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Unicity of Best Mean Approximation
by Second Order Splines with Variable Knots

By D. L. Barrow*, C. K. Chui**, P. W. Smith** and J. D. Ward**

Abstract. Let S12V denote the nonlinear manifold of second order splines defined on
[0, 1] having at most N interior knots, counting multiplicities. We consider the ques-
tion of unicity of best approximations to a function f by elements of S}%" Approxima-
tion relative to the L2[0, 1] norm is treated first, with the results then extended to
the best L; and best one-sided L, approximation problems. The conclusions in each
case are essentially the same, and can be summarized as follows: a sufficiently smooth
function f satisfying f” > 0 has a unique best approximant from Slzv provided either
log f" is concave, or N is sufficiently large, N > No(f); for any N, there is a smooth
function f, with f” > 0, having at least two best approximants. A principal tool in the

analysis is the finite dimensional topological degree of a mapping.

1. Introduction. Let SZ denote the nonlinear manifold of functions which are
linear combinations of second order B-splines with at most N interior knots on (0, 1)
counting multiplicities. Slf, is the L, [0, 1] closure of the class of all piecewise linear
continuous functions with at most N + 1 linear segments. In this article we prove some
interesting and somewhat surprising approximation properties of S 1%, in the space
L,[0, 1]. Three main theorems will be stated in this section with the proofs to follow
in later sections. These results are announced in [1].

Theorem 1 describes a fairly large class of uniformly convex functions which
have, for each positive integer N, unique best L, [0, 1] approximants from the (non-
linear) spline manifold S 1%, Theorem 2 states that any sufficiently smooth uniformly
convex function eventually, i.e. for all large N, has a unique best L, [0, 1] approxi-
mant from this manifold. This behavior will be called “eventual uniqueness”. Theorem
3 indicates the sharpness of these two results.

We emphasize that 513 is not a linear manifold. Hence, arguments regarding exis-
tence, uniqueness, and characterization for best approximants are nontrivial. Since it
has been shown in [5] that, for every positive integer &V, any continuous function has
at least one best continuous L, [0, 1] approximant from § 2 we are only concerned
with uniqueness and eventual uniqueness of best approximants in this paper.

THEOREM 1. Let f€ C?[0, 1] with f" > 0 on [0, 1]. Suppose that log f" is
concave'in (0, 1). Then for every positive integer N, f has a unique best L, [0, 1] ap-
proximant from S%.
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THEOREM 2. Let f€ C5[0, 1] with f" > 0 on [0, 1]. Then there exists a
positive integer N such that for any integer N> N, f has a unique best L, [0, 1]
approximant from SZ .

THEOREM 3. Let N be any positive integer. There exists a function f €
C>[0, 1] with " > 0 on [0, 1], such that f has more than one best L, [0, 1] ap-
proximant from S3.

We mention that strictly convex C2[0, 1] functions always have unique best
L. [0, 1] approximants from SZ (cf. [7, p. 188]). Thus, Theorem 3 shows that there
is a fundamental difference in the two norms regarding approximation from S2, and
in addition suggests that Theorem 1 is in some sense sharp. This seems to be quite
interesting since the class of functions considered in Theorem 1 is not commonly
associated with approximation theoretic questions. This work can be thought of as a
first step in proving unicity theorems for (generalized) monosplines of minimal norm.
The interested reader should consult the first two articles in [6] and the references
therein. For a nonuniqueness result on monosplines with least L, norm, see Braess [4].

In establishing the above unicity and eventual unicity results, we will derive a
very general method which can be used to yield analogous results in other settings.
For example, in Section 7 we' will consider the best approximation and best one-sided
approximation problems in the L, norm.

2. Preliminaries and Notation. Let ¥ C RY be the open simplex
(N =), ..., ty): 0<t, <eee <ty <1}

We will denote by tVV the N interior knots of a second order spline where tV could be
in the closure of TV provided ¢;,, > t, fori =—1, ..., N, where t_, =t,=0,
IN+1 =1ty4o = 1. With this knot sequence, one can form the normalized B-splines

Ny(tV;1) = Nyt 1) = (140 — ti)lti’ vt Lol = 1)y
fori=—1,...,N (cf. [2]). Let Sz =S2[0, 1] be the nonlinear manifold of
spline functions s(+) = E}i_l A,-Ni(tN ;).

