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Scheme-Independent Stability Criteria
for Difference Approximations of
Hyperbolic Initial-Boundary Value Problems. I

By Moshe Goldberg* and Eitan Tadmor**

Abstract. Easily checkable sufficient stability criteria are obtained for explicit dissipa-
tive approximations to mixed initial-boundary value problems associated with the sys-
tem u, = Aux in the quarter plane x > 0, ¢ > 0. The criteria are given entirely in
terms of the boundary conditions for the outflow unknowns. The results imply that
certain well-known boundary conditions, when used in combination with any (stable)
dissipative scheme, always maintain stability.

0. Introduction. This paper provides a stability study of a wide class of difference
approximations for a hyperbolic mixed initial-boundary value problem in the quarter
plane x > 0, # > 0. The approximated differential system is u, = Au, where 4 is
diagonal, and the inflow and outflow unknowns interact at the boundary. For the dif-
ference approximation we consider general dissipative explicit two-level schemes, with
general boundary conditions which determine the boundary values in terms of outflow
values at interior points. We show that such boundary conditions may have arbitrary
degree of accuracy. This is included in Section 1.

In Section 2 we begin to discuss stability. We show that the entire approxima-
tion is stable if and only if the scalar components of its outflow part are stable; thus
reducing the stability question to that of a scalar outflow problem. From that point on,
our aim will be to obtain easily checkable sufficient stability criteria for the reduced
problem. All our results are scheme-independent and are given exclusively in terms of
the outflow boundary conditions. The only such result that we know of, is due to
Kreiss ([3]; see also [1]) who proved that for dissipative schemes, boundary extrapola-
tion always maintains stability.

In the remainder of Section 2 we state our main result and consider several exam-
ples. The main result is for the scalar outflow case where the boundary conditions are
translatory, i.e., determined at all boundary points by the same procedure. The result
states that if the boundary conditions are generated by a solvable stable scheme, then
the entire approximation is stable, independently of the interior scheme. The examples
considered show that if the outflow boundary conditions are generated by oblique
extrapolation, by explicit or implicit Euler schemes, or by the Box-scheme, then overall
stability is assured.
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In Section 3 we derive a preliminary scheme-independent result, which is an ex-
plicit interpretation of Kreiss’ determinantal stability criteria [4]. This result, which
seems to be of independent interest, is used in Section 4 to derive our stability criteria
for the case of translatory boundary conditions.

The theoretical basis for our work was given by Kreiss [4] and by Gustafsson,
Kreiss and Sundstrom [2]. We assume that the reader is familiar with these papers.

In a forthcoming paper we discuss the extension of our results to nondissipative
and multi-level schemes.

We are grateful to Bjorn Engquist for many helpful discussions.

1. The Difference Approximation. Consider a first order hyperbolic system of
partial differential equations

(1.12) du/dt = Adu/dx, x=>0,130,
where u = W(x, 9, . .., u™(x, )’ is the transposed vector of unknowns, and 4
is a constant n x n Hermitian matrix of the form

Al o
A= , Al<o,4">o0.
0 AII
Without restriction we may assume that A is diagonal.
The solution of (1.1a) is uniquely determined if initial values

(1.1b) u(x,0)=f(x), x=0,
and boundary conditions
(1.1¢) u'(0, 1) =8u'(0, ©) + g(r), =0,

are prescribed. Here the partition
uI = (u(l), “ e ey u(l))" u" = (u(l+l)’ e e ey u(n)),

corresponds to that of 4, and S is an / x (n — /) rectangular matrix.

To solve the initial-boundary value problem (1.1) by a difference approximation we
introduce a mesh-size A = Ax > 0, k = At > 0, such that X\ = k/h = constant. Using
the standard notation v, (f) = v(vh, t), we approximate (1.1a) by a consistent two-sided
difference scheme of the form

v,(t +k)=0Qv,(), v=r,r+1,...,
(1.2a) 0= .zp: AjEj, Ev,=v,,,,
j=—r
with initial values
(1.2b) v, ©=f, v=012,....
The A,- are fixed diagonal n x n matrices depending on 4 and on X such that 4_,, A4,

are nonsingular.
Throughout the paper we assume that scheme (1.2a) is dissipative, i.e., for some
6 > 0 and positive integer w, the eigenvalues (¥) of the amplification matrix
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. p
0¥ = T 4", -—n<g<n

.
satisfy
l6(E)l < 1 —8|£|2%.

Since the A,- are diagonal, dissipativity guarantees that the scheme (1.2a) is stable.

