2: 2% rad

(%.17) I 3 (12X)y)3 ax - f w5, ! uwvax
o o o

where

(4.18) Ihwllg :CIIvH,,'_l.‘.q -

From (4.17), (4.18) and Theorem 1 we have
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(4.19) f' pa(x)es p-(al(x)es); ax
o

. f' w el lala)en);
o

fz.

+ u v, dx

° 1
-(alx)+s)-

(1.20) I l1q < clla o vso1eevq

<clivl |q‘-c_-1'q02c -

Using Theorem 2 we see that

(h.21) f‘ u A3(E)s j-(alx)ee);
o

ox 2x
- f uvdx+ f u v, ax
o °
where
(h.22) ||v2||q <cllv| |°‘_a__10q"__ .

2) Combining (4.19)-(4.22) we have

2% 2
(4.23) f uvax= f e(x)s  y-(alx)en)g
o o

2n
'I uwvdax
°
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where
(u.2%3 [l = Hvpswyllg < chivlly oo maqeze -
From (4.23) we obtain
2 al(x)+s -(a(x)+s),
(1.25) ” w7 as] < 20l 2001 i,
o

w el ull, (vl

for any number r .

From Theorem 2 ve have

(1.26) o) s alx) uez

vhere

(b.27) Mz, < Cllull.’.._m p
and

(1.28) platavlg | e et )
where »

(L.29) lz,l 1, < clivl | o g-10c -

.
Now, using (4.25) with r = a_+ s-c together with (4.24) and (4.26)-
(4.29), end recalling that a, -a_<1/2, ve get

CLEN a(x)
@ [Tud e U, ,, 1 -

(DM IR T

R
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provided ¢ 1s sufficiently small. Finally, combining (4.30) and

Theorem 3, we have
2 a(x)
ST IGRNERINRE
o

TN TR
sellullg gy ¥l yy -
vhich leads to the right side of (4.16).

3) For u €E let
(4.31) v o= p20x) p28 jalx) o ¢

where § will be determined later. Using Theorems 1 and 2 ve have

(4.32) pexy L g2 el vy e A
vhere
(4.33) ey ll_g < cllul]

842a, —a_-14c "
Combining (4.31)-(4.33) we have

(.38 L I T N IR TN TR TE oM

Sl
B A R T I

. ||A"(’)A2.A°(‘)\IH_L) .
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Using Theorem 1 ve get

(8.35) A28 < ellull 0 o e
o

provided L is sufficiently large. From Theorem 3 we see that

(%.36) II\-II,,R’_‘, e SClIulG 4y

provided 102u’-u_-10c <a_+ s ; that this is the case follows
from a, -o_<1/2,1if ¢ {is sufficiently small. Now from (h.34)-
(5.36) ve obtain

. Nvll g, s ctllully g ollEll, 0 -

Using (4.31) together with (k.17), (k.18), Theoren 1 and the fact

that A-‘:-A‘\'n for any 8 and u, ve have

2 | 2n
f u;u-ruf(")/""'l«'(‘)ﬁuof wEax
o

o °

2n ox 2n
(5.38) -] A°(‘)nA2'A'(’)GuoI uvd.xO!uld.x
o o o

alx) 2, > e
= 2] |A u||.¢f uvﬂ.xO[ u§ dx
o o

vhere

2s,a(x)=
(x.) Hellg < clIA™5R1, e

0l Lgpuzg tugec -
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b savtatying el <cllul]

L) We now comstruct £ € H s, L S
=8y

a,s,l
in such a vay that

2n 2% 2
f wve [wzar el L coo.
o (-]

We easily see that

2%
(1.40) ” . dxl < anllsl]
-]

v el My oo

Since Lemma 9 1s valid for constant order spaces we easily see that

we can find { GIIL such tbat
Gl 2
(k.b1) I witax 2 |ullZ,
o
(6.42) Helly = [lull_ -

on 2x
M-[ vvaxof ¥ T ax 1s a bounded linear functional in ¢ on
o o

s¢a_-c

B Hext observe that
N 2%
(143 ”o v salol,, e, ., .
2
(L, k) inf sup ” yZa.:l:c>o,
9l g0q =2 HEll_oy 42 Vo

(5, b5) inf sup ”‘aviul;cw.
HEllZyg oem2 ol 2 Do
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It follows from (4.40)-(4.k5) (see Aziz and Babubka (2], p. 112)
*

-8=a_tc
that there exists § €.H such that

2 2n 2w _ s4a_-¢
(4. k6) f vr,ax-.! a«uo[ ¥vTax , forall y €H
o o o
and
R (LTI (XTSRS IR B
Setting ¢ = u in (b U6) yields
2x . 2n )
(4.48) f nvd.x’r utax-f nid.x;c“ull-,..
o ° o
From (4.38) and (4.48) we have
Gl 2
(1.29) L ¥ aezcllull?, |
with C> 0 . Bince -8 -a_+ € > -5 - a Ve see that € € 5L ana from

Theorea 1, (4.47) and (4.39) we have

(1.50) el

e |-02u’-u_-102: .