We are interested in the problem of uniqueness of best L,[0, 1] approximants

from S§. Let f€L,[0, 1] and let Py(f) denote the collection of all best approxi-
mants to f from Slf, in the L, [0, 1] norm. Thus, s € Py(f) if and only if s € SI%, and

f;If—SI2 =inf{f; If—glzzgesﬁ,}‘

It will be convenient at times to denote the dependence of the spline on its knot
sequence. In this case we will write s = s(t”V) which will mean that

N
s(*)= X ANV )

i=—1
for some constants A_,, . . ., Ay.

3. Preliminary Lemmas. In this section we will state three lemmas which will be
necessary in our proof of Theorems 1 and 2. The first lemma yields the variational
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equations which give a necessary condition satisfied by any best L, [0, 1] approximant

from S .
LEMMA 1. Let fbein L,[0, 1] and s = s(t™) be in Py (f). Then the restric-
tion of s to any of the subintervals (¢;, t;,,),i =0, ..., N, is a best linear L, ap-

proximant to f on this subinterval. That is,

3.1) f"'“(f—s)(t)ﬂ'dz=o, j=0,1;i=0,...,N.
'

This lemma can be easily verified in a standard manner by differentiating the
error with respect to both the linear parameters (the coefficients) and the nonlinear
parameters (the knots).

The second lemma is a known result which gives some information on the place-
ment of the knots of a best L, approximant.

LEMMA 2. Let f be a continuous function on [0, 1] such that f & Slf, and let
StV EP(F). Thenty <t <<+ <ty,, andsS@)#s) fori=1,...,N.
In particular, s is continuous on [0, 1] and all the knots of s are active.

The fact that all knots are active was apparently first observed by de Boor [3].
That s is continuous follows from Theorem 2.3 in [5].

Let I be the best linear L, [o, 8] approximant to f. Then it is easy to verify that

o) =6 f; (1’ —%) f@(B— o) + a)dr
and
1 1
I(8) = 6'[0 < —§>f(‘r({3—a) + a)dr.

For any knot sequence tV e ZN, let At, | =t;— t; 1, 1<i<N+1,and con-
sider the function F = F(t", ) = (Fy, ..., Fy), where

(2) F=FaN, =- ; [(T - %) bty 1)+ (7= %) faor + t,.)] dr.

Note that F is defined and continuous on the closure of V. From the above two
lemmas, we know that if s = s(t™) is a best L, [0, 1] approximant from S 1%/ to a con-

tinuous function f, then F(tV, ) = 0 where 0 = (0, . . ., 0). Also, for any knot se-
quence t¥, the Jacobian matrix J(F(tV )= (o ].)( f) of F defined above as a function
of t,, ..., ty is a tridiagonal matrix; and if f is in C2[0, 1], the only nonzero entries
(obtained by differentiating (3.2) and then integrating by parts) are
aFi Ati—l 1 20m <i<
(33) ai,i_l(f) =-a-t-i—_-: = — ——3—- fo T(l - T) f (TAti—l + ti—l)dT’ 2<i \N,
oF; At;

1 n
Ga WD =5 =g [ @r-na -1 ean vy ar

Ati—l 1 2 M
+— . Qr - DAL, +t,_)dr, 1

N
N
Bs
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and
oF; Aty )

(3'5)ai»i+1(f)=at =——3—f a-nr" (rAt; + t)dr, 1<i<N-1.
i+1

We have the following result.

LEMMA 3. Let f be in C2[0, 1] having the properties that " > 0 and log(f")
is concave (i.e. f"/f" is nonincreasing a.e.). If F(t") = 0, then the determinant of
J(E(tM)) is positive.

Here, and throughout, det A denotes the determinant of a matrix 4. To prove

this lemma, we first verify that for eachi,i=2,...,N—1,
N ( l) 2p0m
> o (f) = 7(1 =7 f (rAt; + t)dr

j=1
(3.6)

A

“T") f 2(1 =) f"(r Aty +t,_,)dr.