In order to uniquely determine the solution of (1.2), we must specify, at each
time step, r boundary values v“(t), u=0,1,...,r—1. For the outflow un-
knowns we do it by boundary conditions of the form

S

11 =

(1.3) _Zo DVl + k) = zo COWL@), wu=0,...,r-1,
= =

C,; being fixed diagonal (n — 1) x (n — 1) matrices. For the inflow part we use the
physical boundary condition

(1.42) V() = Sup (D) + g()

together with r — 1 additional conditions of the form

q
(1.4b) () = ,-=zo D,u'(t) +g,(, wu=1,...,r-1,

where D, ; are fixed I x (n — I) matrices and the gu(t) are vectors depending on # and
on g(¥).

It is well known that using conditions of the general form (1.3), one can achieve
at the boundary arbitrary degree of accuracy. We note that this is true also for con-
ditions of type (1.4b). In fact, if accuracy of order d is desired, then using the differen-
tial system and (1.1c), we find that a Taylor expansion of a smooth solution of (1.1)
yields

d ] j
oy =3 (“] Y 2 50,1 + o+
= ! bx

d (uh)
=) — ( ) (A’) fi’j—ul(o )+ ot

= f; (“.f' ' AhHi [s —ajfu"(o, ) +-d—J:g(t)] + 0?1
. . at’ dt]

d (“h) myj 2 1 d+1

=2 (hH S(A);'—J (0t)+—g(t) + O(r*™7).
x

Thus, (1.4b) follows upon approximating 8’/ ax 'u'}(0, £) by linear combinations of

u{,l(t), ce uzl(t) of the right accuracy.

For example, if vi(t) is required to second order of accuracy, we may use

au11(0, H_ =3ugl(t) + 4ull(®) - ul(®
ox 2h ’
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324110, ) 4o (®) — 2uj'(®) + uj(®)
ox? 2n?

to obtain a second order accurate boundary condition of the form

vi(t) = Dol (¢) + DI + D@ + &, (),
where
Dy =My —3M,[2 +%M,, D, =2M, —%M,, D,=-%M +%M,,

M; = (4)7Is@"y,  j=0,1,2,

d 2 2
£10 =80 + hay Ly + 1 an2 ZE

2. Statement of Main Result and Examples. The difference approximation is com-
pletely defined now by the dissipative (stable) scheme (1.2) together with the boundary
conditions (1.3) (1.4), and we raise the question of overall stability in the sense of
Gustafsson et al. [2, Definition 3.3].

Since the 4; are diagonal, we can split the scheme (1.2a) into its inflow and outflow

parts,
p
2.1 R +0 =3 Aju,,;O, v=rr+l...,
j=-r
and
11 2. LI — +1
.2) v, (t +k)= Z Ajvy (@), v=rr s
j==r
where

4l 0

A. = / s -r<j<p,
! 0 A=
]

correspond to the partition of 4. We immediately see that the outflow problem (2.2)
(1.3) is self contained, while the inflow problem (2.1) (1.4) depends on the outflow
part to the extent that the outflow computations provide the inhomogeneous boundary
values in (1.4). Thus, stability of the entire approximation is equivalent to the following
two separate questions:

(a) Stability of the inflow problem (2.1) with inhomogeneous boundary values.

(b) Stability of the outflow problem (2.2) (1.3).

Since the stability definition 3.3 of [2] gives bounds for inhomogeneous boundary
values, it suffices, for the inflow problem, to consider homogeneous boundary values.
But then, since the A} are diagonal, the problem splits into / independent dissipative
approximations with homogeneous boundary values, which were shown by Kreiss [3,
Theorem 3] to be stable independently of the basic scheme. Thus the inflow problem
is stable, and it remains to consider (b). Since the A}.I of (2.2) and the C,,; of (1.3)
are diagonal, the outflow problem in (b) splits as well and we have,

THEOREM 2.1. The entire approximation (1.2)—(1.4) is stable if and only if the
n — 1 scalar components of its outflow part are stable.

So, from now on, we may restrict the stability discussion to the following scalar
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case where we approximate an initial-value problem of the form
ou ou
=2
ot 9x
by a consistent dissipative scheme

(2.3) a>0,x>0,t>0,u(x,0) = f(x),

v,(t + k) = Qu, (1), v=rr+1,...,

(2.42) p ;

0= Z ajEI’ Evv=vv+1’

j==r
together with initial values
(2.4b) v,®=f,, v»=0,1,2,...,
and boundary conditions
N N
(1) . = 0) - -

(2.5) ,"S‘o v, + ) i;o @y, @O, u=0,...,r-1L

Here the a; and the c,; are constants depending on « and on .

