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An Asymptotic Approximation
for a Type of Fourier Integral*

By Paul W. Schmidt
Abstract. A uniform asymptotic approximation which can be used for all gh > 0 is devel-
2 2
Vry© —q%)

I(h)=fz~f(-— sin yh dy
a 2  21/2
»"—a9

oped for the Fourier integral

under the assumptions that hz >> 1, that the first L + 2 derivatives of f(y) are continuous
for 0 <y < (z2 - q2)l/2, and that the first 2L + 2 derivatives of f(y) are continuous at
y =o.

The approximation is especially convenient when z >> q.
1. Introduction. Because of the importance of membrane research in many areas
of biology, several x-ray techniques have been developed to study the structure of
membranes. In some recent calculations [1] of the small angle x-ray scattering from

suspensions of randomly oriented, independently scattering membranes, the expression
for the small angle x-ray scattering from the membrane sample was found to require

f&y*-a%
(yz _ q2)1 /2
for all gh = 0. In (1), the assumptions are made that Az >> 1, that the first L + 2

derivatives of the function f(») are continuous for 0 < y < (22 — ¢2)'/2, and that the

first 2L + 2 derivatives of f(y) are continuous at y = 0.
Integrals similar to (1) often occur in calculations of the intensity of the small

evaluation of an integral of the form

) = sin yh dy

angle x-ray scattering for other particles for which one of the three dimensions charac-
terizing the particles is much smaller than the other two. For example, in a computa-
tion of the small angle x-ray scattering from randomly oriented platelets, the quantity
hM(h, x) has the form [2] of I(#) in Eq. (1) above, with the function f(/¥? — ¢?)
replaced by (% - ¢*)'/2f(/y? - ¢?).

Erdelyi’s asymptotic expansion [3] of Fourier integrals, even though applicable
to (1), gives different expressions for ¢ = 0 and g # 0. When a single equation valid
for all gh is desired, another type of approximation, often called a uniform asymptotic
expansion [4], is necessary. Bleistein [4] and Erdelyi [5] have obtained uniform
asymptotic expansions of Laplace integrals.
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Below, by use of a partial integration technique similar to that employed by
Bleistein [4], a uniform asymptotic expansion of the Fourier integral (1) is developed.
This expansion can be used for all gh = 0 and is especially convenient when z >> g.

In Section II, the lowest-order and second-lowest order approximations are cal-
culated to illustrate the partial integration method used for the general expansion.
This expansion is stated at the end of Section II. The detailed evaluation of the
general expansion is outlined in Section III, with some of the longer calculations
being given in the appendixes. (Readers not interested in the details of these calcula-
tions can omit Section III and the appendixes.) The error in the expansion and some
other properties of the uniform asymptotic expansion are discussed in Section IV.

This approximation, which is based on the same method that was used in [2],
is more convenient than the earlier expression. Also, a detailed analysis of the error
of the new expansion is given which is applicable for all values of gh.

II. The Uniform Asymptotic Expansion of /(#). The first term in the uniform
asymptotic expansion can be found by writing (1) in the form

I(h) = f 8o(W¥* —q) sinyhdy + f(0) f smyf)l Pl

where

o) - fO)

&) = 5

By use of partial integration and the integral representation [6]

2 = sin(xt)
=

JO(qx) =- (t2 _ q2)1/2 dt

for Jy(gx), the Bessel function of the first kind and order zero, I(#) can be expressed

@) I(h).= By(h) — Ao(h) + Ry(R),

where

Ag) = =3 FO)Toah) - f<‘>(0)°°s"h

f(\/ -q% coszh

(z _q2)1/2 h

Ro(n) = Sy(h) + Ty(h),

By(h) =

So(h) = £(0) f 42)3/2 coshyh i,

z go (V -4% cos yh &,
(y 2)1/2 h

To(h) =
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df dg,
Wy =% ) = =0
0 ot g6 ') o

The lowest-order approximation for I(q) is obtained by neglecting the remain-
der Ry(h). According to the properties of asymptotic expansions of Fourier integrals

[31. 7],
Ro(M)=o™") (h~>).

