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A Proof of Convergence and an Error Bound
for the Method of Bisection in R”

By Baker Kearfott

Abstract. Let § = (X, . ., X, m> be an m-simplex in R"™. We define “bisection” of §
as follows. We find the longest edge (Xi' X j) of S, calculate its midpoint M = (Xi + X i)/2’
and define two new m-simplexes §; and §, by replacing X; by M or Xi by M.

Suppose we bisect S} and §,, and continue the process for p iterations. It is shown
that the diameters of the resulting simplexes are no greater then (\/5/2)“’ Imi times
the diameter of the original simplex, where |p/m| is the largest integer less than or
equal to p/m.

1. Introduction and Summary. Recently devised methods for computing roots of
a continuous map defined on a simplex (generalized triangle) in R” involve a technique
of subdivision termed “generalized bisection” ([7], [3], [4]), in which two new
simplexes of comparable diameters are formed from the original simplex. An as yet un-
answered question concerning such generalized bisections has been: How fast do the
diameters of the resulting simplexes tend to zero, as repeated bisection is performed?

In this paper we first define bisection of an m-simplex in R” and clarify the problem
of convergence of the resulting method of bisection. We then prove that, after p repeated
bisections, the diameters of the resulting m-simplexes in R” are no greater than
(/3/2)tP/™ 1 times the diameter of the original simplex, where |p/m| is the largest
integer less than p/m.

2. Notation, Definitions, and Preliminary Concepts.

2.1 Definition. Suppose X, . .., X, are any m + 1 points in R” (1<m <n)
and suppose that {X; — X, }jZ, is a linearly independent set of vectors in R". Then the
closed convex hull of X,,, . . ., X,,,, denoted S =X, . .., X, ) is called an m-simplex
in R", while the points X, . . ., X,,, are called the vertices of S ([1], [2], [3], [4], etc.).

For example, a 3-simplex in R3 is a tetrahedron, a 2-simplex in R? is a triangle,
while a 1-simplex in R” is a line segment in R”.

2.2 Remark. The order in which the points {X;}/Z, are written in the lists
(Xy, - . -, X,,) for S determines an orientation of S ([1], [2], [3], eic.). However, the
actual closed convex hull is independent of that order; for this reason, for results in this
paper we may permute the vertices of S.

2.3 Definition. If S =(X,, ..., X,,)is an m-simplex in R", then we will call each
1-simplex <X, X]-), 0<i<j< n, anedgeof S

24 Definition. If S is an m-simplex in R", then the diameter of S is equal to
the quantity maxy veslX = Yl,.
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2.5 Remark. The diameter of the 1-simplex {4, B) is equal to the length
IIB —All,. Furthermore, by convexity, the diameter of an arbitrary m-simplex §
is equal to the maximum of the lengths of its edges.

Given an m-simplex § = (X, . . . , X,,,), perhaps the lengths of more than one
of the ("3 1) edges {(X;, X)Jo<icjcm Of S are equal to the diameter of S. However,
there is a unique such edge (X, X, if we require that, if the length of (X, X].) is
also equal to the diameter of S, then k <7 and k' <j.

2.6 Definition. The edge (X, X, ) described in the preceding paragraph will
be called the selected edge of S.

We now present the definition of bisection.

2.7 Definition ([7], [3]). Suppose S, = (X, ..., X,,) is an m-simplex,
(Xj, Xj is the selected edge of S, and 4 = (X, + X;+)/2 is the midpoint of
(X, Xg». Then two new simplexes

S; =Ko+ s X1 A s oo Xty oo s X,

m
and

Sy, =(Xgs oo s Koo s Xpr s A Ky -5 X

may be formed such that the interiors of S, and S, are disjoint and S, = §; U S,.
We call §; the lower simplex from S, and we call S, the upper simplex from S,,.
The process of producing S, and S, is called bisection of S, while the ordered pair
(Sy, S,) is called the bisection of S,;.

FIGURE 2.1

Given an m-simplex S, we will bisect S, bisect the elements of the bisection of
S, and continue the process to get a sequence of sets of simplexes related through
bisection ([7], [3]). Figures 2.1-2.3 illustrate one such sequence of sets of 2-
simplexes in R%. There, S, is the original simplex, (S;, S,) is the bisection of S,
and (S5, S,) is the bisection of S,; S; and S, are each two bisections removed from
S, while S; and §, are only one bisection removed from S,. We say that S5 is
produced after two bisections of Sy, S, is produced after one bisection of S, etc.
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FIGURE 23

Having defined the above concepts, we can present the main theorem.