Our purpose is to provide easily checkable sufficient stability criteria for
approximation (2.4)(2.5) which depend entirely on the boundary conditions (2.5).
Particularly effective criteria of that nature will be obtained when the boundary con-
ditions are translatory, i.e., of the form

N N
(2.6) > c}(l)v“+j(t+k)= > c}o)vﬂ_,_].(t), u=0,...,r—-1,
j=0 j=0
where the c; are independent of u. In this case we introduce the boundary-scheme

Tt +k) =TOv,(t), v=0,21,%2,...,

@7 oo
7€) = T(a)(E) = zo c/(a)EJ’ a=0,1, Ev,=v,,
I=
which generates (2.6) upon restriction of v to the values 0,1, ...,r — 1.

We call the boundary scheme stable if it is stable when applied to all grid points
Vh, — o < p < oo, We state

THEOREM 2.2 (THE MAIN THEOREM). Approximation (2.4)(2.6) is stable if the
boundary-scheme (2.7) is stable and if
23) T = Y <D 0 Vi< 1.

=0

The stability criterion in this theorem is independent of the basic scheme. The
proof, as well as other scheme-independent results for the translatory case, are given in
Section 4.

Often, the boundary-scheme is known in advance to be stable. Thus, in applying
Theorem 2.2, it only remains to verify the solvability-condition (2.8).

If the boundary conditions are explicit, i.e., of the form
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s 4
2.9) vt +k) = i§) U4 (®,  w=0,...,r-1,

then T(1)(k) = 1. Hence (2.8) is automatically fulfilled and Theorem 2.2 reduces to
COROLLARY 2.3. If the boundary conditions (2.9) are generated by a stable
scheme, then approximation (2.4)(2.9) is stable.
Example 1. Determine the boundary conditions by oblique extrapolation:

(2.10) vt +k)=v,,,0, u=0,...,r—1.

Clearly, the generating boundary-scheme is explicit and unconditionally stable; so by
Corollary 2.3 the stability of (2.4)(2.10) is assured.

Note that (2.10) is inconsistent with the differential equation (2.3), unless Aa =
1, in which case (2.10) coincides with our next example.

Example 2. Let the boundary conditions be generated by the right-sided explicit
Euler scheme, i.e.,
(2.11) v, + k) =v,(0) +Aalv, () ~v, @], p=0,...,r-1

Since the basic scheme (2.4a) must satisfy the Courant-Friedrichs-Levi condition Aa
<1, Euler’s scheme is stable too, and by Corollary 2.3 the stability of (2.4)(2.11) follows.
Example 3. Take

2.12) v, (t + k) = Aafv, (¢ + k) —v,(r + k)] =v,0),
u=0,...,r-1,

which is generated by the right-sided unconditionally stable implicit Euler scheme. To
comply with Theorem 2.2, we must have

TWK)=1-ak -1)#0 V| <1.
Since Aa > 0, then k with |k| <1 gives
Re TMD(k)=1+Na(1 -Re k) > 1,

s0 (2.4)(2.12) is stable.
Example 4. We use the unconditionally stable Box-scheme to generate

vt +k) +u, @ +E) - Naly,, @+ k) —v,@+ )]

=v,(0) +v, () +ralv, ., () —v, O], w=0,...,r-1

(2.13)

Since
Re TMW(k)=1+Rek +Na(l ~Re k) >0 VI <1,

then by Theorem 2.1 again, (2.4)(2.13) is stable.
In view of Theorem 2.1, Examples 1—4 imply that if the boundary conditions
(1.3) are generated by oblique extrapolation, explicit or implicit right-sided Euler
schemes, or by the Box-scheme, then the entire approximation (1.2)—(1.4) is stable.
The boundary conditions in Examples 1—4 were studied by Gustafsson et al. [2]
and by Skollermo [5] in combination with specific 3-point basic schemes.
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3. A Preliminary Determinantal Criterion. In order to investigate the stability of
(2.4)(2.5) we introduce the space I,(h) of all grid functions

w={w,}, with[wl>=h 3 [wl? <.
v=0
We write the approximation in operator form

ut + k) = Gu),

where G: 1,(h) — 1,(h) is uniquely determined by (2.4a) and (2.5). Following Kreiss
[4, Main Theorem], we will show that G has no eigenvalues z with |z| = 1. This will
suffice to assure stability both in the sense of [4] and in the sense of Definition 3.3
of [2].