It is important to note that this approximation can be used for all values of qh.
To obtain the next term in the uniform asymptotic expansion of (1), the integral
To(h) in (2) can be written

To() =i,(h) +2741CH) |28, 6/5? — 2o k) dy,

where

kovh)
() = 24T (0) [Ty —L
(1) = TRV f 1y 2@2 e

) 4 fz sin iy
2h  dh q(y2_q2)l/2

AR ONNE: _ [~ __singh
= an | 270 J. RERENY: b

£ ) -2V (0)

k (x) = x—(a+/2)J (a+l/2)(x) gl(x) = P

Since the Bessel functions have the property that [8]
d  _ _
0] = X @)

by partial integration, T(k) can be written
To(h) =i,(r) + Y,(h) + T,(h),

where

Y,(h) =-27"T(%) [z3g1(\/z2 - q*)k,(zh) - ¢°¢, (O)kl(qh)]

and

k
T, () = 27%4TCH) [y’ -q) @) dy.

2)1/2

To permit evaluation of the derivative in i, (%), the 1ntegral can be integrated by parts
to give

(2)(0) d | z 1 (> ycoshy ]
1(h) = dh l: o(qh) \/;(———z 2)1/2 ko(hz) +; fz _——(yZ ~ q2)3/2 dy | .



1174 PAUL W. SCHMIDT

Therefore,

= £(2) J,(gh) 3k, (zh w Yk (yh)
il(h)=\/’2—'%(°—)[—ﬁq2 vl TR y—‘————dy].

2 qh (22 - q2)1/2 z O? - 42)3/2

By partial integration, the integral S,(#) defined in (2) can be expressed

k(h) o k(h
So(h) = ff(O)[ - f Z y)d:,.

2)3/2 2)5/2 Y
With (2) and the above expressions for Sy(k) and T, (h),

I(h) = By(h) — Ag(h) + Sy(h) + To(h)

= B](h) _Al(h) + R](h)’
where
A, =-7 }3: PO

N k f— 1) Z(qh)9
2f=°2f/2r<l + 1) v
2

B () = - 27*T (%) z 22 Lo (V22 = gDk, (2h),

j=0

Rl(h) = Sl(h) + Tl(h)a

I (370 - 2@ Yk Oh)
S (h) = \/—2_.[: l:3f(0) —3—()’2—q2)] m dy

kOB
Tl(h)=f f eV -q?) > dy,

2)1/2
) =77, ey, =—— [e ()].

The second asymptotic approximation for I(%) is obtained by letting
I(h) = B,(h) — A,(h).
That is, the remainder R, (%) is neglected.

The technique used to find this asymptotic approximation can be extended to ob-
tain the general uniform asymptotic expansion for I(#). As is shown in Section III,

3 I(h) = I,(h) + R (h).

The Lth-order approximation I, (%) and the remainder R, (k) are defined in Eqgs.
®-0).

In the Lth-order approximation
1 (h) ~ L(h)-
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That is, the remainder R (k) is neglected. As is explained below,
Ry (h) = o[p~ L+ 1) (h > ).

Egs. (3)—(9) state but do not prove the general approximation, the detailed
development of which is outlined in Section III. Some of the longer calculations are
given in the appendixes.