Indeed, this follows from integrating (3.2) by parts twice, yielding

At)?
FY. ) = = 6') f; (1 = 1)*f'(r At + t)ar
X))
+(—At'6—‘) f (1 =1 f"(r Aty +1,_,)dr.

If t¥ is a solution to F(tV,f) = 0, then by (3.6) and (3.7), we have,fori=2,... ,N—1,
N

S (== C[f 20 - ean, + i

=1
[ 1 = D "(r AL, + t)dr

0
(.8) 1
= [, 1=l + tyar

. fl (1 -nf"rAat, + t,_l)dr] ,
o ]
where
(At
C= 1)/f (1 - T)2f”(TAfi + t)dr.

Multiplying and dividing the right side of (3.8) by

(f; (1 -0 f"GAt_, + t,._l)dr) (f:) (1 =D’ f"(rAt; + ti)d7>

yields
N

(3.9) > o () =Pl4,_, - 4],

j=1
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where P > 0,

4, = f:) (- T)2fm(1-Ati + ti)d‘z/f:) (1 - T)zf"(TAti + ti)dT

and
1 " 1 "
A =f0 (- f"(r At + ti-l)d‘f/fo (1 - f"( Aty + 1, )dr.

Noting that f" = (f"/f")f", we see that A, is a weighted average of f"/f" over the
interval (#;, t;,,)- Since f"/f" is nonincreasing, we conclude that Z;¥, o, .(f) >0
fori=2,...,N—1.

Fori =1 and N we can conclude that E}ilaﬁ( ) >0 by simply noting that
@, o and ay . are well defined by the right side of (3.3) and (3.5), respectively,
and arguing as above. Since the off diagonal elements ¢; ; ;(f) and «; ;, ,(f) are
negative by using (3.3) and (3.5), we see that the matrix J(F(t")) is diagonally domi-
nant with strict inequality in the first and last rows. By a standard modification of
Gershgorin’s theorem, it follows that all the eigenvalues of J(F(t")) are in the open
right half of the complex plane. Furthermore, since the matrix has only real entries,
the complex eigenvalues come in conjugate pairs, so that the product of all the eigen-
values of J(F(t")) is positive, and Lemma 3 is proved.

4. Proof of the Uniqueness Theorem. We are now ready to prove Theorem 1.
Set g(x) = x?. Hence, if s = s(tV) is a best L, [0, 1] approximant to g from S2, then
the only solution to F(tV, g) = 0 satisfies t;=i/(N+1),i=1,...,N,as can easily
be seen from (3.7). That is, g(x) = x? has a unique best L, [0, 1] approximant from
S K,, and the knots of this approximant are equally spaced on [0, 1].

Let f be as in Theorem 1. We will show that F(t!Y, f) = 0 has exactly one solu-
tion among all possible knot sequences t¥. Recall that the topological degree of the
smooth mapping G from a bounded open set D in RY into R, where G is continuous
on the closure of D, is given (cf. [8, p. 69]) by
4.1) deg(p, G, D)= 3 sign det J(G(x)),

G(x)=p
where the sum is taken over all solutions x € D of G(x) = p, as long as the Jacobian
does not vanish at x and p € G(3dD). It is known that the degree is invariant under

homotopy provided that the functions in the homotopy do not introduce solutions on
the boundary of D. Again, let g(x) = x? and set

FAM)=F(+, (1 - Mg + 7).
Clearly, A — F» is a homotopy. Then by (3.7) it is easy to see that F* does not
vanish on the boundary of =N, Hence, it follows that

4.2) deg(0, F*, =) = deg(0, F°, =)

for each A, 0 <A < 1. Therefore, from Lemma 3, by using (4.2), we conclude that
the number of solutions of F!(tV) = 0 is deg(0, F°, V). From the fact that the
determinant of J(FO(t")) is positive and the fact that F(t"V, g) = 0 has only one
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solution, we conclude that deg(0, F®, =) = 1. This completes the proof of the
theorem.