Since s + 20 -a_-14+2¢ <3+ a_-¢ if ¢ is sufficiently smll,

from (4.50) and Theorem 3 we have

(4.51) Iell cllull

-a, 8,l = a,s, L °

The left side of (4.16) follows directly from (1.49), (h.37) and (4.51).



Lewma 9 has been proved under the assuaption thst e, -a_<1/2.

We now estsblish the same result under the assumpt ion e, -a_< 1.

Theorem 8. Suppose a € Ex satisfies o -a_<1. Then

“:'u s dx'

sup e < Gllull,

“.52) ¢ ||| <
P el T e vl

-a,-s,L

for all u € E , where Cy end C, are positive constants.

Proof. Let 8 <1/k (0 ~9) and o™ €E L Je i n, be chosen

80 that
(4.53) a®3 = atm)
for all x € I7 g " [330/2 - 60 , 356/2 + 60] (cf. the definftion of 1, 5)'

. .
and
(4.54) add e
For any u, v € £ we have

r" . Z" 2 .

uvdx = I u, v, dx
° Jrel Jo 003 0k

(cf. (4.4) and (4.5)). g 3 and ;0 k have disjoint supports if

. s
k#$3-1, 3,341 . (If J=1 the supports are disjoint if k ¢ M, 1, 2
and 4f J = N the supports are disjoint if k # M1, M, 1 ; for simplicity
of notation we vill in any case indicate this condition by ““hv'
[3-k| >1.) Thus

2% 2%
- n -
(4.55) L uVdner, Z L Yo,y Vo, 9% -
le=3l<1
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From Lemma 9 and (4.54) we see that

2w
(4.56) ”o vy vMaxI sollogylley Mroall o, , -

Using (4.55), (4.56), (4.53) and Lemma 8 we have

o5 af et v, 11 g !
uv < o v,
o =6 2gm Itggx 0,311,003 g ek oy

sellully g0 1V, g, -

Thia proves the right side of (4.52).
Uaing Lemma 9 and (4.54) we see that corresponding to Yy 3 there is
.
a vy € € such that

gy ¥ a2 €y, 112
4.57) j u ax > S ||u

P X ] 2 W%,y ous .1
and
(4.58) IIv,II_‘,',’-..L- ”"’-J”°°-J,.,L

vhere C (= C) in (4.16)) s a positive constant. Let v = I:-l Xg,3 Yy -
Using (4.58) together with Lemmas 1, S snd 8 and Theorem 5 we get
(4.59)

IVl g p<Clxg ¥l -cll Xo x Xp 1 V4ll
~a,-s,l 0,k -us'k.--.l 151 0.k 70,5 9T 0k _ 1

<c Hxg (v, 11
< Z; 0,373 _0.k _
n5la =®K L

<c lxg, 11
< E o, .
a0 et
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zc Z vy H
= st ou
l3-kla et

s L llgll g,

li+la1 ot

< lell

a,8,l °

On the other hand, using (4.57) together with Lemma 8 we see that

<

2x " 2¢ ~
(4.60) [ uvde =] [ u v, d
o Je1 ], ¥ Xe,g Yy 9x

2%
" -
= Lja L Yo.g vy 4

2C oM 2
7l ”"o.s”oe.s’,’L

2

el -

The left side of (4.52) follows directly from (4.59) and (4.60).
Next we discuss two results on products of functions.
Theorem 9. Suppose a and B are constants satisfyiog [a| <8 ,

1/2 < 8 . Then there is a constant C such that
o vlly <cllully Tvllg

for all u, v € E (see also Stricharz [23)).

Proof. First suppose a >0 . Let u = :k.ke“' and v = Ikvt-n‘
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1kx
Then uv =1L b, e vith b =L a p,_, - We canwrite

Qe[ b, = By |+ Sz | vhere

. a
R 8, P (14D
2ja| < x|
or
lal > 2]x]
and
by a
by ” I 8 P (+[kD? .
L oy <o
Then
2 - 2 Y 2
(4.61) [lu v||° <2 t.(lbl’k| + |b2'k| ).
Since 8-a>0 and a > 0 we see that there {a a constant C;
such that
I B~ a
Q+laD 4]y < °1
+|k-a))®

for all 2|n| < |[k| or 2|k|<|n|] . Therefore
<
Byl ccy T lalasah™8 s, aslk-ah®
2|n] < [kl
or
2|k < |a]

$ = 5, [a ]G+l o'o%
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and
6,0 = 5 [pyl(+[a])® e17X
Then we have
In @1 < lalasiap® <l lul],
and

oyl = sl -
1kx
Thus, setting (l(x) - vl(x) ‘l(‘) - :I: 8 € we see that

Heyll, < can™ Jlall, livll,

and
1oy x| < cilel -
Therefore
- 2 2 2
4.62) I 1ok < gl l® <cllull, vl .