The Lth-order approximation can be written

IL(h) = BL(h) - AL(h),

where
o 2L+1
AL(h) == 5 j=20 m]’/z(q)k(i—l)/2(qh)a
L
B (h) =-27%r(%) 3 z”“ej Vz? - q2)kl-(zh),
j=0
) (2a) 20
My (x) = L—@x—’ kix) = xR, (),
2%T(ax + 1)
fx)

ey(x) = ei+1(x) = )lc Ei— [e]-(x)] s j=0.

x b
In (4), for any function F(x),
) FO(x) = d/F/ax,

Jo(x) is the Bessel function of the first kind and order o, and I'(x) is the gamma func-
tion.
The remainder R, (%) then is given by the expression

(©) Ry () =S, (k) + T, (),
where
iS(L+1)/2 L o
Sph) = - .Zo vz, ;) = ->(Lz:'1)/2[mi(z)“§]+f—£L+1(h) + vy, (01
j= ]
L L
@ uii(h) = Zohi_,_n(z)ki_‘_n(zh),

L] d
0y @) = [ O OV OB

h,-(x) =(- 1)i2i—'/21-\(i + %)x2i+l(x2 _ qz)_i—l/’,

-

®) 1,0 = [ 71 20— 0 0B S
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f&) -0

go(x) = .

©) £6x) ~ £(0)

8j+1 (x) =

] Z

x
In the definition of S (%) in (7), the sum is defined to be equal to zero if (L + 1)/2
< L—that is, if L < 1. The integral in the expression for the v;; in (7) converges if
i>j-1

For L = 0, (3) reduces to (2).

III. Calculation of the General Uniform Asymptotic Expansion. With the quanti-
ties defined in Egs. (4)—(9), (3) can be verified by induction. The first step in this
calculation is to rewrite T (k), which is defined in (8), to give

10) To®) =iy y () +27%TC8) [ 3142, (WO2 — aD)k ) dy,

where

410 =£00) [y o0, 0m) 2
When ggl)(O) is evaluated with (AI-2), i; , , (k) can be written
a1 ipy (h) = fqszH(y)ho(V)kL()’h)%{ :
The integral in (10) can be integrated by parts by use of (AIl-8). Then

Ty(h) =ip e (W) + Yy () + Ty (),

where
Fiea®) == T2 122053 65 =k ) = 1, OOk )

Substitution of (AII-11), (AI-2), (Al-4), and (AL-7) in the above expressions for
T, (k) and Y, ., (h) gives

1) 1r,(h)=-A4,,,(h) +A,(h) + BL+1(h) -B,(h)+ T, ,(h)+ XL+1(h)’
(13) Xpy () =- mL+1(z)“16,L+1(h) —vp 1) +wp @k (R),

L
w (@) =Y m@h;_;(2).

i=0

From the definition of the u{;(h) given in (7),

(14) R P (O Rl T N (O P (0L S ()

In (14), u{;(h) is defined to equal zero unless L = 0. When (AIL-8) is used to perform



AN ASYMPTOTIC APPROXIMATION FOR A TYPE OF FOURIER INTEGRAL 1177
a partial integration in the equation for the vij(h) in (7), the expression
(15) Vg i (1) = Vg 1y ) + i@y @y 4 GR)

is obtained.
As can be verified by substitution,

J<S(L+1)/2 L+1
RSSO LSNPSR
j=0 >L+1)/2
(16)
J<(L+2)/2 L+1
D DR () B SN ()
j=0 j>(L+2)/2

From the definition of S, (%) given in (7), and from (14), (15), (16), and the
convention assumed for the u{;(h) in (14),

17) S =—-X,, (W) +S, . ,(A).
Since R (k) = T, (k) + S, (h), from (12) and (17),
(18) Ap(h) + By (h) + Ry(h) = Ay (B) + By (R) + Ry ().

Eq. (18) can be used to prove (3) by induction, since I(h) = Ay(h) + By(h) + Ry (h).

IV. Discussion. From the properties of asymptotic expansions of Fourier inte-
grals [3], [7]

Ry(W)=o[WT+D] (1> o),

Eq. (3) is most useful when B (k) is either relatively small or completely negligi-
ble. The principal contribution to I(k) then comes from A (k).

The approximation developed in [2] contains a sum equivalent to 4; (k). As
was mentioned in the introduction, the approximation (3) given here is a more conven-
ient and explicit expression for the error than was provided by the earlier result in
[2]. In addition, B (k) is usually more convenient to use than the corresponding sum
given in [2].