5. Proof of the Eventual Uniqueness Theorem. Let f satisfy the hypotheses of
Theorem 2. By arguing as in Section 4, we obtain

(5.1) deg(0, F, 2V) =1,
where F(tY) = F(tV, f) is defined by (3.2). To prove Theorem 2, we must show that
(5.2) det J(F(tY)) >0,

whenever tV solves F(t") = 0 and N is sufficiently large. The fact that tV is then the
unique solution follows as in Section 4.

The key to proving (5.2) is the following algebraic result.

PROPOSITION 1. Let 4 = (a; ]-) be a tridiagonal N x N real matrix with positive
diagonal entries. Then if

(5.3) By n—19n—1,n S8y pdp_1 pr(1 + m[AN?)/4
forn=2,...,N, it follows that
(5.4) det 4> 0.

Proof. Let A' = diag(2/a;;)A, so that A" has all 2’s on the main diagonal and
det A" > 0if and only if det A >0. Forn=1,2,..., N, let u, be the determinant
of the upper left n x n submatrix of A’. Then an expansion of u, about the nth
column yields

2a -1,n 2an,n—l
(5.5) u, =2u,_, —<an "1 - 1>< 2 Up_os
—1,n— n,n

n=2,...,N, where we define u, = 1 and #; = 2. This can be written as

(5.6) Uy =Wy Fu,_, =A%u, 5, =cuu, ,,

where
4a a 2
S |

c =1- n—1,n%n,n—-1 > ’
" an—l,n—lan,n 41\/2
by (5.3).
Before showing that each u, > 0,n =1, ..., N, and hence that det 4 > 0, we
motivate a key equation ((5.8) below) with the following observation. Suppose that u

and v solve the problems

u"(x) = fulx), x=0, u0)=ud'0)=1,
V(%) = - wu(x), x=0, w0)=v'(0)=1.

Then w = u — v satisfies -
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w'(x) = — ww(x) + (f(x) + wu(x), w(0) =w'(0) =0,
and one obtains
x i -£)
W) = fo sin w(ix

(F® + wHuE)ds, x>0.

We remark that the Green’s function sin w(x — £)/w can be written as a(x — £) where
a solves the problem a”(x) = — w?a(x), a(0) = 0, 2'(0) = 1.

We now return to the proof of Proposition 1. Let {v,}, {a,},n=0,...,N,
satisfy
A%, =0, =20, , *v,_, == W, , n=2,v,=10v =2,
and
A%, ,=-w?a, ,, n>2,4,=0,a, =1.

Now let w,, = u, —v,, so that
(5.7 A’w, ,=-ww,_, +(c, + wu,_,, n=2,wy=w =0.

We claim that the sequence defined by
n—1

(5.8) Xp= Y @y 1 _1(Cryr +0Pu,, n=1,x,=0,
k=0

equals {w, }. Indeed, x, = 0 since a, = 0; and we have only to prove that (5.7) holds.
A direct calculation gives, for n > 2,

n—1
2 — Y _ _ 2
A%, _p =%, =2x, 1 tX,_, —kZ @y_y g (Chpy T W)Uy
=0

n—2 n—3
2 2
=23 ay g glCgyy TV + 37 a5 4(cpyn T @)Y
k=0 k=0
n—1

2 2

=(c, + c"2)“n—2 + 2 (Cpopqr T @VU, gy Ay
k=2
n—3

\ 2
=(Cq T Uy + T (G T (- wa,_5_))
j=0

= — w2 2
==-wx,_, +(c, +w)u,_,,

and so the claim that w,, = x,, is proved.
Solving for {v,}, {a,} yields
v, = Re(l +iw)" + Im(1 +iw)*/w, and g, =Im(1l +iw)"/w.

Consequently, if Nw < 7/2, we have v,>0forn=0,...,Nanda, >0 forn=
1,...,N. Finally, using (5.8) for w,, with w replaced by m/2N so that Craa T w?
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=0, one concludes that w,, < 0 is impossible; and hence,

u, =w, +v, >0, n=1,...,N.

This completes the proof of Proposition 1.

Before we can use this proposition, we will need information about the rate at
which the Atz,’s tend to zero as N increases. The next lemma shows that a mesh, t¥,
which solves F(tV, f) = 0 is in fact quasi-uniform.