To check the eigenvalues of G we must adopt Kreiss’ recipe in [4]: If z with
|zl > 1 is an eigenvalue, then for some nontrivial g € 1,(h), Gg = zg. Thus, by (2.42)
and (2.5), g must satisfy the resolvent equation

p
3.1 28, = 3 4;&,4j» v=rr+1,...,
v=—r
and the boundary relations
s s
1 - 0 = -

(.2) > L Bt = z o Burps  B=0e,r =L

j= j=

The most general solution of (3.1) in ,(k) can be written as

k Mgl
(3.3) g, = 2 X 0Py, v20,
a=1 g=0
where Kk, = k(2), | < a <Kk, are the distinct roots of the characteristic equation
p .
(3.4) 2z e -z=0,

which satisfy 0 < |k,| < 1, each with multiplicity m, = m, (2); P,4(v) are arbi-
trary polynomials in v with deg [PaB(v)] = B; and 0,4 are free parameters yet to be
determined. Since (2.4a) is dissipative and consistent with (2.3), we use Lemma 2
and part of the proof of Lemma 7 of [4] to find that for z with |z| > 1, Eq.
(3.4) has precisely 7 roots k with 0 < || < 1. Thus, g, of (3.3) depends on r param-
eters. Substituting (3.3) in (3.2), we obtain a linear homogeneous system of r equa-
tions with the 7 unknowns o,4. The system may take the form Jo' = 0 where J = J(z) is
an r x r matrix and ¢ is the unknown vector. This yields

LEMMA 3.1 [4, LEMMA 3). z with |z| > 1 is an eigenvalue of G if and only if
det J(z) # 0.

Going through the above process, we make a particular choice of the polynomials
P, 4(v) that leads to an explicit expression of J which later proves useful. We choose

g [V
3.5) P = kB! ( ; )
Inserting (3.5) in (3.3) and then in (3.2), we obtain
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(3.6) Zl Z Z [Zc(l)—c(o)]3!< > u+j—B 0op =0, u=0,...,r-1,
a=1 g=9 Jj=
which constitutes the system Jo' = 0.

At this point we associate with the boundary conditions (2.5) a set of polynomial
boundary-functions

s .
3.7 b,z k)= [zc‘(‘}) - c‘(‘(;)] KEH u=0,...,r-1.
=0
Since

*b (z,k) s +i -
—EZ o 3 [l - (@] g1 (Hﬁ 1) W hHiB,

ok P j=0
then system (3.6) may be written as
k Mo”1 3Pp w2 Ky)
(3.8) > X _—_0043:0’ u=0,...,r-1.
a=1 =0 axa

Thus, the coefficient matrix J takes the form
(3.92) J=[B(z, ky, my), ..., B(z, kg, my)],
where B(z, «,, my), 1l Sa<k,arer x m,, blocks given by

B(z, k., m,)

bo(z, k) bo(z, K) ] bo(z, K)
Mg—1
(3.9b) =[[ 210 2 b,z ©) R R X

. ok ¢ :
b,_,(z, k) b,_,(z,«) b,_1(z, k) | |x=«

Defining a partition of r to be any set of positive integers {m; } L, which satis-
fiesmy ++++ +my =r, we state

THEOREM 3.2. Approximation (2.4)(2.5) is stable if for every z with |z| =
every partition {m; }l y of 1, and every set of distinct values {k; } =, With0 < IK | <l1,

[¢3

(3.10) det [B(z, Kk, my), . . ., B(z, kp, my)] # 0.

Proof. Take an arbitrary z,, with |zo| > 1 and let k (z,), 1 < a < k, be the
distinct roots of (3.4), each with multiplicity m,(z,). Since {mo[(zo)}lo‘l=l is a partition
of r, then (3.10) holds for our Zys Ko(2g) and my(z,). Thus, by Lemma 3.1, z, is not
an eigenvalue of G, and by Kreiss’ Main Theorem in [4], stability follows.

Since the determinant in (3.10) depends entirely on the boundary-functions (3.7),
Theorem 3.2 is scheme-independent. Thus, in applying the theorem, one avoids the

inherent difficulty of solving the characteristic equation (3.4).