3. The Convergence Theorem and Proof.

3.1 THEOREM. Let S, be an m-simplex, let p be any positive integer, and let
Sp be any m-simplex produced after p bisections of S,. Then the diameter of Sp is
no more than (\/3/2)'? M1 times the diameter of S, where |p|m| is the largest
integer less than or equal to p/m.

3.2 COROLLARY. If S, is an n-simplex in R", and Sp is any simplex produced
after p bisections of S, then the diameter of S, is no greater than W3/2)P/™) times
the diameter of So'

3.3 Proof of Theorem 3.1. It suffices to show that, if p = m, then the diameter
of Sp is no greater than 4/3/2 times the diameter of Sy, so assume p = m. Then there
is a sequence of simplexes Sq, q=1,...,msuch that §, is produced from bi-
section of S, Sq is produced from bisection of Sq_1 for1 <g <m,and §,, is
produced from bisection of S, _,. With the sequence {Sq}'"=0 so defined, we set
D, equal to the diameter of S, = (X(()q), R X,,(,q)), we let (X,g‘;), X;Z’:) be the
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selected edge of S,> and we set d,{‘} ) equal to the length of the edge <X,-(q), X]-(q)), for
0<i<j<m.

We may switch the labels of ko and ki if necessary so that X, ,£2“> =
XD + X,ﬁi’)/z and X{*1) = X(® for 0<i<mandi#k,, forq=0,...,
m—1.

We will prove Theorem 3.1 in the setting outlined above by showing that at
least m + (m - 1)+ -+ -+ (m —q + 1) of the m(m + 1)/2 distinct edges of S, each
have length no greater than (v/3/2)D,, for 1 < q <m. The proof will proceed by
induction on q. Lemma 3.4 (infra) is central to the argument.

If g = 1, we invoke (i), Lemma 3.4 to get that each of the m lengths

G.1) kg A1y A s A,

is less than (\/§/2)D0. Furthermore, unless D, < (\/§/2)Do (in which case the
conclusion of Theorem 3.1 follows by (iv), Lemma 3.4), we have k| # k), and the
m — 1 edges

B2 [<x, Xlsl;)>0<i<kl,i=#ko] U (XD, Xi(2)>k1<i<m,i=#k0]

are distinct from the m edges

(3.3) [x, X,ﬁ?) =&, Xét))o<i<k0] U [(X,ﬁf)), X = <XIS:))’ Xi(l))k0<i<m] s

where the equalities in (3.3) follow from the definition of bisection. Moreover,
application of (i) and (iv), Lemma 3.4 shows that each edge in (3.2) also has a length
of at most (v/3/2)D, < /3/2)D,.

To complete the induction we assume that after q bisections (¢ < m), the
m+(@m—1)+---+ (m—q +1) distinct edges in the set

q-1
XD, x@y
3.4y ;]LJO 19¢ k; >o<z<k].,,;ek0,m,kj_l]

q—1
UL U [x{@, x{
i 7

j=0

a)y . .
kj<t<m,l=#k0,...,kj_ 1 ] g’

where k; # k; for 0 <i <j<gq - 1, each have length no greater than (\/§/2)D0.
Then, unless D, < (\/§/2)D0 (which would imply the conclusion of Theorem 3.1 by
repeated application of (iv), Lemma 3.4), we have

(3.5) kg & oo o kg, ).

Therefore, the m — g edges

Kx{a+D), X;S?: 1)>0<i<kq,i=#k0,...,kq_l ]
(3.6)

U[(X,SZ“), xfa* l)>kq<i<m,i¢k0,...,kq_1]
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are distinct fromthe m + (m — 1) + - - - + (m —q + 1) edges in the set

; U [(X(Q+l) X(¢1+l))_(X(¢1) X(Q))0<l<k it ki—lli

3.7 a-
U 3]&}0 [<Xl(c‘;+l)’ Xi(q+l)) = (X,g‘]l), Xi(q)>kj<,‘<m,i;&k0,...,k]-_1] 2 s
where the equalities in (3.7) follow from the definition of bisection. Moreover, we
apply (i) of Lemma 3.4, with Sq+1 replacing S, and Sq replacing S, then apply (iv),
Lemma 3.4 repeatedly to show that each of the edges in (3.6) has length less than

% by < < \/3 <2 p,

2 Tq-17 9 Y2 1\2

Furthermore, we apply the induction hypothesis to each of the edges in (3.7) to
show that each of those also has length of at most (\/§/2)D0.