The sum A, (h) is the feature that distinguishes the approximation (3) from the
conventional asymptotic expansion for Fourier integrals. The important property of
(3) is that it can be used for all values of gh. As gh approaches 0, the limiting ex-
pression for 4, (k) is

_AL(h) ~ 757 + i (_ I)Jf(21+l‘)(0) )
=0 (2j + 1)p%+1
The form of A; (k) for large gh can be found by substituting the asymptotic expan-
sions for the Bessel functions in the expression for 4, (#). The behavior of A L) is
seen to be different for large and small gh.

According to Eqgs. (AIIL-5) and (AIlI-6) of Appendix III, g; (x) and g,El)(x) can

be written
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j - l)j—l - Fij(x)

i=0 Y71 (j — i)l x2 1

(19 g(x) =

and
(20) £V6) = fil - Y@+ 2 - i) Fy(x)

S0 1T (j 4+ 1 - gl xR

where, for j 2 1 and also fori =j =0,

i—i r(i+k k
@n Py =10 - 5 OO
k=0 :

and where F ,(x) = f (D(x). When 2j —i = 0, the Fy;(x) are the difference between
FD(x) and the Taylor expansion of fP(x) of order 2] — i about the point x = 0.

The magnitude of L‘ )(x) will usually be smaller than would be immediately
apparent from the magnitudes of the individual terms in the expression for g(l)(x)
obtained directly from (AI-3) and (AI-6), since, as (20) shows, g} (1)(x) can be written
as a sum of the F;(x), each of which, except F; (x), is the difference of f M (x) and
a Taylor series approx1mat1on for fP(x). Ordinarily, this difference can be expected
to be smaller in magnitude than f@(x) itself.

This result is useful in setting bounds on the remainder T, (k) defined in (8).

If f(x) is a polynomial of degree m, the F;; (x) will be zero if 2L > m; and con-
sequently, T, (h) will be zero for L > m/2, and from (6), the remainder R, (k) will be
equal to S, (h).

APPENDIX 1

The functions g;(x), e;(x), and d;(x). Since the first 2L + 2 derivatives of f(x)
are assumed to be continuous at x = 0, f(x) can be approximated by the Taylor
series

2L+2 £(j)
fx) = Z+ f] @,

in the neighborhood of x = 0
The corresponding series approximation for the gi(x) defined in (9) is

+ 1
(2j+1+i)
2L+1-2j ARG (O)F< > o
gj(x) =~

(AI-1) =0 i+l p<ﬂf_i>
2

This expression satisfies (9) with the same accuracy as the series for f(x).
From (AI-1)

T2+ (o)

g]-(O) = 3
o)

and
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()
Moy =*Lt——— 7 .
(AI-2) gi (0) 2]'+1(]~ + 1)!

As can be verified by substitution in (4), the e;(x) are given exactly by

_ & )R- FOk)
(AL3) ej(x)_ig 277 (G i) X
Let
(AI-4) d;(x) = e]-(x) —gi(x).

Then, from (4) and (9), dy(x) = £(0)/x and for j > 0,

d ()
(AL-5) dp () = -~ ® +g’x( )

From (AI-5), the exact expression for the di(x) can be shown to be

C )T7PrG —i + %) FCD(0)
il P(%)x2]'+1—2i )

(AI-6) d; x) = io

An exact equation for the g;(x) can be obtained from (AI-3), (Al-4) and (AI-6).
With (4) and (7), (AI-6) gives

(AL7) 2_"’1"(%);:2’“‘1 Wyr-¢*» = m (_y)h]_l(y)

APPENDIX II
Evaluation of i;(h). Asin (11), let

. z d

(AIL1) i) = [ o m@) oGk, () =
For a function f(x), let the operator H be defined to have the property that

1df

- Hf(h
(AlL-2) =
Then, as can be shown by induction, if H” denotes n successive applications of H,
(AI1-3) H"k;(xh) = x"k; . ,(xh),
since [8] the Bessel functions have the property that
d
(AIl-4) o x*J, (x) = x*J,_, (x).
Thus,
[P0

(AI1-5) i(h) = o [ Jolgh) - too(h)] ,
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where fori > 0 and 0 <j <,

(AIL-6) t;(h) = f : YR Ok i ) éyz .