4. Translatory Boundary Conditions. In this section we return to consider
approximation (2.4)(2.6) where the boundary conditions are translatory.
The boundary-functions associated with (2.6) are
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s .
b,(z, k)= 3 (zc}(l)—c}o))x“"", u=0,...,r—1.
j=0

Thus, writing b(z, k) = by(z, k), we have

b,(z, k) =k*b(z, k), v=0,...,r—1
Consequently, if {mi}ﬁ.‘;l is a partition of r, then the r x r matrix
4.1) [B(z, ky, my), . .., Bz, Ky, mpy)]
in (3.10) is given by the r x m; blocks
B(z, k;, my)
b(z, Kk
b(z, k) b(z, k) a'"i—l (z, k)
=\l ko0 |2 wbzi) | o0-, K b(z, k)
oK m; .
: : oK :
k" 1b(z, k) k"~ 1b(z, k) k"7 1b(z, k) ] Jx=x;

The fact that (4.1) is determined now by the single boundary-function b(z, ),
implies the following significant simplification of Theorem 3.2.

THEOREM 4.1. Approximation (2.4)(2.6) is stable if for every z with |z| = 1
and k with 0 < |k| < 1, we have

s .

4.2) b(z, k) = j§0 (zc}l) - c}o))xf #0.
Proof. Take an arbitrary z with |z| = 1, a partition {mi}fil of r, and distinct
values k;, 1 <i <N, with 0 < |kl < 1. In order to prove stability, it suffices, by
Theorem 3.2, to verify (3.10). For this purpose, let

r—1 Kkib(z, k)
(4.3) 2 : =0
K»=0

3"V T kb bz, k)] fokg N

be a vanishing linear combination of the rows of (4.1). The vector relation in (4.3)
consists of 7 scalar equations

r--1 j
3y 9 k"G, )] =0, 1<i<N,0<j<m, -1,
u=0 “aK] !

K=Ki

which we write as

j r—1
@ Ll gl s e =0, 1<i<N,0<j<m -1
ok’ L=o0 K

Since 0 < |k;| <1, then by hypothesis,
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[b(z, K)]K=K’_#=0, I<i<NM

Thus, expanding (4.4) by Leibniz’ rule and using induction on j > 0, we find that the
sum in (4.4) has vanishing derivatives at k = k;, i.e.,
dl

r—1
; Z 'yux“] =0, I<i<N,O0<j<m -1
dk u=0

K_Ki

We conclude that the polynomial
r—1
P)=73 v,k¥,
u=0

which is of degree r — 1 at most, has 7 roots; k;, 1 <i <N, each with multiplicity m;.
Hence, P(k) = 0 and the coefficients 7, must vanish. By (4.3), therefore, the rows of
(4.1) are linearly independent, so (3.10) holds, and stability follows.

Before turning to the proof of the Main Theorem (Theorem 2.2) we note that
since Theorem 4.1 applies also to single-leveled boundary conditions, we can immediately
obtain the following result of Kreiss [3] (see also [1]): Let the boundary conditions (2.6)
be determined by extrapolation of arbitrary degree s — 1, i.e.,

S s .
(4.5) ,-;o <],)(—1)lv”+](t)=0, w=0,...,r—1.
The associated boundary-function is

b =- 3 (3) i ==aa -y

j=0

Thus, b(k) # 0 for 0 < |k| < 1, and by Theorem 4.1, (2.4)(4.5) is stable.

Proof of Theorem 2.2. The amplification factor f"(z) of the boundary-scheme
(2.7) is given by

T¢) = TO®ITV@, 7@ = TNE"), «a=0,1.

By (2.8) we have 7“1(1)(2) # 0; thus, f(z) is well defined. Since the boundary-scheme is
stable, then |T'(¢)| < 1, hence
(4.6) IFO@I <ITO@EI#0 Vi

The boundary-function associated with (2.6) satisfies

S

bz, k) = Y eV = ) = 2T ) = TO).
j=0 ~
So, for |z| > 1,we use (4.6) to find that
lb(z, )| = 12T(e) = TO)) = 127De) - T OB
> |zl - ITD@) - 1TO@) > 0.
That is, the equation

4.7 b(z, k) =0 with |z > 1,



HYPERBOLIC INITIAL-BOUNDARY VALUE PROBLEMS. I 1107

has no roots k with |k| = 1. Since the roots k of (4.7) are continuous functions of z,
we conclude that the number of k with |k| < 1 is fixed for |z| > 1, and can be de-
termined by considering large values of |z|. Writing (4.7) in the form

T(l)(K) - Z—lT(O)(K) =0,

we let |z| —> oo and use (2.8) to find that (4.7) has no roots in the unit disc. In
other words, if |z| > 1 and b(z, k) = 0, then k must satisfy (x| > 1. By continuity,
therefore, if |z| = 1 and b(z, k) = O, then |k| > 1;1i..,

b(z,k) #0, VlizI =1, [kl <.
This implies (4.2), and Theorem 4.1 completes the proof.
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