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Stability Analysis of WONDY (A Hydrocode
Based on the Artificial Viscosity Method
of von Neumann and Richtmyer)
for a Special Case of Maxwell’s Law*

By D. L. Hicks

Abstract. The artificial viscosity method of von Neumann and Richtmyer was orig-
inally designed and analyzed for stability in the case when the material was an ideal
gas. Recently a hydrocode (WONDY) based on the von Neumann-Richtmyer scheme
was used in calculating wave propagation problems in materials obeying a form of
Maxwell’s material law; signs of an unstable difference scheme appeared. A stability
analysis shows that the timestep restrictions required for stability in certain cases
can be more stringent for material laws of the Maxwell type than they are for mater-

ial laws of the ideal gas type.

1. Introduction. In 1950 J. von Neumann and R. Richtmyer [5] presented
their artificial viscosity method along with an approximate stability analysis for the
case when the material law was the ideal gas law. In 1954 their stability analysis
was improved by G. N. White [3]. In 1966 R. J. Thompson [2] presented an ap-
proximate stability analysis in the case where the stress depends only on the strain.

All of the aforementioned stability analyses were for material laws of the point-
function type. That is, the stress at a point in the material and at a certain time is
given as a function of the strain and specific internal energy at that point and time.
The ideal gas law and Hooke’s law are classic examples of point-function type mater-
ial laws.

Recently, there has been interest in material laws that are not of the point-
function type. For example, many materials obey a history-functional type material
law [1]. That is, the stress is given as the value of a functional that depends on the
history of the strain, strain rates, etc. Another way of saying this is that the stress
is prescribed in terms of a differential equation rather than by a point-function. That is,
a differential equation for the stress rate is given in which the stress rate is related to
the strain rate with coefficients which may depend on the stress, strain, etc. The clas-
sic example is Maxwell’s material law. Material laws of this type are often referred
to as rate dependent material laws.

There are many different forms of rate dependent material laws. In this brief
paper the first results of stability analyses of hydrocodes with rate dependent material
laws are presented. A simple but representative law was chosen for the first stability
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analysis; it is a special case of Maxwell’s material law. In the case of this simple law
a stability analysis indicates that timestep restrictions can be more severe for rate
dependent laws.

2. Notation and Nomenclature.
Conservation Laws. The one-dimensional, Lagrangean conservative form of the
laws of conservation of volume, momentum, and energy are expressed by

(2.1) dU/at + oF/au = 0,

o) = (3

Here ¢ is time; u is material coordinate; V is specific volume; V = 1/p, where p is

where

mass density; u is specific momentum; E is specific total energy; F = &+ Bu?,
where & is specific internal energy; o is stress (taken positive in compression); arti-
ficial viscosity will be denoted g; strain is given by ¢ = 1 — V/V°, where V' is the
initial value of V.

Material Laws. If the stress depends only on the strain, the material law is
called a mechanical equation of state (e.g. Hooke’s law). If the stress also depends on
temperature, or internal energy, or entropy, the material law is called a thermodynam-
ic equation of state (e.g. ideal gas law). Both the mechanical equation of state and
the thermodynamic equation of state are examples of the point-function type material
law.

An example of material laws of the history-functional type is Maxwell’s material
law (see [1])

da/dt + a*oV/at + R = 0,

where a is the acoustic impedance and R is the relaxation function. In Maxwell’s
material law @ and R are allowed to depend on ¢ and V. For many materials R is of
the form (o — oeq)/r, where o, is the equilibrium stress and 7 is the relaxation time
of the material.

Discrete Notation. Let My = jAu and t* = nAt where Au and At are the mater-
ial and time increments. The approximation to f(u, t") is denoted fj". The CFL
(Courant, Friedrichs, Lewy) number (see [4]) is given by o = aAt/Au. Differences
with respect to u and ¢ are denoted A. and A’ respectively. For example, A. fl’fl_l /2
= jr_zH —fj"and A-fjn+1/2 Efin+1 _fin'

3. Background. Since about 1950 the von Neumann-Richtmyer (VNR) scheme
has been the basis for many hydrocodes. The stability analyses appear mainly in
laboratory reports; therefore, a brief history of those analyses is presented here. First,
in the original paper [5] von Neumann and Richtmyer did an approximate stability
analysis (in the case of the ideal gas law) by considering separately the shock regions
and normal regions. (See also [4, pp. 320—324].) For normal regions their analysis
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yielded the famous CFL condition;i.e.,
(3.1a) a<l.
One can show that

(3.1b) a<l

is necessary and sufficient for stability of the VNR scheme when g = 0 and the mater-
ial law is Hooke’s law in one dimension, i.e.,

32) 0 =a*10e.