Equation (AII-5) is obtained by making use of the integral representation [6] which,
in the notation used here, can be written

2 Jo@h) = [ 7 hgYk, ) “;—y .

The condition j < i ensures the convergence of the integral in (AII-6).
Since [8]

d  _ _
(AIL7) 2 X a0 = 2T, (),
the k;(x) have the property that

(AILS) i+ omyay = -y 3%, Oh).

Thus, N + 1 integrations by parts give

N
t;;(h) 727 thi+n(z)ki+j+n(zh) +tiiner,; B
n=

22l i)+t 1,;®),
where the uf.}’ (h) are defined in (7). ForN=j -1,
(AIL9) Hitoo(h) = 22uf; () + 1;().
Since k,,_,,(qh) = (gh)"J_,(qh),

(AIL-10) H"Jo(ah) = q*"(qh)™"J_,(@h) = 4"k, (ah).

Substitution of (AIl-9) and (AII-10) in (AII-5) gives

@A) k) =2 m@k k)~ muly () = vy (8).

APPENDIX III

Rearrangement of the Expressions for gj(x) and ggl)(x). With (AI-3), the e]-(x)
can be expressed

i (17— i) Fyx)
+

i=0 271 (j — i)l x2+ 1

(AIII-1) e;(x) = D;(x),

where for 0 <i<j

2j—i £U+E) (K
(AIII-2) Fy(x) = FO(x) - ]Z f (0)x

b
k=0 k!
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(= 1Y@ - i) 2j—i f(i+k)(o)xk

(AIIL-3) D;(x) = — — o :
=027 (j — i) xH T k=0 :

By interchange of the order of summation, (AIIl-3) can be written

i d.f®
(AIIL-4) Di(x) = 22’ O

where

Ko Nk
4y ¥ _CUTFCIZk

k=0 2/ kK1 (= k) (G — K)!

N

km = j’ j i:

kp=i j>i

When the value of d;; given in Eq. (AIV-3) of Appendix IV is substituted in (AIIl-4),
the D;(x) are seen to be identical to the dj(x) given in (AI-6). Thus, from (Al-4),

i (7@ - i) Fyx)

i=0 21741 (j — i) xHH 1

(AIII-5) g(x) =

Differentiation of (AIIl-2) gives
[Fij(x)] M = Fi+ 1,j(x)~

From this result and (AIII-5),
jr1 (I + 2 - i) Fyx)

(1) —
. g )= ’
(AllL-6) / iZ-:O I (4 1 — i) x 22

where F o(x) =f (D(x), and the other Fyj(x) are given by (AIIL-2).
APPENDIX IV
Evaluation of the d;;. Let

Q) = (1 - »?Y.

Then i (= D!
(2i-i)(Q) = AT 2k (25-1)
0O =Y G- P b=0
(AIV-1)

_C DR = D)
G = %) Chi)!
for even i, while Q{>/~1)(0) = 0 for odd i.
Also,if y =2x — 1,

0,(7) = 22x7(1 - x) = 2%g;(x),
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where

q;(x) = x/(1 - x).

If superscripts in parentheses indicate derivatives of a function with respect to its

argument,
0Qf*™0(0) = 2%/ [q;(4)] PICI ! = 27 [q;(4)) D
(AIV-2) COTR e (o
=2 Z o E Y e,
= 2/d,,
where the d;; are defined below (AIII-4).
Thus, from (AIV-1) and (AIV-2),
(= DRk PG -k + %) _
(AIV-3) dyy,j = k! T (%) y dagp1j = o,

where & is a nonnegative integer.
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