It will be convenient at this point to introduce some notation which will facilitate
the application of some of the results in this section to Section 7. For t&¥ € 3V , let

hi=Ati=ti+1—t-, i=0,...,N, and A = max h;, 8 = min A;.

1

We rewrite Eq. (3.7) in the form
& 2 (! 2 (!
69) FE=nr:, | | WOt~ thy_)dr —h} [ | WOgty +hydr,

where w(r) = 7(1 — 7)%/6 and g = f".

LEMMA 4. There is a constant M > 0, depending on f but not on N, such that if
FtN)y =0, A6 <M.

Proof. Let 0 < m = min g(f) and K = max|g'(¥)|, 0 <¢<1. From (5.9) with
F; = 0, we obtain

hig(n) = hi, g(n;_y) = hi (&) +0,(n;_; — 1)),

where t;_ | <mn;_; <t; <n;<t;,, and |0,/ <K Let A =h;and § = h;, where we
assume without loss of generality that J > 1. Then

7 o\ I._II
2= IT (— ) = )
(/) i=III+l (hi—l i=I+1 3( )(n

N
<exp(z )

COROLLARY. A< M/N and § = 1/M(N + 1).

Proof Use (N+1)§<land W+ 1DA=1

In the following, we will use the expression “O(AP)”, where p is a positive in-
teger. This will mean that there are positive numbers K and A, which will depend on
f and w but not on N, such that

—(h; + ki)

>< exp(2K/m) = M.

|O(AP)| < KAP ifA<A

The following lemma, in conjunction with Proposition 1 and Lemma 4, will complete
the proof of Theorem 2.

LEMMA 5. Let tV solve the equation F(t™) = 0, and let J(F(t")) = (o ;). Then
for N sufficiently large,

o ; >0, i=1,...,N, and
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% ip1%s1,i = 0%y (1 HO0@)A, i=1,... ,N-1

Proof. Let g; denote g(t;), g = g'(t,-), etc. Set F; = 0in (5.9), and expand g
about ¢;, obtaining

1
hi, f , (&~ Th;_ g + 1°h%_ ,gl/2 + O(A%))dr

1 n
=nt[ , W8+ hig) +7hig])2 + 0(8%) dr.
Let
1 1 1
A= w(n)dr, B=| 7tw(r)dr and C= 2w(r)dr/2.
J, o J, o [, Twwa

This yields the expressions

!

Bg.
(5.10a) n? | - h3=z§f— (13 + 1)) + 0(4%),
1
Bgl 2 2 4
(5-10b) hi_y — k= Ag, To. Bi =Ry T h) +O(A7).

If one differentiates (5.9) and then expands g about t;, one obtains

oF;

éz—; = h,_,(—2Ag; + 3Bh;_,g, — 4Ch%_, g + O(A%)),
:t_l? = (h;_, +h)24g; + (h}_, —h})(4 — 3B)g;
+ (13, +h}) (B +4C)g +0(aY),
at,H = h(—24g; — 3Bh;g; — 4Chlg! + O(A?)).

A straightforward calculation gives
’ ’
L., O g g
Qit1 1+11_1+h<3B> Si _bit1
4n’A%g.g; . 24708 8y
n n
4C(8i+1 | i 9B gz g1+1 3
S B s +0(A%)
(5-1) ! [ZA 8i+1 gi> 4428 v (

r\ 2
3B+8C) (&) [64B - 9B >:, ,
=1+ 3B TOC) (2 (22222 )] 4 oad).
! h[g,< 24 > <gi>< 442 (

Similarly, letting k; = (h; + h;_,)/2h;, and k;_, = (h;,, + h;)[2h;, one computes
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%4 1,iv1

=k.k.
16hi2A2g,-gi+1 i"i+1
Tk (@2 - h3+1)<A - 3B> G | (B +HY, <—B + 4C>52’]
(12) + R 24 /2, o, 24 /g,
(2, —h) <A -3B\ & (n}, +h}) (—B +4C g?'] 3
k l- : : = — | + 0(43),
T T 24 g T om 24 )g ] o)

where we have used (5.10a) to combine the term involving (k7. — h?) (h?~ h?, ) with
the higher order terms. We now use the Eqs. (5.10) to obtain

1 \! [}
1B( &; 3(B& \?
_ 2| _ 285 S(82L 3.
k,.k,.+l_1+h,.[ 2A<g,-> +4<Ag,->] + 0(A3)

Finally, if we use (5.10a) to substitute for the term h? — h?_,_l and h,.z_l - h? in (5.12),
we arrive at
@ i%41,i+1

16h7A%g;8;.