There is a constant C, such that

14[x])®
|u"n] 26

for all l‘zili |n] < 2[x] . Thus
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I legltla>® 1Pl -
Ll o) <2

Setting

40 = £ la |(1+a])® o™X
and

4 =1 Ipﬂl elox
ve get

lo®| < c[lvll,

and

1eally = MMall, -
Bence, setting £)(x) = ¢,(x) #y(x) we get

. 2 2 2
@ g 1oy 41 < @ HIgylI2 < cllull, sl -

The result for a > 0 now follows from (4.61), (4.62) and (4.63).
Wow suppose - 8 < a < 0 . Then, using the case already proved, we
have

a1 | -
||uv||°-“n|p l(Zn) ” uvodxl
. - °
-a

< . s lull [1vell
el Iy Tlvetl_,
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e e lallg divll 1l
el =1

=c lull, lvllg -

This completes the proof.

Theorem 10. Suppose a(x), B(x), v(x) ¢ Ek satisfy wmax(a(x),B(x))>1/2 ,
- max (a(x), 8(x)) < v(x) < min (a(x), B8(x)) , and a,
B, = B_ <1,y -v_ <1. Then there is a conatant C such that

~a <1,

Mo vl 0.0 < €0l lagey 000 ¥l lggay ot

for all u, v €E .

Proof. This theorem {s an {mmediate consequence of Theorems 5 and 9.

We end this section with a theorem that is useful in deteraining
which of the spaces B+l o jpeciftc funceon ltes tn.
Theorem 11. Suppose u = :;-l uJ where “j € l!pj pj 2-L, and
sup vy < lay,8,)" wien 8, = oy < */4 . where [a,8))" denotes the
union of lu’.ﬂjl and all of its translates by 2sk . Let
$ >3/2 -x(sj-ej) and suppose s is real, a € ER satisfies (4.1), and
that

(4.64) L <a(x) +8 < Py for x ¢ laj-d. BJM] [N BLIR FRERSY B

Then u ¢ HA8L

Proof. Consider oy and let n;. € < 8/2 , be a usual integral average
of u’ (def: by with an {od:
kernel vhose support is an interval of length 2¢ ). Then we know that
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4.65) uj € E,
. .
(4.66) supp uj < luj-sll. l,ﬂ/Zl .
= +0.
(4.67) ||u"| "”pj +0 as ¢+ 0

k
For k=1,2, 0 wele uje u;/" and dasne oF = J1 ub . From

(4.65) ve see that u* ¢ £ ¢ %L | ye ooy show that (*) 1a
Cauchy 1n B(s0sl
Using (4.64) we see that we can choose sj(x) € El satisfying (4.1)

such that

-(4.68) 8y(x) = py-s, x € [oj-é. 8y+6)
and

(4.69) £,(x) > a(x), all x .

3

By Theorem 6 and (4.69) we have
.70 'l gy 000 < Z; . 13- a0,
8,(x) 1
<€ Ty I a1 ka1 -

How, using Lemma 5, (4.66) and (4.67) we obtain

B,(x) P,-8
3 LR g ] k_ 1 k_ i
%7 |[|A Cugmupdll, < edla (ug uj)ll. + ||-.J uj||_L)

k_ 1 k1
- el + i1y -
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Combining (4.70) and (4.71) we get
1 2
[ utly g onL < € s l-sgll, + I

t k_ 1
2T llu,---,ll,,j .

This together with (4.67) shows that {u*} fs Cauchy tn H*(® 0l |

L k L

Stnce pJ:~L ve see that u € H = and that u +u in B = .

k 8(x),0,L

Now, since u there extats v ¢ B2 0l g0y

L

is Cauchy 1n H

a0l . Thus u=vent®oil

that W+ v tn , and hence in H_
This completes the proof.
Ve consider now an application of this result. Let u(x) be a

2r-periodic atep function defined by

klvoi‘i"l or x <x<2r ,

u(x) =

kz P XXX
where 0 < X <X <2r . Let a(x) € El satisfy (4.1), 0 < a(x) and
a(x) o alxy) < 1/2 . We will show that u ¢ BP0l

Let oj(x) € En s 3 =1, o2, satisfy

L
Tyap ¢ =1,

supp ¢, < la’.e’l .

% € (@a8)) Xy € (a7.8,), %)) X, £ lagu8y . 923,



13.
where ’_1 Cay < */4 and a(x) < 1/2 for x € la).8,] or x¢ lay.8,) .

How choose & > 3/2 max (arcj) and Py =Py < 1/2 so that

a(x) < R [al-C. llﬁl or x € laz-S. 9246]
and choose Py = -*c =P, so that
a(x) < Py all x .

P. .
Let uj=uey . Clearly u= Juy,u €87 ana supp 4 © layu8,)”
Purthermore

a(x) < Py o x € lo’-a_ ele .

Ve can now apply Theorem 11 with s = 0 and we conclude that
w €Ol nuy o) ts essentially arbicrary subject to the
restriction that a(x)) , alxy) < 1/2 .

It is clear that this technique applies to a large class of

piecevise smooth functfons.