(This follows from results on p. 263 of [4].) For shock regions von Neumann and
Richtmyer’s approximate stability analysis produced the restriction

3.3) 4(AJa)a <1,

where A is the coefficient of the artificial viscosity;i.e.,
(34) q=—-ANA.u

The original VNR viscosity was given by

3.5) A =c,plA.ul,

where ¢, is a dimensionless constant ~ 1. In 1954 H. G. Kolsky reported (see p. 13
of [3]) a result of G. N. White on the stability analysis of the VNR scheme; i.e.,

(3.6) o? + 4(Afa)a < 1.

The analysis leading to (3.6) was never published [6]. White’s inequality (3.6) was
also reported on p. 350 of [4], unfortunately with a typographical error; the 2 ex-
ponent of « is missing there. In 1966 R. J. Thompson [2] did an approximate
stability analysis for a mechanical equation of state in the case where A is a nonnega-
tive constant and arrived at the restriction

3.7 o? +2(Na)a < 1

as a necessary condition for stability. One can prove that (3.7) is necessary for stabil-
ity when A is a nonnegative constant, and the material law is Hooke’s law in one di-
mension (3.2). This follows from Result #1 of Section 5. The reason for the 2-4
discrepancy in (3.7)—(3.6) is because White was doing a stability analysis with a vis-
cosity quadratic in A.u (the original VNR viscosity), and that results in an extra
factor of 2 in the first variation of q; Thompson’s analysis is for a viscosity linear in
A u.

4. Lemmas. In Section 5 certain 2 by 2 amplification matrices arise and their
eigenvalues are roots of certain quadratic equations; i.e.,

A —-2BA+C=0.

The lemmas in this section are used to arrive at the timestep restrictions of Section
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5. The proofs of Lemmas 1A, 1B, and 2 are left to the reader. The proofs of Lem-
mas 3A and 3B may be found in [4].

LEMMA 1A. Let B and C be real numbers; D = B — C; \, = B + D*/?; I\l
= max|A, |

Case (a): If D =0 and B* > 1, then

Alpax > 1.
Case (b): If D >0 and B* < 1, then
[N S Viff21BI<SC+1].
Case (c): If D <0, then
[l S1iFC<I].

Moreover, the result also holds when the < signs inside the square brackets are re-
placed by < or =.
LEMMA IB. Let B=1-b;C=1—-c;2b=2¢c>0. Then

[N, < 1iff2b +c<4].

LeEMMA 2. Assume A real, B and « positive; let D = B? + A;and let o =
o(B + D! 12). Consider the following inequalities

@.1) [4e? +2Ba < 1]
and
(4.2) [a’ < 1] .

Case (a): If D = 0, then (4.1) if and only if (4.2).

Case (b): If D <0, then (4.1) holds for all «.

LeEMMA 3A (vON NEUMANN’S NECESSARY CONDITION). Let G(At, k) be the
amplification matrix for the Fourier component of index k;let |\l be its spectral
radius. Then

N ey <1+ 0(AD)

is a necessary condition for stability.
LEMMA 3B (ONE OF RICHTMYER’S SUFFICIENT CONDITIONS). Let A be the
determinant of the normalized eigenvectors of G. If there exists a constant & such

that 1Al = & > 0 (uniformly in (At, k)), then the von Neumann condition is sufficient
for stability.

5. Results. The stability analysis is to be done for the material law given by

(5.1) 90 23V 07 0eq _
TR Y 0,

where a, Ocq> and 7 are constants with @ and 7 positive.
In addition to (5.1) the equations
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(5.2) aV/at = du/ou
and
(5.3) du/dt = —da/ou

are needed to complete the system. (Note that the conservation of energy equation
is not needed.) WONDY’s difference scheme for (5.3) is

(54) <Q”>"=_<A0>n_<ﬁ )n_1/2
At/ Au/; Au/y ’

where
+1/2 _, n—=1/2
u}’ / ul’.’ /

Au n
(E)}. = M1z _ 12

and q is the artificial viscosity with

(&7)" _ %12 "%

A

Jo o Miy12 T e

-1/2 —-1/2 -1/2
(M)ﬂ / ;’+1//2 - 7—1//2

Ay Biraga Tl
and
-1/2 _ _ -1/2
G:5) an+11//§ = AA'“;'+1//2
with

n=1/2 _ ., n—=1/2 _, n—1/2
Auiiir = Ui u; .

A is always required to be nonnegative and in general it may be rather complicated
(see [4] and [2]). For simplicity in the following analysis, A is taken to be constant.
WONDY’s difference equation for (5.2) is

(56) <M>n+l/2 _ <A_u>n+l/2
Ativin \BR/pap’

where

1
(é_l{)"“” _ Vidle - Viei)2
At/iv1p2 1l n
and

(M)nﬂ/z B u;1++11/2 _u;1+1/2
A/jrtpa Hjv1 ~H

Finally WONDY’s difference equation for (5.1) is

<_A—0>n+1/2 2(M>n+1/2 +‘7;'+1/2_°eq=0
At)isay2 At/jr1)2 T

and from (5.6), letting & = At/r, follows

.7 Aol + A B+ ey gy 00g) = 0,

where r = At/Au.
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Remark. Observe that if & = 0, then (5.7) is satisfied by Hooke’s law in one
dimension (3.2).