(513 g (-3B + 8C &)\ (648 - oB?
=1+h?[—i<———— >+<—i> <————_ ]+ 3),
ilg A 3 VE 0(4°)

A comparison of (5.13) with (5.11) shows that Lemma 5 is correct, and hence com-
pletes the proof of Theorem 2.

6. Proof of the Nonuniqueness Theorem. We now prove Theorem 3. Let N be a
positive integer. We first define a function f; = fin» 1> 0, depending on whether N
is even or odd, as follows: Let N = 2k or 2k — 1. Choose an angle § with 0 < § <
n/(4(k + 1)). If N =1 (or k = 1), then the choice of 8 is not necessary.

(i) For N = 2k, let f; be a continuous piecewise linear function on [0, kI + 1]
with f,(0) = 0 and with slopes equal to tan j§ on ((j — 1)1 jl),j=1, ..., k,and 1 on
(kl, kI +1].

(i) For N =2k — 1, let f; be a continuous piecewise linear function on
[0, kI + 1] with £,(0) = 0 and with slopes equal to tan(j — 1)d on ((j — 1)}, jI),j =
1,...,k and 1 on (K, kI + 1].

We next extend f; to be an even function on [- kI — 1, kI + 1], i.e. fy(—x) =
fi(x), x € [0, kI + 1]. Then f; is convex and belongs to SK,_H [—kl—1, Kkl +1].

Let s € va[—kl — 1, kI + 1] be defined on (—kl — 1, kl) as the restriction of
f;- Hence, s}" is continuous at kI and actually linear on [(k — 1)}, k! +1]. Lete=
s - s;"ll2 > 0; note that € is independent of I. Here, and throughout this proof, the
L, norms are taken on the interval [~4/ — 1, kI + 1]. Suppose that f, has a unique
best L, approximant s, from Sﬁ,[—kl — 1, kI + 1]. Then s; must be an even function,
and for large / the knots x; = x(I),i=1,..., N, of §; must interlace the knots of f;
in the following manner: —kl <x; <-(k- D <x, <+ <xp_; <(k-1I<
x, < ki, with the exception that if N is odd (W = 2k — 1), then the middle knot X
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= 0 is the only knot that lies in the interval (—/, /). It can also be shown that as
I — oo, then kI — x,, = kI — x(I) — oo, since the error must remain below . Hence,

s,(2) — f(t) — 0 for t € (xp(D), kI), and we have

lim inf |l f; = s/ll, = 2e,

1— oo
where one € is obtained from the error estimate on each of the intervals [—kI — 1,
—kl] and [kl, kI + 1]. Thus, there is a positive /;, such that for each I > [,

I = st lly <Ify = sl

contradicting that s, is the best L, approximant of f; from Se[—kl—-1,kl+1]. In
particular, f,0 has more than one best L, approximant from SA?[— kly—1,kl, +1].
By a standard smoothing technique, one can smooth the “corners” of f’o’ and in fact,
make f; strictly convex, without affecting the best approximants too much. Finally, by
a simple translation, one can change the interval from [—kl, — 1, kI, + 1] to [0, 1].

7. Application to L, Approximation. We now turn our attention to best L, [0, 1]
approximation of convex functions from S 1%, In fact, we will show that Theorems 1, 2
and 3 hold when L, is replaced by L,. Furthermore, essentially the same results hold
for a one-sided best L, approximation problem as indicated below.