Therefore, by induction, after m bisections, there are m + (m — 1)+ -+ -+ 1 =
m(m + 1)/2 distinct edges in S,, whose lengths are at most (\/3/2)D,,. But an m-
simplex has precisely m(m + 1)/2 distinct edges, so by Remark 2.5, D,, < (\/§/2)D0.

Repeating the above argument |p/m| times with S, and D, replacing S, and
D, respectively, gives D, < W/3/2)reim ‘Do for arbitrary integers p; this is the con-
clusion of Theorem 3.1.

34 LEMMA. Let S, =(X,, ..., X,,) be any m-simplex in R", suppose
(Xp» Xpr) (Xpr, X)) is the selected edge of S, and suppose

~ X, + X, Y
Sy =X Ximrs =5 X+ X

is the lower (the upper) simplex from S,. Suppose further that d(‘])) and d(i) are
defined as in Theorem 3.1, for 0 <i <j < m; suppose that D, = d( ) Dy = d(q’) )
is the diameter of S|, and suppose that D is the diameter of S. Then

G) dif < (\/" [2)Dy and d}) < (\/‘ [2)D, for 0 <i < k and for k <i <
respectively;

(i) d(l) = d(O) /2;

(iii) d(l)— (o)forO i<j<mandi#k;

@iv) Dl < D,.

3.5 Proof of Lemma 3.4. We observe that both (i) and (iii) follow directly from
the definition of bisection. Furthermore, (iv) follows from (i), (ii), and (iii), so we
need only prove (i).

To prove (i), we set X;= (x5 - )where x;, €R for 1 <p <n and
0<j<m. Then
(3.8) @)? = an ( X, —i%ﬁly for 0 <j<k
=1
and
(3.9) @)y = pél ("i,p - —’f"—"-;x#f fork <j<m
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But, for 1 <p < n we have

X + X, 2
k,p k,p — 2 - P
<xi,p 2 ) =Xjp " XjpXkp " % p¥kp T 4

2
xk pxk:p xk,p
+ ks ,
2 + 4
2 2 2 2
b x X X5
_(Zip _ k,p Lp k,p
(3.10) _< 2~ Yir¥ep + 2 )+< 7 Xip*K'.p + ) )

Hence, summing (3.10) over all p gives

(dfcfz))z - [ Zn: & p _xk’p)ij/z * [ z": & p ’xk’.p)z]/z
p=1 p=1
(3.11) - [i Gk, p "xk’.P)z] /4
p=1

= [@2)? + @$H?1/2 - @P)*/4,
for k <j < m (we have the same inequality with d]f lk) replacing dgcl i) for 0 <j<k).
However, by assumption we have
2
(3.12) (d(,?')k,)2 =D;
and

@P? <D, 0<j<k; (@ <D} k<j<m;
(3.13)

@)Y <D}, 0<j<K; @@ <D}, K¥<j<m
Combining (3.11), (3.12), and (3.13) gives

2
0% +Dy) Dy 3

(12 212
(314) (dk,i = 2 4 - 4D0
Taking square roots of both sides gives
3 .
(3.15) dglk‘[z—po, k<j<m.

To complete the proof of (i), Lemma 3.4, we observe that (3.15) holds when we
replace the left member by d;'lk) for 0 <j < k.
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It can be seen that the bound given in Theorem 3.1 is sharp for p = m. To
show this we set m =n — 1 and let S be the (n — 1)-simplex whose ith vertex is the ith
coordinate vector in R”. However, numerical experiments verify that, for the same
simplex §, the diameters are reduced by a factor of 2 every m iterations for p > m.

An important related problem is to determine a nonzero lower bound on the
ratio of the lengths of the smallest edges of simplexes to the lengths of the largest
edges, as bisections are performed. Since the area of each m-simplex is reduced by a
factor of 2 by a simple bisection, such a bound may give a better estimate of the rate
of convergence. This problem has been solved for triangles (n = m = 2) [5].
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