In (5.4) and (5.7) replace u]'.”' 12 by v**1¢ and of ),
where ¢ = exp(ikAu) and let

— oeq by - aw"Ei+1/2

to get

U™t = G(ar, kU,
where
(5.8) G(Ar, k) = [ L ’ ]

Bl —v) 1-B~h
with
(59) a=ar
and
(5.10) B = 2a sin(kAu/2)
and
(5.11) y = Ar(Ble)?.
Note that
det(G — N\I) = A2 — 2B\ + C,
where
B=1-@*+y+h)2

and

C=(1-n1-h).
Remark. Note that (5.8) agrees with Richtmyer and Morton [4, p. 262], when
h=0=A.
ReEsuLT #1. Ifh =0and A = 0, then

(5.12) @ +2Ar<1

is necessary for the stability of G(At, k) given by (5.8).

Proof Sketch. Apply Lemma 1B with 2b = 82 + y and ¢ = 7 to get 2 + 2y
< 4 and (5.12) follows. End of proof sketch.

Remark. Note that (5.12) is Thompson’s inequality.

RESULT #2. Let h = 0 and A = 0; also let o = a' At/Au, where

(5.13) a =a3-1a}+ [(%)2 + 1]1/25.
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Then a necessary condition for stability of the G given by (5.8) is

(5.14) o <1.

Proof Sketch. Apply Lemma 2 to Result #1. End of proof sketch.

Remark. The timestep restriction enforced in WONDY is o' < 8 < 1, where 0
is usually taken to be 0.9.

Result #3. If 0 <h <1and 0 < Ar <1/4, then

(5.15) o +h(1)2 - Ar) + 2Ar <1

is necessary for stability of the G given by (5.8).
Proof Sketch. Note that

2b+c =02+ 2y +h)—vh

and apply Lemma 1B to get IAl , < 1if and only if (5.15). Thus, necessity follows
from Lemma 3A. End of proof sketch.
Remark. Note that if A = 0, then (5.15) reduces to

o +h2<1.

Therefore, it is necessary for stability that 7 < 2.
ReSULT #4. If0<h <1 and 0 < Ar < a(l — ) + f(h) where f(h) =
a[(1 = h)M? — 1] + h/4, then

(5.16) o® +h(12-Ar) +2Ar < 1
is sufficient for the stability of G given by (5.8).

Proof Sketch. First consider the case when (sin kAu/2)? < hK where K is a
constant to be determined later. Then G = I + O(h) which is sufficient for stability.

Next consider the case when (sin kAu/2)? = Kh. Let D = B? - C; A\, =Bt
D/, pz =p2 4+ 11—y~ A, 12; vf =—1if/p, and v§ = (1 —vy—2A.)p,. Note that
{v*, v} is a complete set of normalized eigenvectors of G. Observe that

ldet(v*, v7)I? = 462 ID\/(p,p_)*.
The idea is to show there exists a § > 0 such that
then apply Lemma 3B. The next step is to show that (5.16) implies D < 0 when
(sin kAu/2)? = Kh and 0 < Ar < o1 — a) + f(h). Note that
D =—f*{1 - g(g*)},

where

B2g(%) = (B> + v + h)[2)* = yh.

It shall be shown that g(ﬁz) <1 for Kh < ({3/201)2 < 1. Note that g is monotone in-
creasing for 82 > h/(1 + Ar/a®). If the constant K is chosen such that 4K(a? + Ar)
> 1, then the largest value of g on the interval [4a?Kh, 4a2] occurs at 82 = 4a?.
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Therefore, let us so choose K. Now considering g(4a2) <1 as a restriction on Ar is
equivalent to Ar < o1 — a) + f(h). (Use Lemma 2, Case (a) on the quadratic in v.)
This establishes D < 0. When D <0, then

p: =p*12 1l
and (5.17) reduces to
1 - g(6%) > 52 — 7)*/4.

Hence, (5.17) requires g(3?) < 1; this has already been shown. End of proof sketch.

Remarks. As an aid to the reader, an explicit verbal statement of the foregoing
results is now provided. Result #1 proves that Thompson’s inequality is necessary in
the case of difference equations (5.4), (5.5 with A constant), (5.6), and (5.7 with h
= 0) (in other words when the material law is Hooke’s law with viscosity linear in
A. u). Result #2 reduces the quadratic stability inequality of Result #1 to a linear
inequality. Result #3 shows necessary and Result #4 shows sufficient conditions for
stability when 0 < h <1.

6. Concluding Remarks. Inequality (5.12) is essentially the inequality that
WONDY enforces. Note that for calculations in which the ratio & = At/r (where 7
is the relaxation time of the material) is large that (5.12) might be satisfied while
(5.15) is violated. This appears to be the reason why some of the calculations done
with WONDY on rate dependent material laws have shown signs of instability.
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