We first note that Lemma 1 holds in the L, case if (f — s) is replaced by
sgn(f — s) and Lemma 2 is also true in L, [9]. If fis a convex function on the interval
[, B] then the best linear L, [a, B] approximant is obtained by interpolating f at o +
(B — @)/4 and a + 3(8 — a)/4. In analogy with Eq. (3.2) we define the functional

Fy=F,(tN, ) = f(t; + 1|4 — [f(t; + 3h;/3) = f(t; + /4] )2
D)t f e, + by 14 + 3£ty + 3k, 8 =ty +hyy/D]/2).
Setting F = F(t", f) = (F,, . . ., Fy), we see that if fis convex and s(t"; +) is a best

L, [0, 1] approximant to f, then FtN, f)=0.
One can now compute J(F(t")) as in Section 3, yielding for instance

3/4 n .
(7.2) oy =—hi_1(3/8) f s F"(tiy + thi_)dr, 2<i<N,
3/4 , .
(7.3) & ie1 = hGI8) | Lo [ Thydn, 1<i<N-L.

Furthermore, (7.1) can be rewritten in the form

Fi™) =i, [ 1" = hy )
(7.4) 1
- h?f W) f"(t; + th,_y) dr,
0

where W(r) = 7 — 3/2(r — 1/4), + %(r — %), is a nonnegative weight function on [0, 1].
We are now in a position to state



1142 D. L. BARROW, C. K. CHUI, P. W. SMITH AND J. D. WARD

THEOREM 4. Let f€ C?[0, 1] with f" > 00n [0, 1]. Iflogf" is concave on
(0, 1), then there exists a unique s* € SI%, which is a best L, [0, 1] approximant to f.

THEOREM 5. Let f€ C5[0, 1] with f" > 0 on [0, 1]. There exists a positive
integer N, such that for every N> N, f has a unique best L, [0, 1] approximant from S12v.

THEOREM 6. For any integer N there exists a function f € C™ [0, 1] with f" >
0 on [0, 1] which does not have a unique best L, [0, 1] approximant from SI%,.

The proofs of Theorems 4, 5, and 6 closely parallel those of Theorems 1, 2, and
3, respectively.

We next consider the following one-sided best L, [0, 1] approximation problem
from S 1%, This problem can be treated as a problem of interpolation by functions from
SZ at the (variable) knots with minimum error. Let fbe a uniformly convex function
on [0, 1]. The problem is to study the uniqueness and eventual uniqueness of an
$*(+) = s*(t", +) from 2, with knot sequence t¥ = (¢*, . . ., ty) € 2V, such that

(7.5) s*eH)=f@}), i=0,...,N+1, and

(76) if = s*l, = inf{llf =sll,: s(+) = s(tV; +) €S2, 5(z,) = f(t,), 0 <i <N +1}.

We have the following results.

THEOREM 7. Let f € C?[0, 1] with f" > 0 on [0, 1]. For N = 1, there exists
a unique s* €S} satisfying (7.5) and (7.6). For N = 2 if, in addition, log f" is con-
cave on (0, 1), then there exists a unique s* € Sﬁ, satisfying (7.5) and (7.6).

THEOREM 8. Let f€ C5[0, 1] with f" >0 on [0, 1]. There exists a positive
integer N such that for every N 2= N, there is a unique s* € S;, satisfying (7.5) and (7.6).

THEOREM 9. Let N = 2. There exists a function f € C™ [0, 1] with f" > 0 on
[0, 1], such that the function s* € S K, that satisfies (7.5) and (7.6) is not unique.

In proving Theorems 7 and 8, we again derive the analogous quantities F;, namely,

Fi=f(tiy ) =) = F1@) Wy 1)
—n2 (" wor ydr -2 [ -
n? [ L WO+ thy e =l fo W) f'(t; - th,_)dt,

where W(f) = 1 —¢. These F; are obtained by differentiating the error functional with
respect to the knots. Hence, for £(7) = ¢2, F;=0,i=1,...,N,gives t; = i/(N + 1),
i=1,...,N Also, for each i, 1 <i< N, we obtain

o~ OF; 1~ m 1 m
Y s = f WO+ thydr =By W - h ) dr.

Therefore, by the same argument as in the L, case, we have Theorems 7 and 8. To
obtain Theorem 9, we just use the same function constructed in the proof of Theorem
3 and a slightly different proof.
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